
1
What Do Systems Engineers Need to Know About Software?
Oct. 24, 2016
© 2016 Carnegie Mellon University
Distribution Statement A. This material has been approved for public release and
unlimited distribution.

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

© 2016 Carnegie Mellon University
Distribution Statement A. This material has been
approved for public release and unlimited distribution.

What Do Systems
Engineers Need To
Know About
Software?
Sarah Sheard

October 24, 2016

1

Sheard18876

2
What Do Systems Engineers Need to Know About Software?
Oct. 24, 2016
© 2016 Carnegie Mellon University
Distribution Statement A. This material has been approved for public release and
unlimited distribution.

Copyright 2016 Carnegie Mellon University

This material is based upon work funded and supported by the Department of Defense under Contract No. FA8721-05-C-0003 with
Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research and development center.

Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily
reflect the views of the United States Department of Defense.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER
EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR
PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE
MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT,
TRADEMARK, OR COPYRIGHT INFRINGEMENT.

[Distribution Statement A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for
non-US Government use and distribution.

This material may be reproduced in its entirety, without modification, and freely distributed in written or electronic form without requesting
formal permission. Permission is required for any other use. Requests for permission should be directed to the Software Engineering
Institute at permission@sei.cmu.edu.

DM-0004089

3
What Do Systems Engineers Need to Know About Software?
Oct. 24, 2016
© 2016 Carnegie Mellon University
Distribution Statement A. This material has been approved for public release and
unlimited distribution.

Tutorial agenda
Overview

• Purpose of tutorial
• Attitudes
• What are software and hardware? What are systems and

software engineering? How are they similar and different?
Vocabulary
Some specific software knowledge for systems engineers
Example concerns: Safety and security
The future: A partnership
Conclusion

#Sheard 18876

4
What Do Systems Engineers Need to Know About Software?
Oct. 24, 2016
© 2016 Carnegie Mellon University
Distribution Statement A. This material has been approved for public release and
unlimited distribution.

Purpose: Systems engineers understand…

How does software differ from hardware?
How does software engineering differ from systems
engineering?
Basic software terms and concepts not always clear to systems
engineers
Approach for the future: Partnership

Note: SW = Software, SWE = Software engineer(ing),
SysE = Systems engineer(ing)

5
What Do Systems Engineers Need to Know About Software?
Oct. 24, 2016
© 2016 Carnegie Mellon University
Distribution Statement A. This material has been approved for public release and
unlimited distribution.

Attitudes … correct?

SysEs think:
• Software engineers think only in bits and bytes
• Software engineers don’t recognize that anything is important other

than software or logic that will become software
• Software engineers are subsystem engineers and need to listen to me,

because I’m responsible for the larger system

SWEs think:
• Systems engineers act imperious and take credit for the system that

software engineering creates
• Systems engineers don’t understand what we do, insist on functional

software, don’t hand over fully complete requirements, …
• “What’s the secret sauce that SysEs have that we don’t?”
• Systems engineers are a pest…keep trying to make us plan our work,

but we do Agile, we can’t plan; insist on all requirements up front…

6
What Do Systems Engineers Need to Know About Software?
Oct. 24, 2016
© 2016 Carnegie Mellon University
Distribution Statement A. This material has been approved for public release and
unlimited distribution.

Desired attitude re systems engineering

We want Software Engineers to see Systems Engineers
• As partners in building a useful complex system

- Value of each is understood by both
• Primary system responsibility during requirements and

validation
• Those to look to for breadth
• Responsible for overall system including “hardware”
• Having complementary expertise

7
What Do Systems Engineers Need to Know About Software?
Oct. 24, 2016
© 2016 Carnegie Mellon University
Distribution Statement A. This material has been approved for public release and
unlimited distribution.

What is software?

• Instructions that turn a general purpose computer into a special
purpose computer

• Algorithms
• Computer programs
• The framework on which all capability is built
• The complexity remaining when replacing formerly dedicated

(long-lead-time) hardware with generic computer hardware
• All the items needed to provide the user with the functionality

they require
• May include computers, training, backup plans, etc.

8
What Do Systems Engineers Need to Know About Software?
Oct. 24, 2016
© 2016 Carnegie Mellon University
Distribution Statement A. This material has been approved for public release and
unlimited distribution.

Facts about software

Every new software product is unique; otherwise an old one would be
copied

Evolving system requirement needs drive software requirements,
causing continuing change*

Software provides unprecedented capabilities, but is vulnerable to
remote attacks

• Code reuse (bespoke, but also libraries, drivers, vendor products) is
desired to save cost, but it is a major source of vulnerabilities

Increasing complexity comes from dynamic program evolution
• Complexity leads to fragility which yields often non-repeatable failures

Testing
• Testing is a horribly inefficient way to find problems to be fixed in

poorly written code
• Software testing, including such activities as inspections, are

sampling processes

*For software written to solve a real world problem from Proceedings of the IEEE, Vol. 68, No. 9, September 1980. “Programs, Life Cycles,
and Laws of Software Evolution,” by Meir M. Lehman.

9
What Do Systems Engineers Need to Know About Software?
Oct. 24, 2016
© 2016 Carnegie Mellon University
Distribution Statement A. This material has been approved for public release and
unlimited distribution.

Programming laws

Conservation of Organizational Stability
• Invariant Work Rate

Conservation of Familiarity
• Invariant Perceived Complexity

10
What Do Systems Engineers Need to Know About Software?
Oct. 24, 2016
© 2016 Carnegie Mellon University
Distribution Statement A. This material has been approved for public release and
unlimited distribution.

What does software do?

Makes components function, turns components into a system
Provides the glue among other system components
(Communication, data)

Four things
• Turns data into information

- Data from sensors, which view the physical world, e.g.
• Stores data and information
• Makes decisions

- Enacts algorithms. E.g. decision algorithms.
• Drives actuators

- to change something in the physical world

11
What Do Systems Engineers Need to Know About Software?
Oct. 24, 2016
© 2016 Carnegie Mellon University
Distribution Statement A. This material has been approved for public release and
unlimited distribution.

Varieties of software

IT vs Embedded systems
• IT: Software that drives only with computer hardware and user

interface hardware
• Embedded systems: Software affects the physical world

through sensors and actuators
How is it procured?

• Design and build it ourselves
• COTS or GOTS (commercial, or government, off-the-shelf)
• FOSS (Free and open source software)

Two phases
• Development: the fun stuff
• Maintenance: hard. Fixing someone else’s code

- Corrective (bugs), Perfective (new requirements), Adaptive (for
changes in databases or operating system), Preventive (reliability…)

Presenter
Presentation Notes
COTS, GOTS

12
What Do Systems Engineers Need to Know About Software?
Oct. 24, 2016
© 2016 Carnegie Mellon University
Distribution Statement A. This material has been approved for public release and
unlimited distribution.

What is hardware?

Only software engineers are satisfied with calling a generic group
of things “hardware”
It means “not software”

13
What Do Systems Engineers Need to Know About Software?
Oct. 24, 2016
© 2016 Carnegie Mellon University
Distribution Statement A. This material has been approved for public release and
unlimited distribution.

Dictionaries: Hardware
Metal goods and utensils (locks, cutlery, tools, etc.)

(Computers) The sum of all physical objects, such as
electrical, mechanical, and electronic devices which
comprise a computer system…

Major items of equipment (military equipment; electronic and electrical
devices of a vehicle or a computer)

(Military) Weapons, transport, and other
physical objects used in conducting a war

Physical objects used in carrying out an activity, in contrast
to knowledge, skill, or theory

Weapons, especially handguns, carried on the person, as in:
Check your hardware at the door before entering.

What about: “Everything in an airplane other than the software?”

Note: The term “hardware” grates on non-software people

Presenter
Presentation Notes
Drawings from Microsoft “online pictures”: creative commons licenses

Each called “Hardware” by someone!
"Not Software" (Everything done to a system other than that which software engineers claim; includes strategy, business, mission analysis, staffing, e.g.)
Physical items (includes ailerons and fuel valves) (“domain-specific hardware”)
Computer hardware (e.g., processors, backplanes, etc.)

Notes: 1. Vocabulary section later 2. Computer hardware and most physical items have embedded SW

14
What Do Systems Engineers Need to Know About Software?
Oct. 24, 2016
© 2016 Carnegie Mellon University
Distribution Statement A. This material has been approved for public release and
unlimited distribution.

How is software the same as and different from
hardware?1

For both, design is key
• For software, production is just copying

Much can be automated, e.g. code generation from highly precise design;
testing

Myth: Software is easy to change than hardware
• Reality: Yes, for toy problems
• Reality: For real-life problems, changed software is at least as hard as

new software
• Reality: For complex systems, software change is probably harder than

hardware change (less isolable)
Software becomes fragile when complex: can break it by adding to it.
Software fixes often cause more and worse problems; implications hard to

see
Working from your own vs. others’ code is different
Aging

• Software, in theory, does not get old: No corrosion, stress fractures etc.
• But: Patches, re-working to work with changing environment. Also lack of

support

15
What Do Systems Engineers Need to Know About Software?
Oct. 24, 2016
© 2016 Carnegie Mellon University
Distribution Statement A. This material has been approved for public release and
unlimited distribution.

How is software the same as, and different from,
hardware?2

Interfaces. Software interfaces are 100% under the control of the
software designer and programmer: Mistakes can be made

• In contrast, physical interfaces (structural, electrical, fluid) are to a
great deal determined by nature (and by previous designers’
decisions, i.e. of parts)

• Note: for reused/OTS software: to some extent these are also
determined by previous designers’ decisions

Hard to keep track of how software is used
• Copied easily
• Aftermarket applications
• IT vendors have to forcefully stop supporting old versions

Much use of patterns and styles in software (at least in theory)

16
What Do Systems Engineers Need to Know About Software?
Oct. 24, 2016
© 2016 Carnegie Mellon University
Distribution Statement A. This material has been approved for public release and
unlimited distribution.

What is engineering?

Make things
Using technology
For human purposes

Engineering

Need
(purpose)

Technology

Engineered
Things

Does this apply to systems engineering? To software?

17
What Do Systems Engineers Need to Know About Software?
Oct. 24, 2016
© 2016 Carnegie Mellon University
Distribution Statement A. This material has been approved for public release and
unlimited distribution.

How are SWE and SysE the same?

From: SEI Blog
https://insights.sei.cmu.edu/sei_blog/2014/05/needed-improved-collaboration-between-software-and-systems-engineering.html

18
What Do Systems Engineers Need to Know About Software?
Oct. 24, 2016
© 2016 Carnegie Mellon University
Distribution Statement A. This material has been approved for public release and
unlimited distribution.

Similarities: software and systems engineering

Both call themselves “SE”!
• Both pursue quality and system usability
• Both have many specialties: one SWE is not replaceable by

another SWE any more than a structural systems engineer is
replaceable by a data modeler

• Standards have been in the process of harmonizing for 15
years

Interplay of engineering, architecture, management
Evolving: Both more complex, Both turning into systems-of-
systems
Both are done in projects

• Hard to estimate
• Very expensive to develop, but increasingly: to maintain
• Delays in one hold up the other

19
What Do Systems Engineers Need to Know About Software?
Oct. 24, 2016
© 2016 Carnegie Mellon University
Distribution Statement A. This material has been approved for public release and
unlimited distribution.

How is software engineering different from
systems engineering or specialty engineering?1

SW development lifecycle is likely different from physical life cycles
• Don’t need long-lead items (except when they do…)
• Acknowledges likelihood of customer desires changing (agility,

close customer contact)
• Build-test-build
• “When software is treated as a minor subset of a system, it is likely

to become the largest upset”

SW considers functional and non-functional requirements to be
different

SW requires growth capacity
• Most systems have no hardware growth capacity
• Software in any particular instance *must* be changed during life

(sustainment=enhancement)
• Any system must have extra processing and memory

Presenter
Presentation Notes
Most systems have no hardware growth capacity. Any extra capacity is usually traded off for lower cost. If more capacity is needed in the future, the next version will change the design.
SW on the other hand has no choice. It is a GIVEN that software in any particular instance *must* be changed during life (sustainment=enhancement!) so any system had better have extra processing and memory for future upgrades to use.

20
What Do Systems Engineers Need to Know About Software?
Oct. 24, 2016
© 2016 Carnegie Mellon University
Distribution Statement A. This material has been approved for public release and
unlimited distribution.

How is software engineering different from
systems engineering or specialty engineering?2

Verification
• Less variety of testing (i.e. no vibration, thermal); more tests. A

hierarchy of component and subsystem tests; integration test,
regression test, development test, operational test, inspections

• Vulnerability testing is growing
• Software testing is a sampling process
• Number of possible tests approaches infinity

Configuration management
• All software is intellectual
• SW CM is different from and separate from other CM
• Rigorous, used hourly to daily, and extremely important

- Identification
- Change control (i.e. version control)
- Maintenance (patches, block iterations…)

21
What Do Systems Engineers Need to Know About Software?
Oct. 24, 2016
© 2016 Carnegie Mellon University
Distribution Statement A. This material has been approved for public release and
unlimited distribution.

From literature:
“What software managers need to know”
“SW Project Manager is most important role for project success”
Software-specific processes, e.g. code reviews, languages
Strategy development and engagement
Evaluating SWEs
Creating and evaluating effective development teams
Controlling project costs and schedule
Multiple risk assessment and mitigation methods
Computing the confidence level in various cost estimates
Trade studies are imperative
Communication, project planning and scheduling, managing complexity,
strategic planning (balanced scorecard, strategy maps, SWOT),
Estimating, Cost accounting, Risk management

SWOT = strengths, weaknesses, opportunities, threats

Source: Peters 2015

22
What Do Systems Engineers Need to Know About Software?
Oct. 24, 2016
© 2016 Carnegie Mellon University
Distribution Statement A. This material has been approved for public release and
unlimited distribution.

Tutorial agenda

Overview
Vocabulary

• General technical
• Management related
• Specific technical
• Software “ilities”

Some specific software knowledge for systems engineers
Example concerns: Safety and security
The future: A partnership

23
What Do Systems Engineers Need to Know About Software?
Oct. 24, 2016
© 2016 Carnegie Mellon University
Distribution Statement A. This material has been approved for public release and
unlimited distribution.

Vocabulary1 (technical)

Required attributes – “ilities” → “quality attributes” (non-functional
requirements)…things the system must do that can’t be coded in one
specific place

Performance – speed of a computer or processor, or effectiveness such
as throughput, response time, or availability (narrower than SysE
definition: Any key parameter including such things as battery life or
antenna gain)

Exception handling – process of responding to exceptions (during
computation)…which are anomalous or undesired conditions that may
result in faults if not properly handled (x/0, out of memory…)

Refactoring – complete restructuring of a program, usually because as it
has been maintained its structure got awkward, without changing its
behavior. Changes nonfunctional attributes

Regression testing – testing that software previously shown to be working
still is working after changes (including new interfaces with other
software)

Presenter
Presentation Notes
Need to find definitions or delete!

24
What Do Systems Engineers Need to Know About Software?
Oct. 24, 2016
© 2016 Carnegie Mellon University
Distribution Statement A. This material has been approved for public release and
unlimited distribution.

Vocabulary2 (technical)

Object orientation
• Instead of specifying software in terms of actions and logic, software is

organized around real-world objects, with attributes and interactions
Latency – two meanings:

• Latent defects haven’t been discovered, but are suspected
• Latency in timing = delay

Entropy (ever-increasing disorder in a system) – two general meanings:
• Software entropy: A computer program that is used will be modified; A

modified program will have higher complexity unless specifically
addressed; technical debt increases software entropy

• Information entropy: Expected value of information content of a
message

Prototyping
• In systems engineering: first version
• In software engineering: partial version

Atomic Requirements – “Leaf” nodes, most detailed requirements

Presenter
Presentation Notes
For oo see Steinersee https://en.wikipedia.org/wiki/Software_entropy

25
What Do Systems Engineers Need to Know About Software?
Oct. 24, 2016
© 2016 Carnegie Mellon University
Distribution Statement A. This material has been approved for public release and
unlimited distribution.

Vocabulary3 (management-related)

Stories/User stories
• Aspects of Agile software development comparable to a scenario or

to a number of related requirements – written in sentences

Production – phase where software is rolled out to users

Velocity – In Agile software development, the number of work units (e.g.
user stories) completed in a given interval. Assists in estimating the next
phase

DevOps – a phase where operational software is being continuously
improved (developed): used in Agile software development

Technical debt – a financial metaphor for the work that is not done but is
known to be needed when implementing a short term solution to a
problem. The additional work that must be done long-term

Presenter
Presentation Notes
For oo see Steinersee https://en.wikipedia.org/wiki/Software_entropy

26
What Do Systems Engineers Need to Know About Software?
Oct. 24, 2016
© 2016 Carnegie Mellon University
Distribution Statement A. This material has been approved for public release and
unlimited distribution.

Vocabulary4 (specific technical)

Backplane: a hardware board that provides connections among
main computer circuit boards

SQL and NOSQL
• Structured Query Language: Programming language developed

for managing data in a relational database
• No (or: Not Only) SQL: a database management system

consisting of objects other than tables in relational databases
(can deal more rapidly with a variety of data structures)

Jira, GitHub etc…Tools used in SW development (specifically:
proprietary issue tracking product, software repository hosting
service)

Presenter
Presentation Notes
Sort somehow, maybe by level? Words I’ve found vs other sources? Relation to processes or to algorithms etc?

27
What Do Systems Engineers Need to Know About Software?
Oct. 24, 2016
© 2016 Carnegie Mellon University
Distribution Statement A. This material has been approved for public release and
unlimited distribution.

Vocabulary5 software “ilities”

SW architecture is largely driven by non-functional requirements
(ilities) = “quality attributes”

Design qualities* (“conceptual integrity,” maintainability,
reusability*)
Run-time qualities* (availability, interoperability, manageability,*
performance, reliability, scalability,* security)
System qualities* (supportability, testability)
User qualities* (usability); also modifiability

Reliability issues based on bugs, or unintended interactions, not
mechanical failures
Redundancy doesn’t solve vulnerability problems. If a flaw
disables one helicopter, it’ll disable the second one too

*Kaniss, Al. What is a software engineer, CrossTalk May/June 2015

28
What Do Systems Engineers Need to Know About Software?
Oct. 24, 2016
© 2016 Carnegie Mellon University
Distribution Statement A. This material has been approved for public release and
unlimited distribution.

Tutorial agenda

Overview
Vocabulary
Some specific software knowledge for systems engineers

• Basic software engineering principles
• Evolution
• Paradigms and styles
• Defects
• Lean/Agile/SAFe
• Formal methods

Example concerns: Safety and security

The future: A partnership

29
What Do Systems Engineers Need to Know About Software?
Oct. 24, 2016
© 2016 Carnegie Mellon University
Distribution Statement A. This material has been approved for public release and
unlimited distribution.

Basic software engineering principles*

• Intellectual Control
• Divide and Conquer
• Identify the customers
• Fuzzy into Focus
• Document it
• Essence of software is input-output
• Too much engineering is not good
• Plan for change
• Reuse as possible (not just code!)
• Keep simple: Cyclomatic complexity** <30
Also services, e.g. Cloud, software-as-a-service

Sources: *Hamlet and Maybee 2001. The Engineering of Software: Technical Foundations for the
Individual. Addison Wesley. Chapter 2, pp. 31-64.
** http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication500-235.pdf (1996)

Presenter
Presentation Notes
Wallace, Dolores R., Arthur H. Watson, and Thomas J. McCabe. “Structured Testing: A Testing Methodology Using the Cyclomatic Complexity Metric.” NIST Special Publication 500-235, 1996.

http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication500-235.pdf

30
What Do Systems Engineers Need to Know About Software?
Oct. 24, 2016
© 2016 Carnegie Mellon University
Distribution Statement A. This material has been approved for public release and
unlimited distribution.

Evolution

Requirements for software are always changing
• System requirements changes often end up in software
• Easiest way to implement a new capability
• Threats, operating systems, interfacing software change
• Mental models change (User interface)

Evolving programs cause increasing complexity; causes fragility =
unrepeated failures

31
What Do Systems Engineers Need to Know About Software?
Oct. 24, 2016
© 2016 Carnegie Mellon University
Distribution Statement A. This material has been approved for public release and
unlimited distribution.

Paradigms*

Classify languages and programs
E.g., structured, object-oriented, aspect-oriented, agent-
oriented, functional, process-oriented
Imperative, functional, logic, object-oriented**
Event-driven, service-oriented, time-driven
Sequential vs parallel computing
Functional vs procedural languages
Applications, such as robotics, machine-learning
Modular vs monolithic, structured vs non-structured (array)

*Good source: http://cs.lmu.edu/~ray/notes/paradigms/
**Source: http://people.cs.aau.dk/~normark/prog3-03/html/notes/paradigms_themes-paradigm-overview-
section.html

Presenter
Presentation Notes
In computing, aspect-oriented programming (AOP) is a programming paradigm that aims to increase modularity by allowing the separation of cross-cutting concerns. (Separate secondary or supporting functions from the main program’s business logic). It does so by adding additional behavior to existing code (an advice) without modifying the code itself, instead separately specifying which code is modified via a "pointcut" specification, such as "log all function calls when the function's name begins with 'set'". This allows behaviors that are not central to the business logic (such as logging) to be added to a program without cluttering the code core to the functionality. AOP forms a basis for aspect-oriented software development.
Aspect-oriented programming entails breaking down program logic into distinct parts (so-called concerns, cohesive areas of functionality). Nearly all programming paradigms support some level of grouping and encapsulation of concerns into separate, independent entities by providing abstractions (e.g., functions, procedures, modules, classes, methods) that can be used for implementing, abstracting and composing these concerns. Some concerns "cut across" multiple abstractions in a program, and defy these forms of implementation. These concerns are called cross-cutting concerns or horizontal concerns. (1st 1996-1997)
Major criticism: control flow obscured, worse than GOTO; to understand dynamics you need to understand the whole program. (Wikipedia)

“In object-oriented programming, programs are treated as a collection of interacting objects. In functional programming, programs are treated as a sequence of stateless function evaluations. When programming computers or systems with many processors, in process-oriented programming, programs are treated as sets of concurrent processes acting on logically shared data structures.”-Wikipedia: Programming_paradigm

Other paradigms: Imperative (explicit sequence of commands), Declarative (state result, not how to get it), Structured, Functional (Applicative) (nested function calls, no global state), Function-level (Combinator) (no variables!), OO (class-based or prototype based), Event-driven vs Flow-driven, Logic (Rule-based), Constraints (last 2: an engine infers the answers to questions), aspect-oriented, reflective, arrays.

Source: http://cs.lmu.edu/~ray/notes/paradigms/

http://cs.lmu.edu/~ray/notes/paradigms/
http://cs.lmu.edu/~ray/notes/paradigms/
http://cs.lmu.edu/~ray/notes/paradigms/

32
What Do Systems Engineers Need to Know About Software?
Oct. 24, 2016
© 2016 Carnegie Mellon University
Distribution Statement A. This material has been approved for public release and
unlimited distribution.

Architecture Styles
Architecture style Description

Client/Server
Segregates the system into two applications, where the client makes requests to the
server. In many cases, the server is a database with application logic represented as
stored procedures.

Component-Based
Architecture

Decomposes application design into reusable functional or logical components that
expose well-defined communication interfaces.

Domain Driven Design An object-oriented architectural style focused on modeling a business domain and
defining business objects based on entities within the business domain.

Layered Architecture Partitions the concerns of the application into stacked groups (layers).

Message Bus
An architecture style that prescribes use of a software system that can receive and
send messages using one or more communication channels, so that applications can
interact without needing to know specific details about each other.

N-Tier / 3-Tier
Segregates functionality into separate segments in much the same way as the
layered style, but with each segment being a tier located on a physically separate
computer.

Object-Oriented
A design paradigm based on division of responsibilities for an application or system
into individual reusable and self-sufficient objects, each containing the data and the
behavior relevant to the object.

Service-Oriented
Architecture (SOA)

Refers to applications that expose and consume functionality as a service using
contracts and messages.

Source: https://msdn.Microsoft.com/en-us/library/ee658117.aspx

Presenter
Presentation Notes
Combining Architectural Styles
The architecture of a software system is almost never limited to a single architectural style, but is often a combination of architectural styles that make up the complete system. For example, you might have a SOA design composed of services developed using a layered architecture approach and an object-oriented architecture style.

33
What Do Systems Engineers Need to Know About Software?
Oct. 24, 2016
© 2016 Carnegie Mellon University
Distribution Statement A. This material has been approved for public release and
unlimited distribution.

Layering (architectural pattern or style)

The organization of programming into separate functional components
that interact in some sequential and hierarchical way, with each layer
usually having an interface only to the layer above it and layer below it

OSI (Open System Interconnection)
layered protocols (protocol stack)

TCP/IP Two-layer set of programs:
transport and network address functions

Presentation (UI) layer
application layer

business (domain) layer
data access layer

With COTS/FOSS, developing SW = assembling
products; maintenance of COTS/FOSS can break system

Source: whatis.techtarget.com/definition/layering
Graphic source: Wikipedia: Abstraction layer

Layered computer
architecture

TCP/IP Tranmission control protocol/Internet Protocol
COTS/FOSS: Commercial off the shelf, Free & Open Source Software

Presenter
Presentation Notes
If the application architecture has no explicit distinction between the business layer and the presentation layer (i.e., the presentation layer is considered part of the business layer), then a traditional client-server (two-tier) model has been implemented. (Wikipedia: Multilayered_architecture)

Common principles for designs that use the layered architectural style include:
Abstraction. Layered architecture abstracts the view of the system as whole while providing enough detail to understand the roles and responsibilities of individual layers and the relationship between them.
Encapsulation. No assumptions need to be made about data types, methods and properties, or implementation during design, as these features are not exposed at layer boundaries.
Clearly defined functional layers. The separation between functionality in each layer is clear. Upper layers such as the presentation layer send commands to lower layers, such as the business and data layers, and may react to events in these layers, allowing data to flow both up and down between the layers.
High cohesion. Well-defined responsibility boundaries for each layer, and ensuring that each layer contains functionality directly related to the tasks of that layer, will help to maximize cohesion within the layer.
Reusable. Lower layers have no dependencies on higher layers, potentially allowing them to be reusable in other scenarios.
Loose coupling. Communication between layers is based on abstraction and events to provide loose coupling between layers.
From: https://msdn.microsoft.com/en-us/library/ee658117.aspx

34
What Do Systems Engineers Need to Know About Software?
Oct. 24, 2016
© 2016 Carnegie Mellon University
Distribution Statement A. This material has been approved for public release and
unlimited distribution.

Defects1: Why and what

Major indicator of software quality, software process quality,
problem reports, software test, readiness…
Qualities: ID number, description, where and how found (date,
module, line…, and steps to take to reproduce), version where
found, references, person who identified, severity, priority,
difficulty of closing, status, who fixed, when closed
Reason: Much less costly to find in phase created

Preventing, counting, reducing, managing
Software engineers think in terms of defects: some have a hard
time imagining systems engineers NOT managing via defects
Entire Agile SW development can be organized around working
off defects (Backlog)

35
What Do Systems Engineers Need to Know About Software?
Oct. 24, 2016
© 2016 Carnegie Mellon University
Distribution Statement A. This material has been approved for public release and
unlimited distribution.

Defects2: Relationship to rest of software

How many defects did we find during what phase (usually: what
test)? (discovery)
What kind were they? (categorization) Origin, severity, priority, etc.
New programming practices are adopted that reduce creation of
defects that escape the “coding” phase into test (e.g. via “strict
typing”)
Assigning, scheduling, and fixing defects (resolution) = rework
Testing (verification) esp. regression testing
Closure and reporting

36
What Do Systems Engineers Need to Know About Software?
Oct. 24, 2016
© 2016 Carnegie Mellon University
Distribution Statement A. This material has been approved for public release and
unlimited distribution.

Defects3: Metrics

Number of defects
• Per module, per phase…
Defect rejection ratio: Things originally categorized as defects, but

actually were not
Defect leakage (or escape) ratio: fraction of known defects not

detected in a phase (often: found later; sometimes using a curve
fit to the defect-finding data). “Escape” usually means leaked to
next phase without being found

37
What Do Systems Engineers Need to Know About Software?
Oct. 24, 2016
© 2016 Carnegie Mellon University
Distribution Statement A. This material has been approved for public release and
unlimited distribution.

Defects4: Causes

Miscommunication of requirements
• And last-minute changes

Compressed development schedule
Inexperience: Designer, coder, tester
Human error
Version control failure (or lack)
Buggy tools

Source: http://www.softwaretestingclass.com/top-10-reasons-why-there-are-bugs-defects-in-software/

http://www.softwaretestingclass.com/top-10-reasons-why-there-are-bugs-defects-in-software/

38
What Do Systems Engineers Need to Know About Software?
Oct. 24, 2016
© 2016 Carnegie Mellon University
Distribution Statement A. This material has been approved for public release and
unlimited distribution.

Defects5: Types (for example)

Source: B. Freimut, et al., “An Industrial Case Study of Implementing and Validating Defect Classification for Process Improvement and Quality
Management,” proceedings of 11th IEEE International Software Metrics Symposium, 2005, as shown in https://web.fe.up.pt/~pro09003/papers/
LopesMargarido_ClassificationofDefectTypesinRequirementsSpecifications-ieee.pdf

https://web.fe.up.pt/~pro09003/papers/

39
What Do Systems Engineers Need to Know About Software?
Oct. 24, 2016
© 2016 Carnegie Mellon University
Distribution Statement A. This material has been approved for public release and
unlimited distribution.

Defects6: Causal analysis and prevention

Causal analysis: What caused this?
Defect prevention

• Understand causes
• Cost (implications) of

having defects
• Cost of implementing

prevention (training, tools,
procedures, processes)

• Impact on quality
Periodic reviews

• Team, maybe larger groups

Categories:
• Planning
• Requirements, Features ~50%
• Functionality as implemented
• Structural bugs
• Data
• Implementation
• Integration
• Real Time and Operating

System
• Test definition/ execution

bugs

Presenter
Presentation Notes
From: http://blog.smartbear.com/code-review/reduce-software-defects/

“…on the code side, you need to reduce or eliminate error prone practices and parts of the code. Is there a file that’s constantly being merged and could lead to errors? Do your developers copy, paste, and tweak? Are there config files that require a lot of careful, confusing attention to detail? Does your team have an established code review process, or is it something that is still happening ad-hoc? Recognize these mistake-inviters for what they are and eliminate them.”

40
What Do Systems Engineers Need to Know About Software?
Oct. 24, 2016
© 2016 Carnegie Mellon University
Distribution Statement A. This material has been approved for public release and
unlimited distribution.

Lean (2003+)
From lean manufacturing
Mary, Tom Poppendieck
Eliminate waste and improve
processes (e.g., Kanban)
Principles

• Eliminate waste
• Amplify learning
• Defer commitment
• Deliver fast
• Empower the team
• Build integrity in
• See the whole

Agile Manifesto (Software community)
Work and deliver incrementally (e.g.,
Scrum, Extreme Programming, TDD…)
Values

Individuals and interactions over
processes and tools

Working software over comprehensive
documentation

Customer collaboration over contract
negotiation

Responding to change over following a
plan

Agile (2001+)

Graphics Source: http://www.process
excellencenetwork.com/ lean-six-
sigma-business-transformation

TDD = test-driven development

Presenter
Presentation Notes
Manifesto: many writers, but this was the only thing they could agree on…no agreement on practices
Agile Principles
Highest priority is customer satisfaction
Welcome changing requirements
Frequent delivery of software
Business people & developers cooperating daily
Build projects around motivated people
Face-to-face conversation is best
Progress measured by working software
Sustainable development pace
Continuous attention to technical excellence
Simplicity
Self-organizing teams
Regular reflection & adaptation

http://www.processexcellencenetwork.com/
http://www.processexcellencenetwork.com/
http://www.processexcellencenetwork.com/

41
What Do Systems Engineers Need to Know About Software?
Oct. 24, 2016
© 2016 Carnegie Mellon University
Distribution Statement A. This material has been approved for public release and
unlimited distribution.

Agile Methods

0

10

20

30

40

50

60

70

80

90

100

% Non-Agile % Difference

Source: Murphy, Brendan, et al. "Have agile techniques been the silver bullet for software development at Microsoft?." 2013
ACM/IEEE International Symposium on Empirical Software Engineering and Measurement. IEEE, 2013.

Redrew charts in Microsoft article intended to verify practice adoption rates.
Article conclusion: No clear trends in practice adoption
My conclusion: Clear trend that only some practices are performed more often in
Agile projects

Presenter
Presentation Notes
Note: when backed into a corner, agilists will insist that the method or practice is Not the point, it’s the view, or how it’s done.

42
What Do Systems Engineers Need to Know About Software?
Oct. 24, 2016
© 2016 Carnegie Mellon University
Distribution Statement A. This material has been approved for public release and
unlimited distribution.

Scaled Agile Framework SAFe

“Knowledge base for Lean Software and Systems Engineering”
• Proven, codified, and publicly-facing
• Purpose: Scale Agile and lean in larger software enterprises

Principles
• Take an economic view
• Apply systems thinking
• Assume variability; preserve options
• Build incrementally with fast, integrated learning cycles
• Base milestones on objective evaluation of working systems
• Visualize and limit work-in-progress, reduce batch sizes and

manage queue lengths
• Apply cadence, synchronize with cross-domain planning
• Unlock the intrinsic motivation of knowledge workers
• Decentralize decision-making

Source: https://www.ivarjacobson.com/scaled-agile-framework

43
What Do Systems Engineers Need to Know About Software?
Oct. 24, 2016
© 2016 Carnegie Mellon University
Distribution Statement A. This material has been approved for public release and
unlimited distribution.

Formal Methods1

System design techniques
Rigorously specified mathematical models of software and
hardware systems

• Clarify thinking
• Allow early determination of things that won’t work
• Assertions can be proven through *mathematical* proofs of the system

design (“regular” test techniques are sampling processes)

Applications
• Formal specification (modeling languages)
• Verification (proving of “theorems” represented by specification; some

testing is automated; also model checking)
• Implementation (some can be auto-converted into code)

Concerns: Difficulty (expense), misapplication
Source: https://users.ece.cmu.edu/~koopman/des_s99/formal_methods/

44
What Do Systems Engineers Need to Know About Software?
Oct. 24, 2016
© 2016 Carnegie Mellon University
Distribution Statement A. This material has been approved for public release and
unlimited distribution.

Formal Methods2

Varied examples of formal methods
• Abstract state machines (pseudo code that generates Finate State

Machines); model algorithms

• AADL (architecture analysis & design language)

• Knowledge-based software assistant (KBSA; Air Force; 80s)

• Petri nets (modeling language describing state transitions of distributed
systems; graphical notation for processes with exact mathematical
representation)

• UML (unified modeling language) and SysML (systems modeling
language)

• Related items

• MALPAS software static analysis toolset: model checker for formal
proof of safety critical systems
Sourc: https://users.ece.cmu.edu/~koopman/des_s99/formal_methods/

45
What Do Systems Engineers Need to Know About Software?
Oct. 24, 2016
© 2016 Carnegie Mellon University
Distribution Statement A. This material has been approved for public release and
unlimited distribution.

Tutorial agenda

Overview
Vocabulary
Some specific software knowledge for systems engineers

Example concerns
• Safety (automotive, flight incident)
• Security

The future: A partnership

46
What Do Systems Engineers Need to Know About Software?
Oct. 24, 2016
© 2016 Carnegie Mellon University
Distribution Statement A. This material has been approved for public release and
unlimited distribution.

Automotive: growth in lines of code

12
0

14
0

16
0

18
0

20
0

22
0

24
0

26
0

28
0

30
0 Future cars will likely

be able to communicate with
each other, sharing
information about traffic
hotspots and accidents, and
use crash avoidance systems
to prevent accidents.

300 million

100 million

Luxury Car

Large
Hadron
Collider

F-35

Boeing 787

Mars Rover

F-22 Raptor

50 million

2414
51.7

Presenter
Presentation Notes
Let’s look at one fairly well known case of an automobile safety problem.

If complexity seems like a challenge now, consider the complexity involved in future cars, that communicate with each other, traffic signals, roadways…

Source: IEEE Spectrum, “This Car Runs on Code”
--http://spectrum.ieee.org/transportation/systems/this-car-runs-on-code

47
What Do Systems Engineers Need to Know About Software?
Oct. 24, 2016
© 2016 Carnegie Mellon University
Distribution Statement A. This material has been approved for public release and
unlimited distribution.

Toyota unintended acceleration

Toyota paid $1.6B settlement plus $1.2B for concealment re software
problems causing cars to speed up uncontrollably
“efforts to conceal the problem and protect its
corporate image led to a series of [89] fatalities”
• People? (driver error)
• Hardware? (floor mats? sticky gas pedal?)
• Software? (no error detection/correction code;

cascading memory corruptions)
Note: Federal motor vehicle safety standards not written for software

Cyclomatic complexity of “throttle angle function” was 146
Code has 11,000+ global variables (desired: 0)

Sources: http://users.ece.cmu.edu/~koopman/pubs/koopman14_toyota_ua_slides.pdf and
https://www.washingtonpost.com/business/economy/toyota-reaches-12-billion-settlement-to-end-criminal-probe/2014/03/19
/5738a3c4-af69-11e3-9627-c65021d6d572_story.html

should be < 30

Presenter
Presentation Notes
C.C.: Measure of loops in the program and thus complexity. Over 30 is questionable. Over 50 cannot be tested. 75: every fix may be a bad fix

CC and global variables are just 2 of the issues…go look them up in the second reference.
Point: We cannot ignore safety any more.

So I would like to tell you a little bit about previous and emerging ways to study safety of systems and software. We’ll use aviation safety as an example, because I know more about it than cars (I’m PI on a complexity and safety project for the FAA)

Image from Morguefile.com “You are allowed to copy, distribute, transmit the work and to adapt the work. Attribution is not required. You are prohibited from using this work in a stand alone manner.”

http://users.ece.cmu.edu/~koopman/pubs/koopman14_toyota_ua_slides.pdf
https://www.washingtonpost.com/business/economy/toyota-reaches-12-billion-settlement-to-end-criminal-probe/2014/03/19

48
What Do Systems Engineers Need to Know About Software?
Oct. 24, 2016
© 2016 Carnegie Mellon University
Distribution Statement A. This material has been approved for public release and
unlimited distribution.

In-flight upset event, Boeing 777-200, Aug 1,
2005

Simulated cockpit video: https://www.youtube.com/watch?v=1XNnEzFF5fg

Presenter
Presentation Notes
Occurred while departing from Perth. Display: approaching both high speed limit and low speed limit (stall). Pitch up, 38,000 to 41,000 feet, speed 270 kts to 158 kts.
Pilot disconnected autopilot and lowered nose. Auto throttle commanded increase in thrust, pilot manually moved to idle, still pitched up 2000 feet. Require descent and radar assistance. Below 20,000 feet indications became accurate, but both left and right autopilots produced undesired command responses. Below 3000 fet, also erroneous stall warning and increase of thrust. Landed normally at Perth.

Video (frightening) at https://www.youtube.com/watch?v=1XNnEzFF5fg

Even though we’re not going into why this particular incident happened, it illustrates an accident modeling technique: Event Chains.

https://www.youtube.com/watch?v=1XNnEzFF5fg

49
What Do Systems Engineers Need to Know About Software?
Oct. 24, 2016
© 2016 Carnegie Mellon University
Distribution Statement A. This material has been approved for public release and
unlimited distribution.

Security Considerations

These are so critical to system performance, robustness and
resilience that we make these particular points separately!
Security

• Software assurance means “free from defects” and “free from
vulnerabilities”

• Security processes involve both systems and software
• Software must be free from vulnerabilities that can be exploited by

threats that won’t be invented for 5-10 years
• Just about any software can be accessed from just about

anywhere on the planet
• Thus, SysE and SwE must evaluate for cybersecurity, from

compliances with secure coding practices to actively trying to
attack a system as developed, before it is released

Easy to identify and fix with a small patch. Much harder to prove the
patched software, under all implementations, remains robust and not
vulnerable

50
What Do Systems Engineers Need to Know About Software?
Oct. 24, 2016
© 2016 Carnegie Mellon University
Distribution Statement A. This material has been approved for public release and
unlimited distribution.

Tutorial agenda

Overview
Vocabulary
Some specific software knowledge for systems engineers
Example concerns:
The future: A partnership

• Early involvement
• Trades
• Meetings and estimating
• Communication
• Other
• Help software engineers

51
What Do Systems Engineers Need to Know About Software?
Oct. 24, 2016
© 2016 Carnegie Mellon University
Distribution Statement A. This material has been approved for public release and
unlimited distribution.

Early involvement

Bring in software, especially software architects, before finalizing
system architecture

• Explain goal of this phase is not coding, but structuring the
software design, giving feedback as to the software issues with
the evolving system design, and understanding legacy code
usage with its interfacing requirements to new software and
security

Up-front software engineering participation means fewer
ungrounded assumptions and less re-direction (→rework,
complexity)

During planning, focus on identifying the decisions that need to be
made for the project to move ahead

• Then determine SysE and SWE roles in determining
information for those decisions

52
What Do Systems Engineers Need to Know About Software?
Oct. 24, 2016
© 2016 Carnegie Mellon University
Distribution Statement A. This material has been approved for public release and
unlimited distribution.

Trades
Identify requirements from various stakeholders as imperatives or

tradeables
• De-conflict and implement imperatives; track and trade off

tradeables
SysEs do larger-system trade studies, e.g., size weight and power

(SWAP); software trades to be planned and done; security is
shared

• Software architects must estimate impacts to software of various
system decisions

• Share threat models and evaluate attack surfaces jointly
Both SysEs and SWEs are responsible for non-functional

(=ilities=quality attributes) and functional requirements. Work
together to trade off tradeables

Include software-related requirements (or potential requirements if too
early for requirements) and software-related design attributes in
system-level trade studies SWE functions more like SysEs of the
software (software architects) than programmers

Presenter
Presentation Notes
System decisions can enable access to software vulnerabilities, raising the priority of fixing them, but software engineers will be applying insufficient priority if unaware

53
What Do Systems Engineers Need to Know About Software?
Oct. 24, 2016
© 2016 Carnegie Mellon University
Distribution Statement A. This material has been approved for public release and
unlimited distribution.

Meetings and estimating

Meetings
• Schedule meetings so that SWEs have blocks of time for

concentration (e.g. meetings in 4 half days a week, so they can
concentrate in 4-hour blocks and one 8-hour day)
- Systems engineers almost always multitask, and tend to multitask

well. Don’t expect SWEs to do it or like it
- Encourage them to set office hours, then respect them

Estimating
• Remind SWEs that bugs happen and to plan for those. Also,

plan for learning, to help re: tendency to underestimate
• Ask, “what might happen that would turn this into a cost and

schedule nightmare?” Then estimate and mitigate together

Presenter
Presentation Notes
see Zakas re countering tendency to underestimate

54
What Do Systems Engineers Need to Know About Software?
Oct. 24, 2016
© 2016 Carnegie Mellon University
Distribution Statement A. This material has been approved for public release and
unlimited distribution.

Communication

Keep software informed as to what aspects are known, suspected,
or totally guessed, and what is known to be likely to change
• Good SWE encapsulates likely changes so that they won’t

disrupt the rest of the software being written, or the system
Help them see the context of where the software will run. What is

known about it?
Do as much systems engineering as possible using models, e.g.

SysML. Keep in mind, there are differences compared to SW
and software models. Also, “Model based systems engineering”
is not all of systems engineering! for example, coordination

Computer science teaches people how to do small programs. Help
SWEs learn what goes into large programs

55
What Do Systems Engineers Need to Know About Software?
Oct. 24, 2016
© 2016 Carnegie Mellon University
Distribution Statement A. This material has been approved for public release and
unlimited distribution.

Other

Use case development
• SysEs must manage use case development (for SW requirements)
• Include abuse and misuse cases (what system must not do)

Testing
• Coordinate system and software tests; durations, purpose, what they

determine
“Ilities” roles, especially Security roles

• Together work reliability, availability, maintainability, attributes
• Partner regarding security: what SW vulnerabilities could be leveraged

by adversaries to compromise systems (both IT and embedded
systems). What priorities on vulnerabilities do system decisions imply?

Appreciation
• Express appreciation no coders/programmers/what SWEs call

“Engineers”=builders. Thank them when they turn in code (before the
bug reports come in)

• SWEs should appreciate work of SysEs too

56
What Do Systems Engineers Need to Know About Software?
Oct. 24, 2016
© 2016 Carnegie Mellon University
Distribution Statement A. This material has been approved for public release and
unlimited distribution.

Perspective

SWEs recognize they need to know about the domain,
• Generally SysEs have more opportunity to learn a

domain, staying with the same program for years and
interacting with customers/operators more

• Help SWEs understand, recognizing they are busy
learning new languages and techniques, preventing,
finding, and resolving bugs, and trying to think creatively
through interruptions

Systems engineers are multi-disciplinary; Software engineers
may consider themselves multidisciplinary as well: compare
domains

SysE and SWE approaches should complement each other for
system and program success

57
What Do Systems Engineers Need to Know About Software?
Oct. 24, 2016
© 2016 Carnegie Mellon University
Distribution Statement A. This material has been approved for public release and
unlimited distribution.

Help Software Engineers

Clarify roles
Liaison to other disciplines
Language translation: SW to other and back
Understanding Agile, compare to Lean and other project
management

• Example Scaled Agile Framework or SAFe

58
What Do Systems Engineers Need to Know About Software?
Oct. 24, 2016
© 2016 Carnegie Mellon University
Distribution Statement A. This material has been approved for public release and
unlimited distribution.

Tutorial agenda

Overview
Vocabulary
Some specific software knowledge for systems engineers

Example concerns:

The future: A partnership

59
What Do Systems Engineers Need to Know About Software?
Oct. 24, 2016
© 2016 Carnegie Mellon University
Distribution Statement A. This material has been approved for public release and
unlimited distribution.

Conclusion

Systems engineering is responsible for delivering systems that do
what they are intended to which are delivered on schedule and
within budget

• Ensures the pieces come together into a system
Software engineering allows the delivered systems to do what they
are intended to, including interfacing with other systems being
Systems engineered

• Ensures the pieces do assigned roles, alone and together
Systems engineering and software engineering are inextricably
linked, a relationship that must:

• Begin at the beginning, and
• Continue throughout the life cycle of the program

60
What Do Systems Engineers Need to Know About Software?
Oct. 24, 2016
© 2016 Carnegie Mellon University
Distribution Statement A. This material has been approved for public release and
unlimited distribution.

P. S. What not to do

Say “I used to code”
Say “There is no software at the system level”
Interrupt programmers, or any kind of software engineer, frequently
Think you can “power through” some function better or faster than
a computer (such as looking through a data dump for a bad data
element)
Think “software reliability is 1”
Think you can get software faster if you throw more people on the
project
Say (or think) “software is much easier to change than hardware”

61
What Do Systems Engineers Need to Know About Software?
Oct. 24, 2016
© 2016 Carnegie Mellon University
Distribution Statement A. This material has been approved for public release and
unlimited distribution.

References

Peters 2015: Peters, Lawrence and Ana M. Moreno, 2015.
“Educating Software Engineering Managers – Revisited”
IEEE/ACM 37th IEEE International Conference on Software
Engineering. Florence, Italy. DOI 10.1109/ICSE 2015.168
Sprunck, Markus. (2012) Top 12 things every software engineer
should know http://www.sw-engineering-candies.com/blog-
1/top10thingseverysoftwareengineershouldknow

62
What Do Systems Engineers Need to Know About Software?
Oct. 24, 2016
© 2016 Carnegie Mellon University
Distribution Statement A. This material has been approved for public release and
unlimited distribution.

© 2016 Carnegie Mellon University
Distribution Statement A. This material has been
approved for public release and unlimited distribution.
]

What Do Systems Engineers Need To Know About Software?

Backup slides

63
What Do Systems Engineers Need to Know About Software?
Oct. 24, 2016
© 2016 Carnegie Mellon University
Distribution Statement A. This material has been approved for public release and
unlimited distribution.

Programming Languages issues/questions

Choosing a language
Typing (OO, Functional, Declarative, Procedural)
Encapsulation for data abstractions
Run-time checking
Program redundancy checking
Assertions
Problems
Macros
Libraries
Error-prone constructions
Rapid Prototyping

Procedural= C, Cobol, Fortran
OO = Smalltalk, Java, C++

Functional = Erlang, Clojure, F#
Declarative = SQL, XSLT

Multi-paradigm = Python, Java, C++, C#

Presenter
Presentation Notes
Also query languages for database searches (e.g. SQL)

64
What Do Systems Engineers Need to Know About Software?
Oct. 24, 2016
© 2016 Carnegie Mellon University
Distribution Statement A. This material has been approved for public release and
unlimited distribution.

Software Development Knowledge
Formal Methods

• Specification Languages
• Logic
• Sorting
• Controversy: Formal Methods

Design Notations
Support tools
Object Orientation
Java
DFDs
Testing

• Process
• Coverage testing
• Coverage criteria
• Structural test adequacy

Programming Languages
• Typing
• Encapsulation for data

abstractions
• Run-time checking
• Program Redundancy Checking
• Assertions
• Problems
• Macros
• Libraries
• Error-prone constructions
• Choosing a language
• Rapid prototyping

Source: Hamlet and Maybee 2001. The Engineering of Software: Technical Foundations for the Individual. Addison
Wesley. Chapter 2, pp. 31-64.

65
What Do Systems Engineers Need to Know About Software?
Oct. 24, 2016
© 2016 Carnegie Mellon University
Distribution Statement A. This material has been approved for public release and
unlimited distribution.

From “Top 12 Things Every SW Engineer Should
Know”

1. Fundamentals of emotional intelligence
2. Algorithms and big-O-notation: libraries, individual solutions;

analyze others’ code
3. Basics of project management: don’t just estimate code

implementation. Recall documentation, security concept, data
protection issues, “alignment with worker’s councils, reviews,
project management efforts, deployment etc.

4. Mainstream development paradigms
5. Basics about software security: becoming more important
6. Know your development tools and Know the key concepts and

underlying technologies of “disciplines”: requirements
management, SW & database (DB) design, SW CM, build &
deploy, continuous integration, development, debugging,
profiling, code analysis, testing. Also infrastructure toolboxes:
network monitoring, analysis, pen testing, log file analysis, DB
performance tuning

Source: www.sw-engineering-candies.com/blog

Presenter
Presentation Notes
Do systems engineers also have to know these?

66
What Do Systems Engineers Need to Know About Software?
Oct. 24, 2016
© 2016 Carnegie Mellon University
Distribution Statement A. This material has been approved for public release and
unlimited distribution.

From “Top 12 Things Every SW Engineer Should
Know”
7. Don’t trust code without adequate test. Even the best programmer

needs unit, integration, sys tests; performance and memory tests with
real data, static code analysis, code coverage measurement, load &
stress tests, peer review

8. Key metrics of SW development…at least, lessons from Agile
projects

9. Root cause of the last defect…understand what caused it and how to
avoid it

10. Understand the business of your customer. This is one of the
systems engineering roles. “If you don’t understand the what, you
can’t decide about the how” - Sprunck

11. Understand the infrastructure ITIL language/terminology. Sometimes
a developer needs to talk to 5 different infrastructure folks for one
question. “The ITIL stuff is the glue among people in infrastructure”

12. Know what you don’t know: Top 118 fundamental elements of SWE
http://www.sw-engineering-candies.com/blog-1/periodic-table-of-software-engineering-know-how

Presenter
Presentation Notes
ITIL = (formerly) information technology infrastructure library

67
What Do Systems Engineers Need to Know About Software?
Oct. 24, 2016
© 2016 Carnegie Mellon University
Distribution Statement A. This material has been approved for public release and
unlimited distribution.

Periodic Table of SW Engineering
Things to know (one chart each follows)

• Requirements
• Design
• Lean IT (Agile)
• Maintenance
• Infrastructure
• Basics
• Implementation
• Code Analysis
• Testing
• Usability
• Tools
• Management
• Soft skills

Source: http://www.sw-engineering-candies.com/blog-1/periodic-table-of-software-engineering-know-how

68
What Do Systems Engineers Need to Know About Software?
Oct. 24, 2016
© 2016 Carnegie Mellon University
Distribution Statement A. This material has been approved for public release and
unlimited distribution.

Requirements

Requirements elicitation
Requirements analysis
Atomic requirements
Requirements attributes
Requirements reviews?
Traceability management
Management of requirements portfolio

Source: http://www.sw-engineering-candies.com/blog-1/periodic-table-of-software-engineering-know-how

69
What Do Systems Engineers Need to Know About Software?
Oct. 24, 2016
© 2016 Carnegie Mellon University
Distribution Statement A. This material has been approved for public release and
unlimited distribution.

Design

Component design
Database design
Design patterns
Architecture pattern
Large-scale system design
Design notation

Source: http://www.sw-engineering-candies.com/blog-1/periodic-table-of-software-engineering-know-how

70
What Do Systems Engineers Need to Know About Software?
Oct. 24, 2016
© 2016 Carnegie Mellon University
Distribution Statement A. This material has been approved for public release and
unlimited distribution.

Lean IT

Scrum, Kanban
Agile methods:

• Agile planning
• Pair Programming
• Test-driven development
• Definition of Done
• Continuous integration
• Continuous Delivery
• User stories
• Backlog management

Note: when backed into a corner, Agilists will insist that the method or
practice is not the point, it’s the view, or how it’s done

Agile methods, continued
• Stand-up meeting
• Spike solutions
• Planning game
• No Overtime
• Collect code ownership
• Travel Light
• System metaphor

Source: http://www.sw-engineering-candies.com/blog-1/periodic-table-of-software-engineering-know-how

71
What Do Systems Engineers Need to Know About Software?
Oct. 24, 2016
© 2016 Carnegie Mellon University
Distribution Statement A. This material has been approved for public release and
unlimited distribution.

Maintenance and reuse

Re-engineering
Reverse engineering
Program comprehension
Maintenance planning
IT change management

Reuse
• Designing for reuse
• Designing with reuse

Source: http://www.sw-engineering-candies.com/blog-1/periodic-table-of-software-engineering-know-how

72
What Do Systems Engineers Need to Know About Software?
Oct. 24, 2016
© 2016 Carnegie Mellon University
Distribution Statement A. This material has been approved for public release and
unlimited distribution.

Infrastructure

Basics of ITIL
DevOps
Monitoring
Build Management
Automated deployment
Test data management

Source: http://www.sw-engineering-candies.com/blog-1/periodic-table-of-software-engineering-know-how

73
What Do Systems Engineers Need to Know About Software?
Oct. 24, 2016
© 2016 Carnegie Mellon University
Distribution Statement A. This material has been approved for public release and
unlimited distribution.

Basics
Big-O notation
Algorithm design
OO languages
Software security basics
Scientific computing
Parallel computing
Numerical methods
Data structures
Functional languages
Encryption basics
Database systems
Game theory

Robotic basics
Aspect-oriented programming
Declarative languages
Network protocols
Distributed computing
State machines
Distributed computing
Procedural languages
Web app security
Machine learning
Artificial intelligence
SW development process

Source: http://www.sw-engineering-candies.com/blog-1/periodic-table-of-software-engineering-know-how

74
What Do Systems Engineers Need to Know About Software?
Oct. 24, 2016
© 2016 Carnegie Mellon University
Distribution Statement A. This material has been approved for public release and
unlimited distribution.

Implementation & code analysis
Basic coding skills
Code refactoring
Code peer reviews
Code comments
Code format standards
Code reuse

Static code analysis
Dynamic code analysis
Volume metrics
Complexity metrics
Code coverage
Dependency analysis

Source: http://www.sw-engineering-candies.com/blog-1/periodic-table-of-software-engineering-know-how

75
What Do Systems Engineers Need to Know About Software?
Oct. 24, 2016
© 2016 Carnegie Mellon University
Distribution Statement A. This material has been approved for public release and
unlimited distribution.

Testing

Unit testing
Defect root cause analysis
Integration testing
Service testing
Performance testing
Stress testing
Exploratory testing
Etc.

Source: http://www.sw-engineering-candies.com/blog-1/periodic-table-of-software-engineering-know-how

76
What Do Systems Engineers Need to Know About Software?
Oct. 24, 2016
© 2016 Carnegie Mellon University
Distribution Statement A. This material has been approved for public release and
unlimited distribution.

Usability

User interface design
User acceptance
Usability labs

Source: http://www.sw-engineering-candies.com/blog-1/periodic-table-of-software-engineering-know-how

77
What Do Systems Engineers Need to Know About Software?
Oct. 24, 2016
© 2016 Carnegie Mellon University
Distribution Statement A. This material has been approved for public release and
unlimited distribution.

Tools

Code analysis tools
Continuous integration tools
Requirements management tools
Integrated development environment tools
Test automation tools
Profiling tools
Modeling tools
Version control systems

Source: http://www.sw-engineering-candies.com/blog-1/periodic-table-of-software-engineering-know-how

78
What Do Systems Engineers Need to Know About Software?
Oct. 24, 2016
© 2016 Carnegie Mellon University
Distribution Statement A. This material has been approved for public release and
unlimited distribution.

Management

Risk analysis
Expectation management
Task management
Project management basics
Estimations
Measurement of activities
Project Controlling

Source: http://www.sw-engineering-candies.com/blog-1/periodic-table-of-software-engineering-know-how

79
What Do Systems Engineers Need to Know About Software?
Oct. 24, 2016
© 2016 Carnegie Mellon University
Distribution Statement A. This material has been approved for public release and
unlimited distribution.

Soft skills

Presentation skills
Training skills
Empathy
Creation of relationships
Conflict management
Negotiation skills
Rhetoric
Intercultural skills

Creativity techniques
Marketing basics
Leadership basics
Good manners
Intrinsic motivation
Physical fitness
Stop talking

Source: http://www.sw-engineering-candies.com/blog-1/periodic-table-of-software-engineering-know-how

80
What Do Systems Engineers Need to Know About Software?
Oct. 24, 2016
© 2016 Carnegie Mellon University
Distribution Statement A. This material has been approved for public release and
unlimited distribution.

Additional information

Interfaces
Conventions and templates
Layering
Algorithmic complexity
Hashing
Caching
Concurrency
Cloud computing
Security (again)
Relational databases

Source: : http://readwrite.com/2008/07/ 22/top _10_concepts_that_every_software_engineer_should_know,
as augmented by personal knowledge and knowledge from elsewhere

http://readwrite.com/2008/07/

81
What Do Systems Engineers Need to Know About Software?
Oct. 24, 2016
© 2016 Carnegie Mellon University
Distribution Statement A. This material has been approved for public release and
unlimited distribution.

Interfaces

Most important concept in software
Any good software is a model of a real or imagined system
Modeling requires identification of parts and interfaces among
them.
Good modeling has correct and simple interfaces
Book on interfaces: Agile programming by Dr. Robert Martin

Source: http://readwrite.com/2008/07/ 22/top _10_concepts_that_every_software_engineer_should_know, as
augmented by personal knowledge and knowledge from elsewhere

http://readwrite.com/2008/07/

82
What Do Systems Engineers Need to Know About Software?
Oct. 24, 2016
© 2016 Carnegie Mellon University
Distribution Statement A. This material has been approved for public release and
unlimited distribution.

Conventions and templates

Naming conventions: indicating function or relationship of a piece
of software in its name
Templates help build components

• Template files contain variables
• Allow binding of objects, resolution, and rendering the result for

the client

Source: http://readwrite.com/2008/07/ 22/top _10_concepts_that_every_software_engineer_should_know, as
augmented by personal knowledge and knowledge from elsewhere

http://readwrite.com/2008/07/

83
What Do Systems Engineers Need to Know About Software?
Oct. 24, 2016
© 2016 Carnegie Mellon University
Distribution Statement A. This material has been approved for public release and
unlimited distribution.

Layering

Layering*
• Subroutines that only call libraries or system are first layer
• Second layer calls first level or libraries or system
• Etc
• Main() sits at top level

Complexity of a component: How many other components does it rely on?

A good software system is pyramid shaped
• Fewer more-complex components, more less-complex

Precursor to refactoring (continuously sculpting software to ensure it is
structurally sound and flexible)

Source: http://readwrite.com/2008/07/ 22/top _10_concepts_that_every_software_engineer_should_know, as
augmented by personal knowledge and knowledge from elsewhere
* John Lakos: Large scale C++ software design (1997)

http://readwrite.com/2008/07/

84
What Do Systems Engineers Need to Know About Software?
Oct. 24, 2016
© 2016 Carnegie Mellon University
Distribution Statement A. This material has been approved for public release and
unlimited distribution.

Algorithmic complexity

Big O notation: Order of size O(n) means linear with the size of
data (n) O(n^2) is quadratic with size of data.
Search through a list is O(n), binary search (through a sorted list is
log(n). Sorting of n items takes n*log(n) time
Code should not have multiple nested loops. Instead use hash
tables, single lists, and singly nested loops
Elegant algorithms improve performance, but we downplay the
importance nowadays due to excellent libraries
Having clean and simple algorithms requires compact and
readable code

Source: http://readwrite.com/2008/07/ 22/top _10_concepts_that_every_software_engineer_should_know, as
augmented by personal knowledge and knowledge from elsewhere

http://readwrite.com/2008/07/

85
What Do Systems Engineers Need to Know About Software?
Oct. 24, 2016
© 2016 Carnegie Mellon University
Distribution Statement A. This material has been approved for public release and
unlimited distribution.

Hashing

To have fast access to data
Reduces time to find an item as tables get larger by spreading data
evenly throughout a table
Uniform hash evenly allocates computers in a cloud database
Google indexes each URL to a particular computer

Source: http://readwrite.com/2008/07/ 22/top _10_concepts_that_every_software_engineer_should_know, as
augmented by personal knowledge and knowledge from elsewhere

http://readwrite.com/2008/07/

86
What Do Systems Engineers Need to Know About Software?
Oct. 24, 2016
© 2016 Carnegie Mellon University
Distribution Statement A. This material has been approved for public release and
unlimited distribution.

Caching

In-memory store of a subset of information typically stored in a
database
Example: books that were popular last week: generate once and
place into cache. Costly calculations done once
Cost: need to prune, usually by least-recently-used
Modern web applications often used a distributed caching system
called Memcached

Source: http://readwrite.com/2008/07/ 22/top _10_concepts_that_every_software_engineer_should_know, as
augmented by personal knowledge and knowledge from elsewhere

http://readwrite.com/2008/07/

87
What Do Systems Engineers Need to Know About Software?
Oct. 24, 2016
© 2016 Carnegie Mellon University
Distribution Statement A. This material has been approved for public release and
unlimited distribution.

Concurrency

Parallelism, inside an application
In Java, threads run concurrently

• Producer/consumer: producer generates data or tasks; queue
up for worker threads to consume and execute

• But: threads work on common data
• Core Java contains concurrency libraries

Source: http://readwrite.com/2008/07/ 22/top _10_concepts_that_every_software_engineer_should_know,
augmented by personal knowledge and knowledge from elsewhere

http://readwrite.com/2008/07/

88
What Do Systems Engineers Need to Know About Software?
Oct. 24, 2016
© 2016 Carnegie Mellon University
Distribution Statement A. This material has been approved for public release and
unlimited distribution.

Cloud computing

Grew out of parallel computing: running computations in parallel
Then grid computing (runs parallel computations on idle desktops)
Then application server virtualization
Today: host calculations and databases remotely, including
indexing
Enables large-scale computing

Source: http://readwrite.com/2008/07/ 22/top _10_concepts_that_every_software_engineer_should_know,
augmented by personal knowledge and knowledge from elsewhere

http://readwrite.com/2008/07/

89
What Do Systems Engineers Need to Know About Software?
Oct. 24, 2016
© 2016 Carnegie Mellon University
Distribution Statement A. This material has been approved for public release and
unlimited distribution.

Security (again)

Information authentication, authorization, information transmission
(among others)
Authorization:

• Verify user identity (password) and keep it secure e.g. by
transmitting encrypted (SSL=secure socket layer)

• Define permissions
Network protection

• Identify vulnerabilities
• Configure and monitor to thwart hackers
• Continuous patches as new threats/vulnerabilities are defined

Source: http://readwrite.com/2008/07/ 22/top _10_concepts_that_every_software_engineer_should_know, as
augmented by personal knowledge and knowledge from elsewhere

http://readwrite.com/2008/07/

90
What Do Systems Engineers Need to Know About Software?
Oct. 24, 2016
© 2016 Carnegie Mellon University
Distribution Statement A. This material has been approved for public release and
unlimited distribution.

Relational databases

Fundamental achievement in computing
Good for:

• Order management systems
• Corporate databases
• Profit and loss data

Represents each piece of information, added to a table that
defines the type of information
Search using query language such as SQL
Data normalization technique partitions data among tables to
reduce data redundancy and maximize retrieval speed
Does not scale well to massive web services

Source: http://readwrite.com/2008/07/ 22/top _10_concepts_that_every_software_engineer_should_know,
augmented by personal knowledge and knowledge from elsewhere

http://readwrite.com/2008/07/

91
What Do Systems Engineers Need to Know About Software?
Oct. 24, 2016
© 2016 Carnegie Mellon University
Distribution Statement A. This material has been approved for public release and
unlimited distribution.

Software heuristics from Sprunck

• 'Finding and fixing a software problem after delivery is often 100 times more expensive than finding
and fixing it during the requirements and design phase.' [Boehm01]

• 'Current software projects spend about 40 to 50 percent of their effort on avoidable rework.'
[Boehm01]

• 'About 80 percent of avoidable rework comes from 20 percent of the defects.' [Boehm01]
• 'About 40 to 50 percent of user programs contain nontrivial defects.' [Boehm01]
• 'About 90 percent of the downtime comes from, at most, 10 percent of the defects.' [Boehm]
• 'Only 60% of the features in a system are actually used in production.' [Bernstein05, p. 249]
• 'About 80 percent of the defects come from 20 percent of the modules, and about half the modules

are defect free.' [Boehm01] (aka Pareto principle)
• 'More than 60% of the errors in a software product are committed during the design and less than

40% during coding.' [Bernstein05, page 47]
• 'Peer reviews catch 60 percent of the defects.' [Boehm01]
• 'Perspective-based reviews catch 35 percent more defects than nondirected reviews.' [Boehm01]
• 'Disciplined personal practices can reduce defect introduction rates by up to 75 percent.' [Boehm01]
• 'Testing efforts consume 50% of development time and 20% of project cost. Regression testing

halves the time and cost.' [Bernstein05, page 386]
• 'When lines of comments exceeded lines of code, code is hard to read.' [Bernstein05, page 363]

	What Do Systems Engineers Need To Know About Software?
	Slide Number 2
	Tutorial agenda
	Purpose: Systems engineers understand…
	Attitudes … correct?
	Desired attitude re systems engineering
	What is software?
	Facts about software
	Programming laws
	What does software do?
	Varieties of software
	What is hardware?
	Dictionaries: Hardware
	How is software the same as and different from hardware?1
	How is software the same as, and different from, hardware?2
	What is engineering?	
	How are SWE and SysE the same?
	Similarities: software and systems engineering
	How is software engineering different from systems engineering or specialty engineering?1
	How is software engineering different from systems engineering or specialty engineering?2
	From literature: �“What software managers need to know”
	Tutorial agenda
	Vocabulary1 (technical)
	Vocabulary2 (technical)
	Vocabulary3 (management-related)
	Vocabulary4 (specific technical)
	Vocabulary5 software “ilities”
	Tutorial agenda
	Basic software engineering principles*
	Evolution
	Paradigms*
	Architecture Styles
	Layering (architectural pattern or style)
	Defects1: Why and what
	Defects2: Relationship to rest of software
	Defects3: Metrics
	Defects4: Causes
	Defects5: Types (for example)
	Defects6: Causal analysis and prevention
	Lean (2003+)
	Agile Methods
	Scaled Agile Framework SAFe
	Formal Methods1
	Formal Methods2
	Tutorial agenda
	Automotive: growth in lines of code
	Toyota unintended acceleration	
	In-flight upset event, Boeing 777-200, Aug 1, 2005
	Security Considerations
	Tutorial agenda
	Early involvement
	Trades
	Meetings and estimating �
	Communication
	Other
	Perspective
	Help Software Engineers
	Tutorial agenda
	Conclusion
	P. S. What not to do
	References
	What Do Systems Engineers Need To Know About Software?
	Programming Languages issues/questions
	Software Development Knowledge
	From “Top 12 Things Every SW Engineer Should Know”
	From “Top 12 Things Every SW Engineer Should Know”
	Periodic Table of SW Engineering	
	 Requirements
	Design�
	Lean IT
	Maintenance and reuse
	Infrastructure
	Basics �
	Implementation & code analysis
	Testing
	Usability
	Tools�
	Management
	Soft skills
	Additional information
	Interfaces
	Conventions and templates
	Layering
	Algorithmic complexity
	Hashing
	Caching
	Concurrency
	Cloud computing
	Security (again)
	Relational databases
	Software heuristics from Sprunck	

