
Automated Code Generation for High-Performance, Future-Compatible Graph Libraries
© 2017 Carnegie Mellon University 1

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Automated Code Generation for
High-Performance, Future-Compatible
Graph Libraries
Dr. Scott McMillan, Senior Research Scientist
CMU PI: Prof. Franz Franchetti, ECE

Research Review 2017

Automated Code Generation for High-Performance, Future-Compatible Graph Libraries
© 2017 Carnegie Mellon University 2

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Copyright 2017 Carnegie Mellon University. All Rights Reserved.

This material is based upon work funded and supported by the Department of Defense under Contract No. FA8702-15-D-0002 with
Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research and development center.

The view, opinions, and/or findings contained in this material are those of the author(s) and should not be construed as an official
Government position, policy, or decision, unless designated by other documentation.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS FURNISHED
ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR
IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR
MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY
DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT
INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright
notice for non-US Government use and distribution.

This material may be reproduced in its entirety, without modification, and freely distributed in written or electronic form without requesting
formal permission. Permission is required for any other use. Requests for permission should be directed to the Software Engineering
Institute at permission@sei.cmu.edu.

Carnegie Mellon® is registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.

DM17-0774

Automated Code Generation for High-Performance, Future-Compatible Graph Libraries
© 2017 Carnegie Mellon University 3

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Data-Intensive Computing Efforts at the SEI

Image: http://www.army.mil/2013 20152014 2016 2018–

2014-current: GraphBLAS Forum (Jeremy Kepner MIT/LL, chair)

2016: Line: GraphBLAS
2017-18: Line: Spiral Graph: Automated
Code-Generation for Graph Algorithms2013-15: Line: Graph Algorithms on Future Architectures

2015: Development and Release of
GraphBLAS Template Library, v 1.0
(with Indiana U)

2014: C3E Challenge:
Graph analytics for
detecting APTs in
network data (SCORE)

2014: NSA: Predictive
Analytics Hands-on
Workshop

2016: NSA/LTS Pattern of Life
Graph Analytics

2015-current: Development of GraphBLAS C API Specification (w/
LBNL, Intel, IBM, UC Davis)

2016: OSD Decision Analytics

2017

2016-17: Line: Big Learning Benchmarks

2017-18: GraphBLAS Template Library, v 2.0
(with CMU/PNNL)

R
es

e
ar

ch
 &

 D
ev

el
o

p
m

en
t

P
ro

o
f

o
f

C
o

n
ce

p
t

P
ro

gr
am

2018-21: Line: A Series of
Unlikely Events: Learning
behaviors in big data

2018: LENS: COTS Benchmark
Baseline for Graph Analytics

2018: GraphBLAS book
and hands-on tutorial

Automated Code Generation for High-Performance, Future-Compatible Graph Libraries
© 2017 Carnegie Mellon University 4

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

SpiralGraph: Automated Code Generation for Future-
Compatible, High-Performance Graph Libraries
Problem:
• Heterogeneous high-performance computing (HHPC) architectures are becoming more complex (the

NSCI push to exascale).
• Graph algorithms are difficult to program efficiently even on today’s hardware architectures.
• Exascale trend: Programming these systems will be much more difficult.1

Solution:
• Create an automated code generation tool that produces high-performance graph algorithm

implementations for specified hardware.
• Make graph algorithms performance-portable and future-compatible.

Approach:
• Create formal abstractions of graph algorithms and primitives (build on GraphBLAS).
• Extend formal abstractions of chosen hardware architectures (build on Spiral and DARPA HACMS,

DESA, PERFECT, BRASS).
• Create tool for mapping graph algorithms to hardware architectures for efficient code generation of

data-intensive applications.

1FACT SHEET: National Strategic Computing Initiative, 29 July 2015.

Automated Code Generation for High-Performance, Future-Compatible Graph Libraries
© 2017 Carnegie Mellon University 5

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Graph Analysis is Important and Pervasive

Slide credit: Jeremy Kepner, et al. “Mathematical Foundations of the GraphBLAS”, IEEE HPEC, Sept. 2016.

Common Goal: Detection of subtle patterns in massive graphs

Cyber

• Graphs represent
communication patterns of
computers on a network

• 1,000,000s – 1,000,000,000s
network events

• GOAL: Identify cyber attacks
or malicious software

Social

• Graphs represent
relationships between
individuals or documents

• 10,000s – 10,000,000s
individual and interactions

• GOAL: Identify hidden social
networks

• Graphs represent entities
and relationships detected
through multi-INT sources

• 1,000s – 1,000,000s tracks
and locations

• GOAL: Identify anomalous
patterns of life

ISR

Automated Code Generation for High-Performance, Future-Compatible Graph Libraries
© 2017 Carnegie Mellon University 6

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Today’s Computing Landscape

IBM POWER8
384 Gflop/s, 200 W
12 cores, 4 GHz
2-way/4-way VMX/VSX

Intel Xeon E5-2699v3
662 Gflop/s, 145 W
18 cores, 2.3 GHz
4-way/8-way AVX2

Intel Xeon Phi
1.2 Tflop/s, 300 W
61 cores, 1.24 GHz
8-way/16-way LRBni

Qualcomm Snapdragon 810
10 Gflop/s, 2 W
4 cores, 2.5 GHz
A330 GPU, V50 DSP, NEON

1 Gflop/s = one billion floating-point operations (additions or multiplications) per second

Intel Atom C2750
29 Gflop/s, 20 W
8 cores, 2.4 GHz
2-way/4-way SSSE3

Dell PowerEdge R920
1.34 Tflop/s, 850 W
4x 15 cores, 2.8 GHz
4-way/8-way AVX

IBM BlueGene/Q
10 Pflop/s, 8 MW
48k x 16 cores, 1.6 GHz
4-way QPX

NVIDIA Tesla P100
10.6 Tflop/s, 250 W
3584 cores, 1.48 GHz
64-way SIMT

Slide credit: Franz Franchetti, “SPIRAL: Automated Code Generation of Performance Libraries,” 2016.

Automated Code Generation for High-Performance, Future-Compatible Graph Libraries
© 2017 Carnegie Mellon University 7

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Separation of Concerns

Separate the complexity of graph analysis from the
complexity of hardware systems:

Se
pa

ra
tio

n
of

 C
on

ce
rn

s

Automated Code Generation for High-Performance, Future-Compatible Graph Libraries
© 2017 Carnegie Mellon University 8

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

GraphBLAS Primitives

http://graphblas.org “A. Buluc, T. Mattson, S. McMillan, J. Moreira, C. Yang, “The GraphBLAS C API Specification, v 1.0.2,” updated August 2017.

Operation Description
mxm, mxv, vxm Perform matrix multiplication (e.g., breadth-first traversal)
eWiseAdd,
eWiseMult

Element-wise addition and multiplication of matrices (e.g., graph union,
intersection)

extract Extract a sub-matrix from a larger matrix (e.g., sub-graph selection)
assign Assign to a sub-matrix of a larger matrix (e.g., sub-graph assignment)
apply Apply unary function to each element of matrix (e.g., edge weight

modification)
reduce Reduce along columns or rows of matrices (vertex degree)
transpose Swaps the rows and columns of a sparse matrix (e.g., reverse directed

edges)
build Build a matrix representation from row, column, value tuples
extractTuples Extract the row, column, value tuples from a matrix representation

http://graphblas.org/

Automated Code Generation for High-Performance, Future-Compatible Graph Libraries
© 2017 Carnegie Mellon University 9

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Separation of Concerns

GOAL: write once, run everywhere…fast (with help from hardware experts).

G
ra

ph
B

LA
S

A
pp

lic
at

io
n

Pr
og

ra
m

m
in

g
In

te
rf

ac
e

(A
PI

)

Automated Code Generation for High-Performance, Future-Compatible Graph Libraries
© 2017 Carnegie Mellon University 10

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

What is Spiral?

Traditionally Spiral Approach

High performance library
optimized for given platform

Spiral

High performance library
optimized for given platform

Comparable
performance

Automated Code Generation for High-Performance, Future-Compatible Graph Libraries
© 2017 Carnegie Mellon University 11

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Spiral: Platform-Aware Formal Program Synthesis

ν
p
μ

Architectural parameters:
Vector length,
#processors, …

rewriting defines

Kernel:
problem size,
algorithm choice

abstraction abstraction

Model: common abstraction
= spaces of matching formulas

pick

architecture
space

search

algorithm
space

optimization

GraphBLAS Math:
CL, z = (L⊕.⊗ LT)

count = ⊕i,j C(i,j)

Automated Code Generation for High-Performance, Future-Compatible Graph Libraries
© 2017 Carnegie Mellon University 12

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

GraphBLAS Primitives: The Math

Operation Mathematical Description Output Inputs

mxm C¬M, z = C⊙ (AT ⊕.⊗ BT) C ¬, M, z,⊙, A, T, ⊕.⊗, B, T

mxv, (vxm) c¬m, z = c⊙ (AT ⊕.⊗ b) c ¬, m, z,⊙, A, T, ⊕.⊗, b

eWiseMult C¬M, z = C⊙ (AT ⊗ BT) C ¬, M, z,⊙, A, T, ⊗, B, T

eWiseAdd C¬M, z = C⊙ (AT ⊕ BT) C ¬, M, z,⊙, A, T, ⊕, B, T

reduce (row) c¬m, z = c⊙ [⊕j AT(:,j)] c ¬, m, z,⊙, A, T, ⊕

apply C¬M, z = C⊙ f(AT) C ¬, M, z,⊙, A, T, f

transpose C¬M, z = C⊙ AT C ¬, M, z,⊙, A (T)

extract C¬M, z = C⊙ AT(i,j) C ¬, M, z,⊙, A, T, i, j

assign C¬M, z (i,j) = C(i,j) ⊙ AT C ¬, M, z,⊙, A, T, i, j

build (meth.) C = mxn(i,j,v,⊙) C ⊙, m, n, i, j, v

extractTuples (meth.) (i,j,v) = A i,j,v A

Notation: i,j – index arrays, v – scalar array, m – 1D mask, other bold-lower – vector (column), M – 2D mask, other bold-caps – matrix, T – transpose,
¬ - structural complement, z – clear output, ⊕ monoid/binary function, ⊕.⊗ semiring, blue – optional parameters, red – optional modifiers

S.
 M

cM
illa

n,
 e

t a
l.,

 “D
es

ig
n

an
d

Im
pl

em
en

ta
tio

n
of

 th
e

G
ra

ph
BL

AS
Te

m
pl

at
e

Li
br

ar
y

(G
BT

L)
,”

SI
AM

 A
nn

ua
l M

ee
tin

g
(A

N
16

),
Ju

ly
 2

01
6.

U

pd
at

ed
 IE

EE
 H

PE
C

 C
on

fe
re

nc
e,

 S
ep

 2
01

7.

Automated Code Generation for High-Performance, Future-Compatible Graph Libraries
© 2017 Carnegie Mellon University 13

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

SPIRAL’s Math Framework
High Level Operators

z

x

y

Basic Operators

Loop Abstraction Rule Based Compiler

Leverages DARPA HACMS

Automated Code Generation for High-Performance, Future-Compatible Graph Libraries
© 2017 Carnegie Mellon University 14

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Autotuning in Constraint Solution Space
Intel Core i7 (2nd Gen)

Base cases

TriangleCount

Breakdown rulesTransformation rules Expansion + backtracking

Recursive descent

Confluent term rewriting

Recursive descent

Recursive descent

Abstract code

OL specification

OL (dataflow)
expression

Optimized Ʃ-OL
expression

Ʃ-OL (loop)
expression

Optimized
abstract code

C code

Confluent term rewriting

triangles =
||L ⊗ (L ⊕.⊗ LT)||1

Automated Code Generation for High-Performance, Future-Compatible Graph Libraries
© 2017 Carnegie Mellon University 15

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Long-Range Goal: SPIRAL as JIT and GraphBLAS Optimizer

Source Code
 C++, GraphBLAS calls,

other supported libraries
 Code = specification, not program

SPIRAL Module
 Acts as JIT, delayed execution engine,

Inspector/executor
 Implements telescoping language ideas
 Rewrites code into better algorithms
 Compiles to range of platforms

CPU, GPU, FPGA
 Plug-in mechanism for post deployment

reconfiguration and update

Shared ObjectsExecutable
Other C++ Code

GraphBLAS Object
MxM::compute()
::init()
::reconfig()

GraphBLAS Object
MxV::compute()
::init()
::reconfig()

MxV kernel
AVX, pthreads
GPU, FPGA

Paradigm
Plug-In:
Multicore,
SIMD

Optimizer
Sparse LinAg
rewrites

MxM kernel
AVX, pthreads
GPU, FPGA

Leverages DARPA BRASS

Paradigm
Plug-In:
FPGA

Optimizer
Semiring
rewrites

SPIRAL module:
Code synthesis, trade-offs
reconfiguration, statistics

Automated Code Generation for High-Performance, Future-Compatible Graph Libraries
© 2017 Carnegie Mellon University 16

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Formal Approach To Co-Optimization

Co-optimizationkernel “clean slate”

search

architecture
space

Model: common abstraction
= spaces of matching formulas

search

algorithm
space

GraphBLAS Math:
CL, z = (L⊕.⊗ LT)

count = ⊕i,j C(i,j)
ν
p
μ

rewriting defines

abstraction abstraction

Leverages DARPA DESA and PERFECT

Automated Code Generation for High-Performance, Future-Compatible Graph Libraries
© 2017 Carnegie Mellon University 17

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Long-Range Goal: Algorithm/Architecture Co-Optimization

Design Space Optimization Problem

 Algorithm
 Architecture
 Cost function Cm(ξ, µ)
 Parameters: ξ, µ
 Metric m: power, runtime,…
Task: Find ξ and µ s.t. Cm(ξ, µ) is minimal

architecture

algorithm
cost 1/Cm(ξ, µ)

A(µ)

M (»)

“What is the right architecture for my application?”
“What architecture features are good for my application?”

Automated Code Generation for High-Performance, Future-Compatible Graph Libraries
© 2017 Carnegie Mellon University 18

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Summary and Future Work

• GraphBLAS C API Specification is complete
- Mathematical descriptions of primitive operations are complete
- Algorithm development using the API is in progress (dozens completed)

• Exploration of performant code generation and data structures has begun
• Goals for FY18:

- Integrate primitives and necessary “knowledge” into Spiral code generation technology
- Target different hardware platforms

• Multi-core CPUs
• Accelerators: FPGAs, Graphics Processing Units (GPUs)

- Generate code for algorithms in benchmark and Challenge problems
• Graph 500: breadth-first search, shortest paths
• DARPA HIVE Graph Challenge: subgraph isomorphism

• Long-Range Goal: Co-synthesis of hardware and software

Automated Code Generation for High-Performance, Future-Compatible Graph Libraries
© 2017 Carnegie Mellon University 19

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Contact Information

Presenter / SEI PI
Dr. Scott McMillan
Senior Research Scientist

Email: smcmillan@sei.cmu.edu

Presenter / CMU PI
Prof. Franz Franchetti
ECE Department

Email: franzf@ece.cmu.edu

