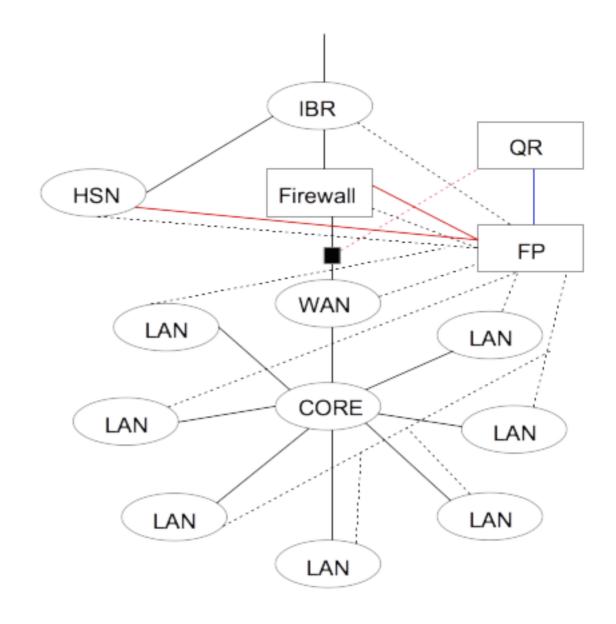
Finding the Needle in the Haystack

Jonzy
Data Security Analysis, Sr.

Finding the Needle in the Haystack


With all the information available via NetFlows, finding the "Needle in the Haystack" (the bad actor in NetFlows), can be somewhat difficult at best. Methods to discover illegitimate traffic can be as simple as looking at TCP flags, to more complex procedures such as defining thresholds for number of flows with ratios to unique destinations. There are other methods available, but I will be focusing on these thresholds and ratios and why this approach turns the needle into a goal post. The CPU cycles needed for this analysis are reduced by implementation of AVL trees (Balanced Binary Trees), and knowing the bottleneck to process the data is based on reading the data from disc. The algorithm used takes less then a second to process 3 million flows collected over a 5 minute time span. Both inbound and outbound, as well as local, traffic needs to be considered. Inbound analysis will help protect against external threats, outbound traffic protects yourself from external embarrassment, and local analysis identifies local problems that can lead to bigger problems.

Network Layout / Flow Collection

IBR - 2 routers, with a 100 Gb/s channel to the Net WAN - 2 routers, with a 40 Gb/s commodity network LAN - 28 routers, with a 40 Gb/s internal network HSN - 1 router, with a 100 Gb/s channel to the Net FP - Flow Processor

Null-route / BlockageNetflow CollectionQR to FP linkQR Tap

Flow Collection Hardware and Stats

The Collector

HP ProLiant DL380p Gen8

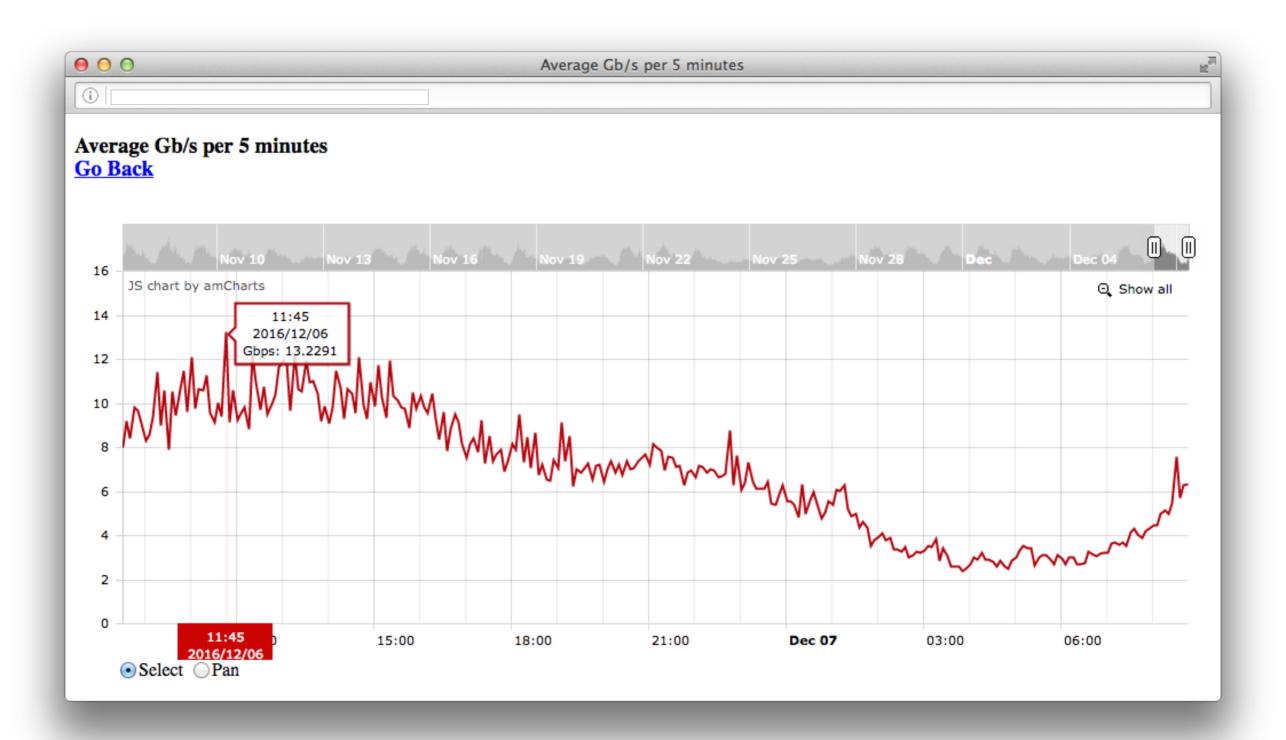
Processor: 2x Intel(R) Xeon(R) CPU E5-2640 0 @ 2.50GHz

6/6 cores; 12 threads

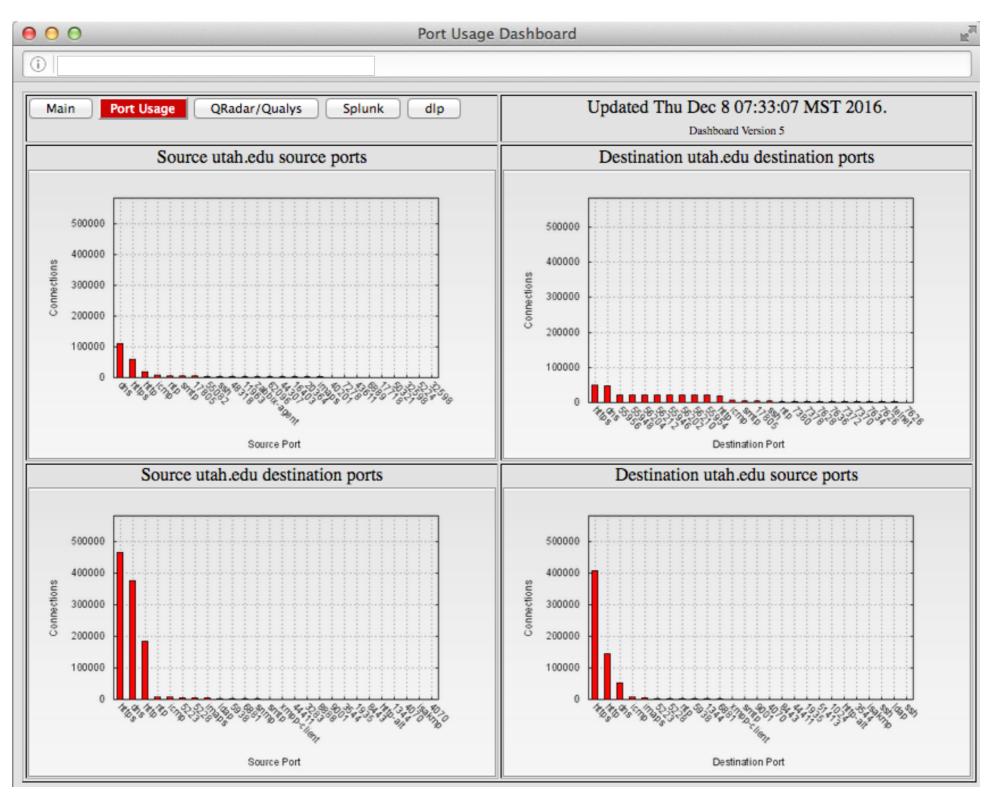
64-bit Capable

Memory: 98 GB DDR3 1333 MHz RAM

Storage: 12x HP 600GB 15K RPM 6GBs SAS Drives configured RAID 5


NIC: 3x 1Gbs copper NIC connected full duplex

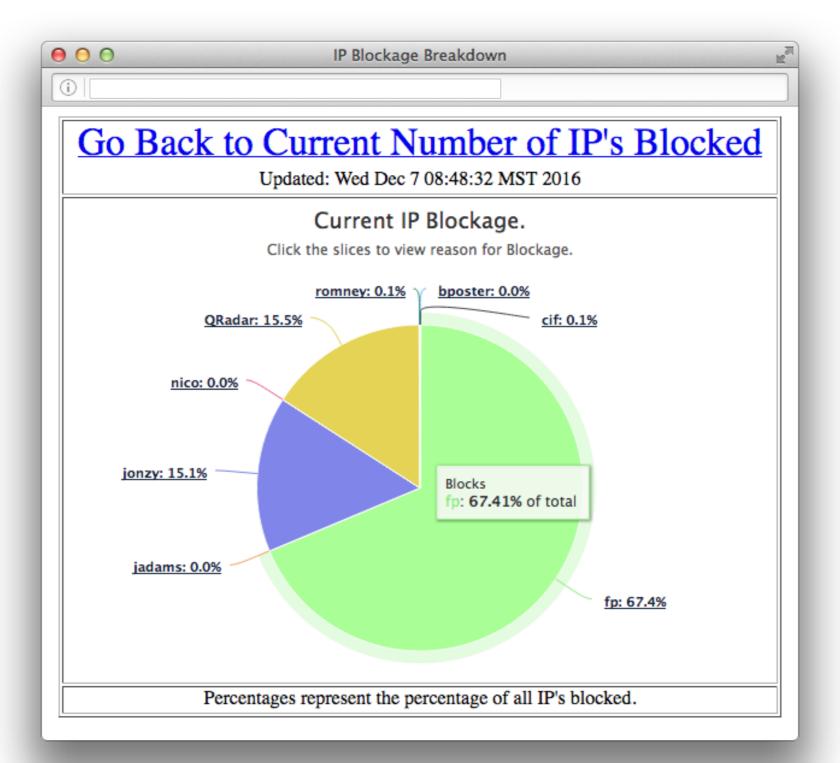
Average Load: less then 1.5, but has been as high as 22.


Flow Collection Statistics

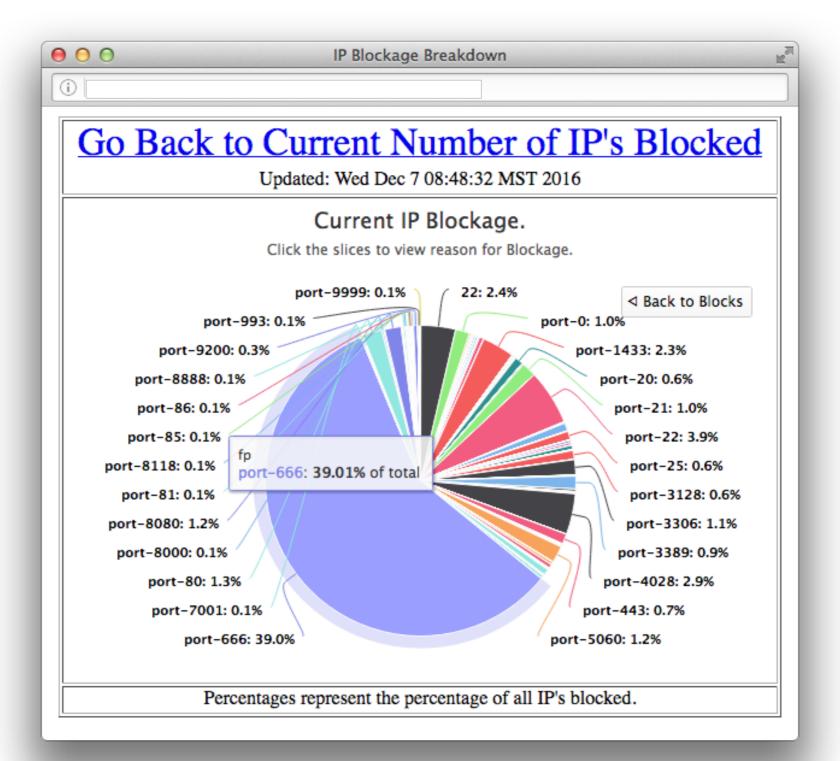
AVERAGE/DAY AVERAGE_TIME
COLLECTOR NUM_FLOW_RECORDS TO_PROCESS_24_HOURS
IBR 719,521,466 13 seconds
WAN 711,442,717 12 seconds
LAN 1,945,181,346 32 seconds
HSN 14,065,862 less then a second

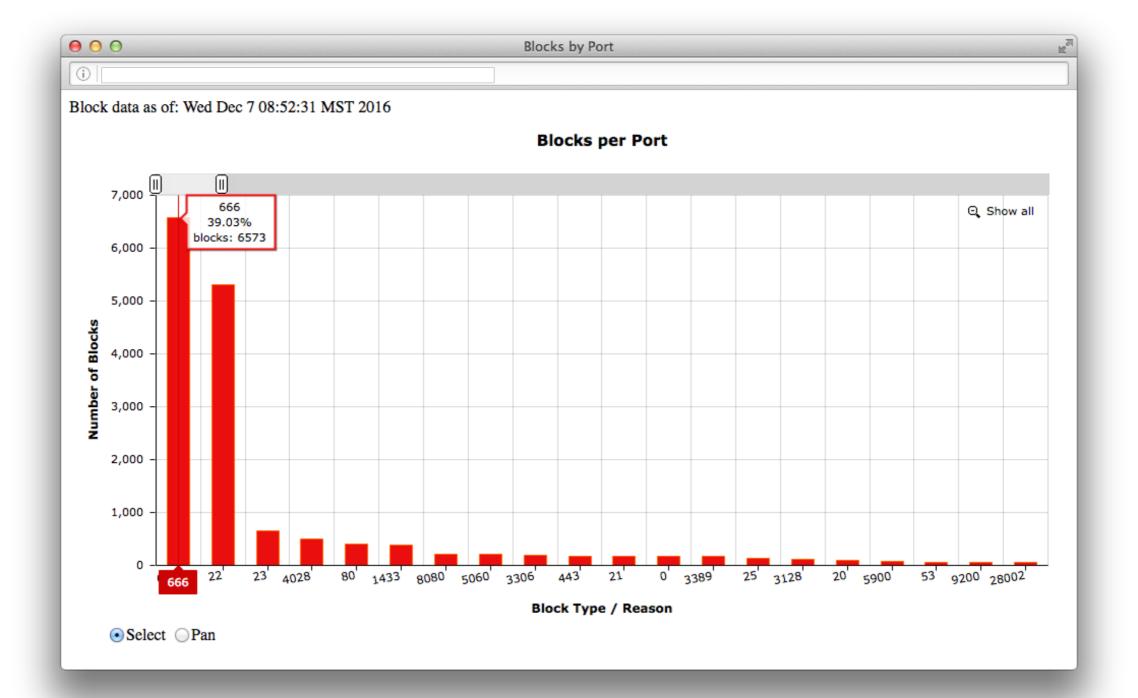
Destination Port Traffic

20161105		20161023		2	20161126	
53	24,215,863			7547	63,109,855	
443	15,243,092	2323	48,782,842	53	17,999,985	
80	9,355,812	53	22,773,508	443	14,574,230	
55956	5,646,672	443	16,836,694	80	6,396,821	
55948	5,638,853	80	6,184,346	55948	5,138,553	
56204	5,618,038	0	3,435,316	56204	5,124,958	
56212	5,614,816	35962	2,545,436	55956	5,118,086	
55954	5,464,568	123	1,851,134	56212	5,094,511	
55946	5,441,662	23	1,286,816	55946	4,948,344	
56210	5,436,780	25	1,241,177	55954	4,940,829	
56202	5,433,117	22	907,131	56210	4,926,110	
27015	4,718,038	11963	719,472	56202	4,920,184	
0	3,219,192	10050	645,745	26915	3,787,926	
23	1,931,961	55956	634,299	0	3,017,123	
123	1,837,832	55948	633,488	123	1,303,023	
25	1,199,969	56204	631,845	6881	1,228,031	
11963	1,036,750	56212	628,498	25	1,090,313	
22	732,815	56202	619,404	57210	938,287	
6881	654,799	55946	618,566	22	828,605	
10050	644,902	55954	618,278	11963	699,102	
	•	56210	611,344	23	696,571	
8080	633,549	6889	551,449	10050	608,699	
6889 7634	598,315	6881	494,017	7275	561,205	
	453,766	19709	478,056	6889	414,871	
7380	435,086	52126	433,639	7628	397,209	
7370	434,959	993	390,159	7634	395,654	
7636	434,537	40201	374,789	7372	395,443	
7372	433,509	55082	363,053	7380	391,665	
7628	433,333	17718	294,917	7636	390,305	
7626	432,128	8000	216,457	7626	388,911	
7378	425,950	8080	210,625		,	



Destination Port Traffic


YYYYMMDD	port-666	port-7547	port-2323
20161008	14	487	503,131
20161009	22	469	430,642
20161010	13	541	465,448
20161011	12	613	522,745
20161012	11	638	503,572
20161029	10	613	284
•••			
20161121	12	602	190
20161122	501	668	210
20161123	1255	670	254
20161124	1,343	562	290
20161125	1,676	634	307
20161126	2,052	1,948,000	205
20161127	1,813	1,958,141	198
20161128	1,001	1,292,690	133
20161129	905	1,105,433	170
20161130	1,200	269,421	168
20161201	1,246	236,270	193
20161202	1,772	188,490	203



Any given IP generating X amount of flows per time period T, destined to N number of unique hosts is cause for alarm when:

X >= number of flows threshold, 128 for example

N >= unique destination IP's threshold, 75% or 96 for example

Caution: This does not guarantee a Bad Actor. Case in point, there may be a case where multiple local devices are accessing a 1 or more remote IP's for anything ranging from News, Patches, or a remote proxy.

Either way, looking are local responses, SYN flags, number of packets, and byte size can help identify problematic traffic.

Anything matching $X \ge 256$ and $N \ge 75\%$ or 192, where all the destination IP's reside in a /24 or contiguous set of Class-C Ciders, is almost 100% a remote probe.

Another situation is a botnet probing your local network, where X is small, say16, and N is 16 - a possible probe. Additionally you may see a small X, say 16, with an N < 25% - a possible brute force attack.

The key with using thresholds, is determined by your environment.

Some thresholds will be different for different ports. Case in point, you may see a local host attempting to contact a remote host dozens of times a second, but this type of traffic would have X = ? but N = 1.

Looking at remote traffic generating traffic where N=0 destined to any port over a 30 minute time frame sorted on TOTFLOWS shows the following:

#SOURCEIP	TOTFLOWS	UNIQDIPS	UNQDPRTS	UNQSPRTS
172.217.5.78	121595	22754	33473	3
31.13.70.7	111641	14283	37774	2
64.27.28.157	102371	14	16368	1
31.13.70.1	101304	17615	30438	2
172.217.5.206	100658	20067	29119	3
31.13.70.36	92485	13073	33760	2
216.58.217.206	91262	19034	29163	3
216.58.193.206	81432	17576	27313	3
172.217.4.174	73586	17254	26665	3
172.217.4.142	72247	17311	26945	3
74.125.28.189	69199	6693	13536	1
31.13.70.52	67295	6092	23371	2
69.172.216.111	55571	4768	29061	2
64.39.105.128	47227	116	2504	30277
172.217.4.162	42821	9351	21540	3
31.13.70.14	42498	6269	23026	1
199.91.136.100	42330	475	22791	1

. . .

Looking at remote traffic generating traffic where N=0 destined to any port over a 30 minute time frame sorted on UNQDPRTS shows the following:

#SOURCEIP	TOTFLOWS	UNIQDIPS	UNQDPRTS	UNQSPRTS
101.96.9.164	258	3	1	257
103.12.117.42	512	512	1	1
103.200.22.222	772	1	1	766
103.236.201.240	2247	2222	1	1
103.55.60.11	1023	1023	1	1009
104.254.231.71	134	1	1	128
107.191.0.122	131	2	1	116
107.23.48.136	442	1	1	441
107.23.49.116	479	1	1	476
107.77.227.153	350	1	1	323
107.77.227.199	312	3	1	298
107.77.228.42	273	1	1	263
107.77.228.66	1098	1	1	1032
107.77.228.76	188	2	1	188
107.77.229.11	1616	1	1	1592
107.77.230.40	148	7	1	147
108.51.19.160	198	1	1	198

. . .

Looking at remote traffic generating traffic where N=128 destined to port-22 over a 30 minute time frame shows the following:

#SOURCEIP	TOTFLOWS	UNIQDIPS	UNQDPRTS	UNQSPRTS
31.3.245.23	492	492	1	1
64.39.105.128	170	62	1	150
103.55.60.11	1023	1023	1	1009
103.236.201.240	2247	2222	1	1
109.120.155.243	512	512	1	1
184.73.156.0	182	1	1	182
212.2.5.120	392	392	1	390

All of the above were auto-blocked due to thresholds with the exception of:

64.39.105.128 184.73.156.0

Example where N=64 destined to port-7547 over 60 minute time frame: #SOURCEIP__ TOTFLOWS UNIQDIPS UNODPRTS UNQSPRTS 83 107.170.103.171 83 83 Example where N=32 destined to port-666 over 60 minute time frame: UNQDPRTS **#SOURCEIP__** TOTFLOWS UNIQDIPS UNQSPRTS 5.141.126.188 34 32 33 36 81.248.19.59 36 36 94.50.7.182 52 51 50 114.41.108.4 61 61 61 Example where N=16 destined to port-666 over 60 minute time frame: UNQSPRTS #SOURCEIP__ TOTFLOWS UNIQDIPS UNQDPRTS 5.141.126.188 32 34 33 64.39.105.128 22 19 22 81.248.19.59 36 36 36 94.50.7.182 52 51 50 114.41.108.4 61 61 61 117.93.26.42 31 31 31

Conclusion

Monitoring and tracking destination port usage is by no means a complete solution finding the "Needle in the Haystack", but it definitely turns a needle into haystack.

Thresholds for the number of flows generated by remote IP's, per unique destination IP's also turns a needle into a haystack.

Using destination port analysis along with thresholds is one method for finding the Needle in the Haystack.

