Detecting Threats, Not Sandboxes

(Characterizing Network Environments to Improve Malware Classification)

Blake Anderson (blake.anderson@cisco.com), David McGrew (mcgrew@cisco.com)

FloCon 2017

January, 2017

Data Collection and Training

Deploying Classifier/Rules

Problems with this Architecture

- Models will not necessarily translate to new environments
 - Will be biased towards the artifacts of the malicious / benign collection environments
- Collecting data from all possible end-point/network environments is not always possible

Network Features in Academic Literature

- 2016 IMC / USENIX Security / NDSS
 - Packet sizes
 - Length of URLs
- 2012:2015 CCS / SAC / ACSAC / USENIX Security
 - Time between ACKs
 - Packet sizes in each direction
 - Number of packets in each direction
 - Number of bytes in each direction

Network/Transport-Level Robustness

Ideal TCP Session

Inbound Packet Loss

Multi-Packet Messages

Collection Points / MTU / Source Ports

- Collection points significantly affect packet sizes
 - Same flow collected within a VM and on the host machine will look very different
- Path MTU can alter individual packet sizes
- Source ports are very dependent on underlying OS
 - WinXP: 1024-5000
 - NetBSD: 49152-65535

Application-Level Robustness

TLS Handshake Protocol

TLS Client Fingerprinting

OpenSSL Versions

TLS Dependence on Environment

- 73 unique malware samples were run under both WinXP and Win7
 - 4 samples used the exact same TLS client parameters in both environments
 - 69 samples used the library provided by the underlying OS (some also had custom TLS clients)
- Effects the distribution of TLS parameters
 - Also has secondary effects w.r.t. packet lengths

HTTP Dependence on Environment

- 152 unique malware samples were run under both WinXP and Win7
 - 120 samples used the exact same set of HTTP fields in both environments
 - 132 samples used the HTTP fields provided by the underlying OS's library
- Effects the distribution of HTTP parameters
 - Also has secondary effects w.r.t. packet lengths

Solutions

Potential Solutions

- Collect training data from target environment
 - Ground truth is difficult
 - Models do not translate
- Discard Biased Samples
 - Not always obvious which features are network/endpoint-independent
- Train models on network/endpoint-independent features
 - Not always obvious which features are network/endpoint-independent
 - This often ignores interesting behavior
- Modify existing training data to mimic target environment
 - Not always obvious which features are network/endpoint-independent
 - Can capture interesting network/endpoint-dependent behavior
 - Can leverage previous capture/curated datasets

Results

- L1-logistic regression
- Meta + SPLT + BD
 - 0.01% FDR: 1.3%
 - Total Accuracy: 98.9%

- L1-logistic regression
- Meta + SPLT + BD + TLS
 - 0.01% FDR: 92.8%
 - Total Accuracy: 99.6%

Results (without Schannel)

- L1-logistic regression
- Meta + SPLT + BD
 - 0.01 FDR: 0.9%
 - Total Accuracy: 98.5%

- L1-logistic regression
- Meta + SPLT + BD + TLS
 - 0.01 FDR: 87.2%
 - Total Accuracy: 99.6%

Conclusions

- It is necessary to understand and account for the biases present in different environments
 - Helps to create more robust models
 - Models can be effectively deployed in new environments
- We can reduce the number of false positives related to environment artifacts
- Data collection was performed with: <u>Joy</u>

Thank You