
1
So Much Money for So Little Capability:
The Reality of Sustaining DoD Software Systems
March 20–23, 2017
© 2017 Carnegie Mellon University

[Distribution Statement A] This material has been
approved for public release and unlimited
distribution. Please see Copyright notice for non-US
Government use and distribution.

1

Software Solutions Symposium 2017

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

So Much Money for So Little Capability:
The Reality of Sustaining DoD Software Systems
© 2017 Carnegie Mellon University

[Distribution Statement A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government use
and distribution.

So Much Money for So
Little Capability:
The Reality of Sustaining
DoD Software Systems
David Schneider, PM AFV (TACOM)

Fred Schenker, SEI

Grady Campbell, SEI

2
So Much Money for So Little Capability:
The Reality of Sustaining DoD Software Systems
March 20–23, 2017
© 2017 Carnegie Mellon University

[Distribution Statement A] This material has been
approved for public release and unlimited
distribution. Please see Copyright notice for non-US
Government use and distribution.

2

Software Solutions Symposium 2017

Copyright 2017 Carnegie Mellon University

This material is based upon work funded and supported by the Department of Defense under Contract
No. FA8721-05-C-0003 with Carnegie Mellon University for the operation of the Software Engineering
Institute, a federally funded research and development center.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING
INSTITUTE MATERIAL IS FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY
MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER
INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR
MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL.
CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH
RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

[Distribution Statement A] This material has been approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government use and distribution.

This material may be reproduced in its entirety, without modification, and freely distributed in written or
electronic form without requesting formal permission. Permission is required for any other use. Requests
for permission should be directed to the Software Engineering Institute at permission@sei.cmu.edu.

Carnegie Mellon® is registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.

DM-0004467

3
So Much Money for So Little Capability:
The Reality of Sustaining DoD Software Systems
March 20–23, 2017
© 2017 Carnegie Mellon University

[Distribution Statement A] This material has been
approved for public release and unlimited
distribution. Please see Copyright notice for non-US
Government use and distribution.

3

Software Solutions Symposium 2017

Introduction
The SEI is working with Product Manager (PdM) Bradley on modernizing
its software architecture.

Twenty year history,
twenty year future.
In between, 10 years of
programmed obsolescence:
Future Combat Systems (FCS),
Ground Combat Vehicle (GCV).

Opportunities have been identified
in re-architecting the software to
anticipate and accommodate
future change.

There are feasible actions that
would address these concerns
and make sustainment more
cost-effective.

While pursuing re-architecting
opportunities, other concerns
were identified that were out of
scope for the architecture effort.

4
So Much Money for So Little Capability:
The Reality of Sustaining DoD Software Systems
March 20–23, 2017
© 2017 Carnegie Mellon University

[Distribution Statement A] This material has been
approved for public release and unlimited
distribution. Please see Copyright notice for non-US
Government use and distribution.

4

Software Solutions Symposium 2017

This Presentation

Sustainability –
The ease with
which (software)
capabilities can
be evolved to
continue to satisfy
customer needs
as those needs
and operational
context change.

Contents
• Sustainment concerns for DoD acquisition

• Objectives for improved sustainment

• Specific concerns and actions for improving
sustainability related to each of the following:
- acquisition
- systems engineering
- software environment
- software requirements

Goal
To highlight the importance of integrating software
sustainability as a DoD acquisition concern and to
provide high-level guidance for doing so.

- software architecture
- component design and implementation
- verification, validation, and certification
- software delivery and operational use

5
So Much Money for So Little Capability:
The Reality of Sustaining DoD Software Systems
March 20–23, 2017
© 2017 Carnegie Mellon University

[Distribution Statement A] This material has been
approved for public release and unlimited
distribution. Please see Copyright notice for non-US
Government use and distribution.

5

Software Solutions Symposium 2017

Sustainability as a Concern for DoD Acquisition

The items identified in this briefing are
not surprising. What is surprising?
We continue to ignore them, leading
to much higher sustainment costs.

Mitigation difficulties
Instead of addressing
the root causes of these
issues, the community
develops “better” cost
models (to include the
cost inefficiency).

Sustainment is an issue for DoD weapon
systems:
• Long-term sustainment of software is needed

to support evolving war-fighter needs and
technology.

• Acquisition offices make short-sighted
decisions that prioritize initial capabilities to
limit schedule and budget over-runs, and they
fail to identify and account for likely changes.

• Sustainment costs increase significantly when
potential changes are not identified and
planned for.

• Sustainment costs end
up far exceeding the cost
of initial development.

6
So Much Money for So Little Capability:
The Reality of Sustaining DoD Software Systems
March 20–23, 2017
© 2017 Carnegie Mellon University

[Distribution Statement A] This material has been
approved for public release and unlimited
distribution. Please see Copyright notice for non-US
Government use and distribution.

6

Software Solutions Symposium 2017

Why Software Sustainability is a Concern

Software is built to meet the perceived needs of a
customer or market.

…and then what happens?

Multiple
versions are
needed
Software may
exist in multiple
versions that need
to be kept
consistent to
avoid duplication
of effort and
defects as
changes occur.

User needs change over time
Most useful software is in use for
many years, if not decades.

• Changes in customer/market
needs and enabling technologies
compel software changes to avoid
obsolescence.

• Software is built using
computational technologies that
evolve and change; failure to
keep up fosters obsolescence.

Understanding
improves
Uncertainties and
imperfect
understanding of
actual needs
necessitate
software changes
as understanding
improves.

7
So Much Money for So Little Capability:
The Reality of Sustaining DoD Software Systems
March 20–23, 2017
© 2017 Carnegie Mellon University

[Distribution Statement A] This material has been
approved for public release and unlimited
distribution. Please see Copyright notice for non-US
Government use and distribution.

7

Software Solutions Symposium 2017

What is
success?

Objectives for Improved Software Sustainability
Expose potential
changes
Share knowledge about
potential future changes as a
basis for building software
that will be easier to modify.

Keep capabilities
aligned with needs
Keep software capabilities
aligned with changing
customer/market needs to
avoid technical debt and
obsolescence.

Maintain architectural
and structural integrity
Ensure architectural
coherence and structural
integrity are maintained as
software is changed.

Maintain similarities
Maintain similarities among
software versions as
changes occur to minimize
redundant efforts.

Keep documentation
current
Keep documentation current
as a reliable expression of
expected software behavior,
structure, and rationale.

Maintain development
infrastructure
Maintain development
infrastructure to gain
improvements and avoid the
risk of non-support and more
difficult transition later.

Expedited evaluation
efforts
Institute methods for
expedited evaluation of
iteratively-evolved software,
enabling faster deployment
of updated capabilities.

8
So Much Money for So Little Capability:
The Reality of Sustaining DoD Software Systems
March 20–23, 2017
© 2017 Carnegie Mellon University

[Distribution Statement A] This material has been
approved for public release and unlimited
distribution. Please see Copyright notice for non-US
Government use and distribution.

8

Software Solutions Symposium 2017

Specific Sustainability Concerns

Verification,
Validation &
Certification

Software
Requirements

Software Environment

Component Design
& ImplementationSoftware

Architecture

Acquisition

Systems Engineering

Software Delivery
& Operational Use

9
So Much Money for So Little Capability:
The Reality of Sustaining DoD Software Systems
March 20–23, 2017
© 2017 Carnegie Mellon University

[Distribution Statement A] This material has been
approved for public release and unlimited
distribution. Please see Copyright notice for non-US
Government use and distribution.

9

Software Solutions Symposium 2017

Acquisition Concerns

Acquisition –
The activities
involved in
obtaining the
capabilities
needed to support
the operations of
a customer
enterprise.

Acquisition
• Narrow focus on objectives of current near-term

effort, discounting impacts on sustainment

• Insufficient regard for opportunities for
commonality across alternate versions of a
single platform and other related or similar efforts

• Ineffective coordination and communication
among interdependent programs (e.g., about
responsibilities and software qualities)

10
So Much Money for So Little Capability:
The Reality of Sustaining DoD Software Systems
March 20–23, 2017
© 2017 Carnegie Mellon University

[Distribution Statement A] This material has been
approved for public release and unlimited
distribution. Please see Copyright notice for non-US
Government use and distribution.

10

Software Solutions Symposium 2017

Actions to Improve Sustainability

Institute comprehensive (PEO-level) cross-program
software planning/coordination and commonality tradeoff
discipline
Standardize software practices and technical data across
all related programs

• Establish a reference software architecture and
conformant software repository for use on all programs

• Institute common software lifecycle technical data
standards (form and content) across all suppliers

Acquisition

11
So Much Money for So Little Capability:
The Reality of Sustaining DoD Software Systems
March 20–23, 2017
© 2017 Carnegie Mellon University

[Distribution Statement A] This material has been
approved for public release and unlimited
distribution. Please see Copyright notice for non-US
Government use and distribution.

11

Software Solutions Symposium 2017

System Engineering Concerns

• Changes in system requirements and architecture
frequently translate into software changes.

• Systems engineering assumptions can prematurely
preclude alternative software solutions.

• Preferred software solutions can conflict with systems
engineering assumptions.

• Insufficient information about potential changes in
needs and technology inhibits the ability to build
changeable software.

• Failure to accurately specify all behavioral
properties of other system components and
interfaces increases cost and time to build
dependent software.

System
engineering –
The activities
involved in
establishing the
requirements,
architecture,
and acceptance
criteria for a
system that
provides needed
capabilities to a
customer
enterprise.

System
Engineering

12
So Much Money for So Little Capability:
The Reality of Sustaining DoD Software Systems
March 20–23, 2017
© 2017 Carnegie Mellon University

[Distribution Statement A] This material has been
approved for public release and unlimited
distribution. Please see Copyright notice for non-US
Government use and distribution.

12

Software Solutions Symposium 2017

Actions to Improve Sustainability

• Evaluate software implications when making
system tradeoffs.

• Fully define a system context for needed software capabilities
that identifies the following:

- assumptions and decisions that are unlikely to change over the
useful life of the product

- areas of requirements or design uncertainty (aspects that may
change with additional experience or information)

- areas of likely future changes in customer needs and technology
- how tradeoff decisions may change if customer needs, technology,

or other circumstances change

• Define in the system architecture the behavior that software is
expected to exhibit.

System
Engineering

13
So Much Money for So Little Capability:
The Reality of Sustaining DoD Software Systems
March 20–23, 2017
© 2017 Carnegie Mellon University

[Distribution Statement A] This material has been
approved for public release and unlimited
distribution. Please see Copyright notice for non-US
Government use and distribution.

13

Software Solutions Symposium 2017

Software Environment Concerns

• Failing to maintain environment compatibility with
current industry practices (computing hardware, OS,
language, libraries, methods, tools)

• Using obsolete or incompatible COTS
products/versions

• Using hardware emulation capabilities that do not
conform to actual hardware behavior

• Inability to build and operate alternate (e.g., legacy
or variant) versions of the software within a single
environment

• Failing to provide configurability to test all
supported product versions, equipment
configurations, and scenarios of use

Software
environment –
The hardware/
software
infrastructure in
which software is
developed,
sustained, and
evaluated as to
expected
behavior.

Software
Environment

14
So Much Money for So Little Capability:
The Reality of Sustaining DoD Software Systems
March 20–23, 2017
© 2017 Carnegie Mellon University

[Distribution Statement A] This material has been
approved for public release and unlimited
distribution. Please see Copyright notice for non-US
Government use and distribution.

14

Software Solutions Symposium 2017

Actions to Improve Sustainability

• Establish and sustain a standard configurable environment
for all development and evaluation efforts.

• Support all activities of the software lifecycle within the environment,
including documentation, reviews, and fully automated testing.

• Maintain compatibility across all installations.
- Plan and budget for regular updates to all tools and computing

equipment.
- Coordinate environment updates to avoid having to convert between

installations.

• Anticipate and budget for building and sustaining standard hardware
device emulation and environment simulation capabilities.

• Support software configurable for observability during test with a mix of
emulated and actual hardware in a live and/or simulated environment.

• Support a standard suite of version-configurable test materials,
supporting automated regression and change-driven testing.

Software
Environment

15
So Much Money for So Little Capability:
The Reality of Sustaining DoD Software Systems
March 20–23, 2017
© 2017 Carnegie Mellon University

[Distribution Statement A] This material has been
approved for public release and unlimited
distribution. Please see Copyright notice for non-US
Government use and distribution.

15

Software Solutions Symposium 2017

Software Requirements Concerns

• Requirements that are poorly organized,
inconsistent, incomplete, informal, verbose, vague,
or ambiguous provide an unsound basis for
evaluating the resulting solution.

• A solution based on requirements that describe non-
observable behavior cannot be properly verified.

• Requirements that prescribe excessively precise
quality factor limits and other engineering decisions
inhibit the potential for change.

• Requirements that fail to distinguish fixed versus
potentially changeable needs results in improperly
constrained solutions.

• Documentation (and training materials) not kept
current with the as-built solution becomes unreliable
and loses its usefulness.

Software
requirements –
The activity that
defines the
expected as-built
behavior of the
software,
constituting its
criteria for
acceptance.

Software
Requirements

16
So Much Money for So Little Capability:
The Reality of Sustaining DoD Software Systems
March 20–23, 2017
© 2017 Carnegie Mellon University

[Distribution Statement A] This material has been
approved for public release and unlimited
distribution. Please see Copyright notice for non-US
Government use and distribution.

16

Software Solutions Symposium 2017

Actions to Improve Sustainability

• Establish a standardized form for defining
requirements as a coherent expression of expected
software behavior.
- Define externally observable behavior, external dependencies, and

quality criteria.
- Document all assumptions, alternatives, and rationale for future

reference when changes are needed.

• Describe the change context in the requirements themselves as
the basis for designing and implementing a sustainable solution:
- how and under what conditions assumptions or alternatives could

change
- areas of insufficient knowledge or uncertainty that are yet to be

resolved
- aspects that are likely to change as customer needs or technology

evolve

Software
Requirements

17
So Much Money for So Little Capability:
The Reality of Sustaining DoD Software Systems
March 20–23, 2017
© 2017 Carnegie Mellon University

[Distribution Statement A] This material has been
approved for public release and unlimited
distribution. Please see Copyright notice for non-US
Government use and distribution.

17

Software Solutions Symposium 2017

Software Architecture Concerns

• Understanding how to make changes to a solution is
costly without understanding its as-built structure, the
purpose of its elements, and the dependencies
among them.

• The as-built structure of software is unstable when it
is not expressed in a well-considered, shared
specification.

• Failing to maintain the architectural coherence and
integrity of a solution as changes are made increases
the cost and risk of future changes.

• Making unforeseen changes to software has
unpredictable cost and risks.

• Software should be designed to make likely changes
easier. Without such anticipation, we unnecessarily
increase the cost and risk of change in general.

Software
architecture –
The activity that
defines the
structure and
composition of
the software
implementation
as a set of
interdependent
components.

Software
Architecture

18
So Much Money for So Little Capability:
The Reality of Sustaining DoD Software Systems
March 20–23, 2017
© 2017 Carnegie Mellon University

[Distribution Statement A] This material has been
approved for public release and unlimited
distribution. Please see Copyright notice for non-US
Government use and distribution.

18

Software Solutions Symposium 2017

Actions to Improve Sustainability

• Institute use of a sound architectural method that
separates concerns for static, dynamic, and physical
structure.

• Devise a reference architecture that is well-structured and receptive
to future changes that were identified as being likely in the
requirements.

• Define and analyze change scenarios to fix exposed architectural
impediments to projected software changes.

• Define each software release as a disciplined customization of the
reference architecture.

• Revise the reference architecture as the software-change
projection evolves, based on evolving customer needs and
technology.

Software
Architecture

19
So Much Money for So Little Capability:
The Reality of Sustaining DoD Software Systems
March 20–23, 2017
© 2017 Carnegie Mellon University

[Distribution Statement A] This material has been
approved for public release and unlimited
distribution. Please see Copyright notice for non-US
Government use and distribution.

19

Software Solutions Symposium 2017

Component
Design and

Implementation

Component Design and Implementation Concerns

• Components implemented without reference to an
architecture that clearly allocates responsibilities may omit
or redundantly include needed capabilities.

• A component lacking adequate definition will be difficult to
build and use properly:
- the responsibilities for implementing observable behavior or

services that other components need to use must be precisely
defined

- assumptions, constraints, potential changes, references, and
rationale information that current and future developers need to
know to build and test it must be well documented

• A component is sustainment-negative when changes in its
implementation do not change its interface but require
changing the implementation of client components.

• Code that is not readable and properly documented
regarding meaning and rationale will be difficult to safely
change.

• Inadequate provision and use of libraries of commonly
needed functionality will lead to differing, redundant
implementations.

Component
design and
implementation –
The activities
involved in defining
the behavior and
services of the
components that
comprise the
software
implementation.

20
So Much Money for So Little Capability:
The Reality of Sustaining DoD Software Systems
March 20–23, 2017
© 2017 Carnegie Mellon University

[Distribution Statement A] This material has been
approved for public release and unlimited
distribution. Please see Copyright notice for non-US
Government use and distribution.

20

Software Solutions Symposium 2017

Actions to Improve Sustainability

• Create a design and implementation for each component
that will be easy to adjust to accommodate projected future
changes in requirements.

• Institute sound design and implementation practices,
enforced by directed peer reviews that reduce costly test-fix efforts.
- Focus on areas of complexity, ambiguity, likely future change, and developer

uncertainty.
- Adhere to prescribed coding conventions for readability, understanding, and

ease of change.
- Ensure appropriate commentary sufficient to explain intent,

alternatives/tradeoffs, rationale, and potential changes.
- Ensure updates to requirements, architecture/design, test materials, and user

documentation to reflect implementation efforts.
- Perform root cause analyses to ensure future avoidance or discovery of

defects missed in past reviews.

• Support provision, sustainment, and appropriate use of standard coding
patterns and reusable implementations by developers.

Component
Design and

Implementation

21
So Much Money for So Little Capability:
The Reality of Sustaining DoD Software Systems
March 20–23, 2017
© 2017 Carnegie Mellon University

[Distribution Statement A] This material has been
approved for public release and unlimited
distribution. Please see Copyright notice for non-US
Government use and distribution.

21

Software Solutions Symposium 2017

Verification,
Validation, and

Certification

Verification, Validation, and Certification
Concerns
• A focus on detailed features, versus systemic behavior

(observable functions and qualities), that emphasizes
superficial characteristics over effective fit to customer
operations

• A focus on discovering individual defects without analysis
of root causes that fails to deter recurrence of similar
defects

• An insufficient focus on software quality interdependencies,
leading to software that is functional but less effective for
users

• Failure to discover inconsistencies with software in
supporting documentation/training/test materials

• Failure to require hardware suppliers to adhere to fully
specified interfaces, resulting in delays and error-prone
changes to software

• An inability to perform evaluation of multi-version
(including hardware variant) or dynamically
configurable software, resulting in redundant effort to
separately evaluate each version

Verification,
Validation, and
Certification –
The activities
involved in
determining the
conformance of as-
built software to
specified and actual
expectations.

22
So Much Money for So Little Capability:
The Reality of Sustaining DoD Software Systems
March 20–23, 2017
© 2017 Carnegie Mellon University

[Distribution Statement A] This material has been
approved for public release and unlimited
distribution. Please see Copyright notice for non-US
Government use and distribution.

22

Software Solutions Symposium 2017

Actions to Improve Sustainability

• Organize to rapidly evaluate iteratively released
interim versions of software capability.

• Create and sustain configurable materials supporting
software evaluations (verification, validation, and certification).

• Systematically reuse test scenarios/scripts and data,
configurable to requirements differences among software
versions.

• Expedite software evaluation using a simulated environment
with software-emulated devices exhibiting specified interfaces
and quality factors versus waiting for actual hardware.

• Coordinate evaluation efforts so that later efforts can be viewed
as regression-based extensions of earlier efforts.

• Explore options for streamlining certification efforts when
previously certified software has been revised within an
understood limited scope of effect.

Verification,
Validation, and

Certification

23
So Much Money for So Little Capability:
The Reality of Sustaining DoD Software Systems
March 20–23, 2017
© 2017 Carnegie Mellon University

[Distribution Statement A] This material has been
approved for public release and unlimited
distribution. Please see Copyright notice for non-US
Government use and distribution.

23

Software Solutions Symposium 2017

Software Delivery
and

Operational Use

Software Delivery and Operational
Use Concerns
• Phased deployment of updated software across

hosts that requires excessive delay to full
deployment, resulting in operational inconsistencies
and suboptimum capabilities among hosts

• Tying software deliveries unnecessarily to hardware
device deliveries, delaying improvements in
deployed software

• Restricting software deliveries to base facilities and
physical media, limiting options for rapid updates

• Software pre-configured for specific hardware,
fostering proliferation of multiple versions requiring
redundant maintenance

• Enterprises lacking effective means for
developers to get feedback on software
effectiveness and defects from user operations

Software
Delivery and
Operational Use –
The activities
involved in deploying
and using
operational software
(specifically, on a
fleet of dispersed
host platforms).

24
So Much Money for So Little Capability:
The Reality of Sustaining DoD Software Systems
March 20–23, 2017
© 2017 Carnegie Mellon University

[Distribution Statement A] This material has been
approved for public release and unlimited
distribution. Please see Copyright notice for non-US
Government use and distribution.

24

Software Solutions Symposium 2017

Actions to Improve Sustainability

• Explore autonomously defined software elements
that can be independently built, evaluated,
and installed.

• Explore means to securely deploy software updates remotely
en masse (independent of hardware upgrades).

• Explore dynamic reconfiguration of software capabilities based
on installation/failure/removal of peripheral hardware devices.

• Explore a means to update non-critical software components
without a need for full-scale software/system evaluations.

• Verify that identified operational concerns correspond to known
potential requirements changes.

• Explore interoperability issues with operating forces that are
using different software releases having differing capabilities.

Software Delivery
and

Operational Use

25
So Much Money for So Little Capability:
The Reality of Sustaining DoD Software Systems
March 20–23, 2017
© 2017 Carnegie Mellon University

[Distribution Statement A] This material has been
approved for public release and unlimited
distribution. Please see Copyright notice for non-US
Government use and distribution.

25

Software Solutions Symposium 2017

Conclusions

There are many aspects to effective
sustainability; we have tried to provide awareness
and recommendations to integrate sustainability
into software development.

Status quo drivers for upgrade projects are short
term incentives and focus on new or upgraded
capability / functionality for the warfighter.

This focus ignores funding what needs to be
done to improve the sustainability of the software
to meet changing warfighter needs.

In the context of ever growing costs for software
sustainment, the status quo must change.

26
So Much Money for So Little Capability:
The Reality of Sustaining DoD Software Systems
March 20–23, 2017
© 2017 Carnegie Mellon University

[Distribution Statement A] This material has been
approved for public release and unlimited
distribution. Please see Copyright notice for non-US
Government use and distribution.

26

Software Solutions Symposium 2017

Contact Information

Presenter Contacts
Fred Schenker
Senior Member of the Technical Staff, SEI
ars@sei.cmu.edu

Grady Campbell
Senior Engineer, SEI
ghc@sei.cmu.edu

David Schneider
Software Branch Chief
PM Armored Fighting Vehicles
david.s.schneider10.civ@mail.mil

U.S. Mail
Software Engineering Institute
4500 Fifth Avenue
Pittsburgh, PA 15213-2612
USA

Customer Relations
Email: info@sei.cmu.edu
Phone: +1 412-268-5800
Fax: +1 412-268-6257

Web
www.sei.cmu.edu

http://www.sei.cmu.edu/

27
So Much Money for So Little Capability:
The Reality of Sustaining DoD Software Systems
March 20–23, 2017
© 2017 Carnegie Mellon University

[Distribution Statement A] This material has been
approved for public release and unlimited
distribution. Please see Copyright notice for non-US
Government use and distribution.

27

Software Solutions Symposium 2017

References

1. Campbell, G., Software-intensive Systems Producibility: A Vision and Roadmap
(v0.1) (CMU/SEI-2007-TN-017), CMU Software Engineering Institute, Dec 2007.

2. Cloutier, R., et al., “The Concept of Reference Architectures,” Systems
Engineering 13 (1), 2010,14-27.

3. Campbell, G., “The Illusion of Certainty,” 7th Annual Acquisition Research
Symposium, Naval Postgraduate School, May 2010, 257-264.

4. Campbell, G., Levinson, H., Librizzi, R., An Acquisition Perspective on Product
Evaluation (CMU/SEI-2011-TN-007), CMU Software Engineering Institute, Oct
2011.

5. Becker, C., et al., “Requirements: The Key to Sustainability,” IEEE Software 33
(1), Jan/Feb 2016, 56-65.

6. Heroux, A. M., Allen, G. Computational Science and Engineering Software
Sustainability and Productivity (CSESSP) Challenges Workshop Report.
Networking and Information Technology Research and Development (NITRD)
Program, Sep 2016.

7. Boehm, B., The Criticality of Systems maintainability and the Need for Software-
Intensive System (SIS) System Maintainability Readiness Levels. PSM Users’
Group Keynote, Feb 24, 2016.

28
So Much Money for So Little Capability:
The Reality of Sustaining DoD Software Systems
March 20–23, 2017
© 2017 Carnegie Mellon University

[Distribution Statement A] This material has been
approved for public release and unlimited
distribution. Please see Copyright notice for non-US
Government use and distribution.

28

Software Solutions Symposium 2017

Requirements – Lethality Example

Requirements Specification

Behavior Qualities Information

Lethality Example (Behavior)
• Maintain knowledge of the operational environment
• Engage targets
• Evaluate lethality status

Lethality Example (Qualities)
• Safety
• Reliability
• Performance

Lethality Example (Information)
• Natural environment (trees, terrain,

mountains, weather)
• Operational environment (enemies,

friendlies, non-combatants)
• Operational State (equipment,

ammunition)
• Operational Profile (tasking,

intelligence)

Requirements Statements
• Context (mode, state, input)
• Action (expected behavior, constraints)

	So Much Money for So Little Capability:�The Reality of Sustaining DoD Software Systems
	Slide Number 2
	Introduction
	This Presentation
	Sustainability as a Concern for DoD Acquisition
	Why Software Sustainability is a Concern
	Objectives for Improved Software Sustainability
	Specific Sustainability Concerns
	Acquisition Concerns
	Actions to Improve Sustainability
	System Engineering Concerns
	Actions to Improve Sustainability
	Software Environment Concerns
	Actions to Improve Sustainability
	Software Requirements Concerns
	Actions to Improve Sustainability
	Software Architecture Concerns
	Actions to Improve Sustainability
	Component Design and Implementation Concerns
	Actions to Improve Sustainability
	Verification, Validation, and Certification �Concerns
	Actions to Improve Sustainability
	Software Delivery and Operational �Use Concerns
	Actions to Improve Sustainability
	Conclusions
	Contact Information
	References
	Requirements – Lethality Example

