
1
Building Secure Software for Mission Critical Systems
March 20–23, 2017
© 2017 Carnegie Mellon University

[Distribution Statement A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government
use and distribution.

1

Software Solutions Symposium 2017

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

Building Secure Software for Mission Critical Systems
© 2017 Carnegie Mellon University

[[Distribution Statement A] This material has been approved for
public release and unlimited distribution. Please see Copyright
notice for non-US Government use and distribution.

Building Secure
Software for Mission
Critical Systems
Mark Sherman, PhD

Technical Director, CERT

2
Building Secure Software for Mission Critical Systems
March 20–23, 2017
© 2017 Carnegie Mellon University

[Distribution Statement A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government
use and distribution.

2

Software Solutions Symposium 2017

Copyright 2017 Carnegie Mellon University

This material is based upon work funded and supported by the Department of Defense under Contract No. FA8721-05-C-0003 with Carnegie
Mellon University for the operation of the Software Engineering Institute, a federally funded research and development center.

Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect
the views of the United States Department of Defense.

References herein to any specific commercial product, process, or service by trade name, trade mark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by Carnegie Mellon University or its Software Engineering Institute.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON AN
“AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO
ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR
RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY
KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

[Distribution Statement A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-US
Government use and distribution.

This material may be reproduced in its entirety, without modification, and freely distributed in written or electronic form without requesting formal
permission. Permission is required for any other use. Requests for permission should be directed to the Software Engineering Institute at
permission@sei.cmu.edu.

Carnegie Mellon® and CERT® are registered marks of Carnegie Mellon University.

Team Software ProcessSM and TSPSM are service marks of Carnegie Mellon University.

DM-0004576

3
Building Secure Software for Mission Critical Systems
March 20–23, 2017
© 2017 Carnegie Mellon University

[Distribution Statement A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government
use and distribution.

3

Software Solutions Symposium 2017

• State of software

• Building software: the Secure
Software Development Lifecycle

• Requirements
• Development
• Operations

• Review

Agenda

4
Building Secure Software for Mission Critical Systems
March 20–23, 2017
© 2017 Carnegie Mellon University

[Distribution Statement A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government
use and distribution.

4

Software Solutions Symposium 2017

“Software is eating the world”

Source: http://www.wsj.com/articles/SB10001424053111903480904576512250915629460

Marc Andreessen
Wall Street Journal
Aug 20, 2011

Software is the new Hardware

5
Building Secure Software for Mission Critical Systems
March 20–23, 2017
© 2017 Carnegie Mellon University

[Distribution Statement A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government
use and distribution.

5

Software Solutions Symposium 2017

Software is the new hardware – IT
IT moving from specialized hardware to
software, virtualized as

• Servers: virtual CPUs

• Storage: SANs

• Switches: Soft switches

• Networks: Software defined
networks

6
Building Secure Software for Mission Critical Systems
March 20–23, 2017
© 2017 Carnegie Mellon University

[Distribution Statement A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government
use and distribution.

6

Software Solutions Symposium 2017

• Cellular
• Main processor
• Graphics processor
• Base band processor (SDR)
• Secure element (SIM)

• Automotive
• Autonomous vehicles
• Vehicle to infrastructure (V2I)
• Vehicle to vehicle (V2V)

• Industrial and home automation
• 3D printing (additive manufacturing)
• Autonomous robots
• Interconnected SCADA

• Aviation
• Next Gen air traffic control

• Smart grid
• Smart electric meters
• Smart metering infrastructure

• Embedded medical devices

Software is the new hardware – cyber physical

7
Building Secure Software for Mission Critical Systems
March 20–23, 2017
© 2017 Carnegie Mellon University

[Distribution Statement A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government
use and distribution.

7

Software Solutions Symposium 2017

Mission function is increasingly delivered in software

“The [F-35] aircraft relies on more
than 20 million lines of code to
"fuze" information from the JSF's
radar, infrared cameras, jamming
gear, and even other planes and
ground stations to help it hunt
down and hide from opponents,
as well as break through enemy
lines to blow up targets on the
ground. …. But if the computer
doesn't work, the F-35's greatest
advertised advantages over
existing rivals and future threats
would suddenly become moot.”
The Week, 2016

Source: Joseph Trevithick,
http://theweek.com/articles/605165/f35-still-horribly-broken.
Feb 26, 2016

http://theweek.com/articles/605165/f35-still-horribly-broken

8
Building Secure Software for Mission Critical Systems
March 20–23, 2017
© 2017 Carnegie Mellon University

[Distribution Statement A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government
use and distribution.

8

Software Solutions Symposium 2017

Software vulnerabilities are ubiquitous

9
Building Secure Software for Mission Critical Systems
March 20–23, 2017
© 2017 Carnegie Mellon University

[Distribution Statement A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government
use and distribution.

9

Software Solutions Symposium 2017

Existing Customer Premise Equipment (SOHO)
typically vulnerable

54%46%

100
%

0%

54% of tested routers are vulnerable to cross-site
request forgery (CSRF)

85% of tested routers use non-unique default
credentials

63% of tested routers are vulnerable to DNS spoofing
attacks

100% of router firmware use BusyBox versions from 2011 or
earlier and embedded Linux kernel versions from 2010 or earlier

Source: Land, J. "Systemic Vulnerabilities in Customer-Premises Equipment Routers," unpublished white paper, 2015

10
Building Secure Software for Mission Critical Systems
March 20–23, 2017
© 2017 Carnegie Mellon University

[Distribution Statement A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government
use and distribution.

10

Software Solutions Symposium 2017

Steel furnaces have been successfully attacked

“Steelworks compromise causes
massive damage to furnace.

One of the most concerning was a
targeted APT attack on a German
steelworks which ended in the attackers
gaining access to the business systems
and through them to the production
network (including SCADA). The effect
was that the attackers gained control of
a steel furnace and this caused massive
damages to the plant.”

Source: Sources: https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/Lageberichte/Lagebericht2014.pdf?__blob=publicationFile;
http://www.resilienceoutcomes.com/state-ict-security/

11
Building Secure Software for Mission Critical Systems
March 20–23, 2017
© 2017 Carnegie Mellon University

[Distribution Statement A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government
use and distribution.

11

Software Solutions Symposium 2017

Electric grid under attack

Source:
http://www.welivesecurity.com/2
016/01/04/blackenergy-trojan-
strikes-again-attacks-ukrainian-
electric-power-industry/

12
Building Secure Software for Mission Critical Systems
March 20–23, 2017
© 2017 Carnegie Mellon University

[Distribution Statement A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government
use and distribution.

12

Software Solutions Symposium 2017

Weapons platforms potential cyber attack targets

“The [Joint Strike Fighter] aircraft relies on
more than 20 million lines of code … In
November 2015, the Pentagon canceled a
cyber test because of worries it would,
unsurprisingly, damage [the Autonomic
Logistics Information System that identifies
broken parts and other faults].”

The Week, 2016

Sources: https://www.dvidshub.net/image/935698/aerial-refueling-f-35-lightning-ii-joint-strike-fighters-eglin-afb-fla;
Joseph Trevithick, http://theweek.com/articles/605165/f35-still-horribly-broken. Feb 26, 2016

https://www.dvidshub.net/image/935698/aerial-refueling-f-35-lightning-ii-joint-strike-fighters-eglin-afb-fla
http://theweek.com/articles/605165/f35-still-horribly-broken

13
Building Secure Software for Mission Critical Systems
March 20–23, 2017
© 2017 Carnegie Mellon University

[Distribution Statement A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government
use and distribution.

13

Software Solutions Symposium 2017

An ounce of prevention ….

“We wouldn't have to
spend so much time,
money, and effort on
network security if we
didn't have such bad
software security.”

Bruce Schneier in Viega and McGraw, “Building
Secure Software,” 2001

Source: Washington Post, March 19, 2014, http://www.washingtonpost.com/business/economy/toyota-reaches-12-billion-settlement-to-end-criminal-
probe/2014/03/19/5738a3c4-af69-11e3-9627-c65021d6d572_story.html; http://www.greene-broillet.com/Articles/Toyotasuddenacceleration.shtml

http://www.washingtonpost.com/business/economy/toyota-reaches-12-billion-settlement-to-end-criminal-probe/2014/03/19/5738a3c4-af69-11e3-9627-c65021d6d572_story.html

14
Building Secure Software for Mission Critical Systems
March 20–23, 2017
© 2017 Carnegie Mellon University

[Distribution Statement A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government
use and distribution.

14

Software Solutions Symposium 2017

Software and security failures are expensive

Source: New York Times, Jan 10, 2014

Average cost in a breach:
US$188 per record

Source: Ponemon Institute, “2013 Cost of Data Breach
Study: Global Analysis”, May 2013

Source: Wall Street Journal, Feb 26, 2014

15
Building Secure Software for Mission Critical Systems
March 20–23, 2017
© 2017 Carnegie Mellon University

[Distribution Statement A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government
use and distribution.

15

Software Solutions Symposium 2017

Catching software faults early saves money

Faults accounts for 30‒50% percent of total software project
costs

Sources: Critical Code; NIST, NASA, INCOSE, and Aircraft Industry Studies

16
Building Secure Software for Mission Critical Systems
March 20–23, 2017
© 2017 Carnegie Mellon University

[Distribution Statement A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government
use and distribution.

16

Software Solutions Symposium 2017

Security is a lifecycle issue

17
Building Secure Software for Mission Critical Systems
March 20–23, 2017
© 2017 Carnegie Mellon University

[Distribution Statement A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government
use and distribution.

17

Software Solutions Symposium 2017

Room for improvement

Mission thread
(Business process)

19% fail to carry out
security requirement

definition

27% do not practice
secure design

72% do not use code or
binary analysis

47% do not perform
acceptance tests for third-
party code

More than 81% do not coordinate their security practices in
various stages of the development life cycle.

Sources: Forrester Consulting, “State of Application Security,” January 2011; Wendy Nather, Research Director, 451 Research, “Dynamic testing: Why Tools Alone Aren't
Enough, March 25, 2015”

18
Building Secure Software for Mission Critical Systems
March 20–23, 2017
© 2017 Carnegie Mellon University

[Distribution Statement A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government
use and distribution.

18

Software Solutions Symposium 2017

Requirements

19
Building Secure Software for Mission Critical Systems
March 20–23, 2017
© 2017 Carnegie Mellon University

[Distribution Statement A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government
use and distribution.

19

Software Solutions Symposium 2017

Threat analysis tools help derive abuse and
misuse cases

Microsoft SDL Threat Modeling Tool

Jane Cleland-Huang’s Persona non Grata
http://www.infoq.com/articles/personae-non-gratae

Microsoft STRIDE Threat Types

Denning, Friedman, Kohno
The Security Cards: Security Threat Brainstorming Toolkit

20
Building Secure Software for Mission Critical Systems
March 20–23, 2017
© 2017 Carnegie Mellon University

[Distribution Statement A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government
use and distribution.

20

Software Solutions Symposium 2017

Embedded systems represent new classes of
vulnerabilities

More and varied attack surfaces
• Sensors
• Multiple command-and-control masters
• Embedded firmware, FPGAs, ASICs
• Unique internal busses & controllers

Size, weight, power and latency demands
tradeoff against defense-in-depth

Timing demands offer potential side
channels

• Bit and clock cycle level operations
• Physical resources with real time

sensors
• Safety-Critical Real-time OS

Confusion between failure resilience and
attack

• Intermittent communications

Embedded systems have different characteristics than IT systems

21
Building Secure Software for Mission Critical Systems
March 20–23, 2017
© 2017 Carnegie Mellon University

[Distribution Statement A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government
use and distribution.

21

Software Solutions Symposium 2017

Security approaches for IT systems do not cover
embedded system security

Virus definitions and operating
guidelines do not always apply

Firewalls and IDS/IPS of limited value

Centralized account control not possible

Network tools and assessment
techniques unaware of embedded
systems architecture and interfaces

• Unique and insecure protocols
• Maintenance backdoors
• Hardcoded credentials
• Unique architectures of embedded

controllers

Unplanned connectivity and upgrades

Developers are not trained in software
engineering

22
Building Secure Software for Mission Critical Systems
March 20–23, 2017
© 2017 Carnegie Mellon University

[Distribution Statement A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government
use and distribution.

22

Software Solutions Symposium 2017

Programming for security is not the same as
programming for safety
Safety strategy Security view

Rely on physical models in fault trees Attackers do not obey the laws of physics

Redundancy mitigates single failures Attackers are not independent events

Fault trees collectively exhaustive Attack trees depend on adversaries’
creativity

Steady state behavior indicator of proper
operation

APT (Advanced persistent threats) hide in
steady state behavior

Deteriorating performance predicts
maintenance for safety

Attackers cover their tracks

Microcontrollers and air gaps implement
boundaries

Side channels open vulnerabilities

23
Building Secure Software for Mission Critical Systems
March 20–23, 2017
© 2017 Carnegie Mellon University

[Distribution Statement A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government
use and distribution.

23

Software Solutions Symposium 2017

Exploit 1Exploit 1 Vulnerability 1Vulnerability 1

Exploit 2Exploit 2 Vulnerability 2Vulnerability 2

Exploit NExploit N Vulnerability NVulnerability N

.

.

.

.

.

.

Risk analysis is focused on a single system
• Standalone (i.e., single system) models have been

developed
• Risk analysis considers the exploit of an individual

vulnerability within a single system
Security risk identification techniques do not consider:
• Compositions of multiple vulnerabilities
• Cross-system security events/risks
• Impacts beyond the exploit of a single system (to the

intended service and organization)
Need for systematic, multiple system evaluations
• Notation for expressing a security events and risks
• Take into account all context

Single system scope

Need for multisystem risk analysis

24
Building Secure Software for Mission Critical Systems
March 20–23, 2017
© 2017 Carnegie Mellon University

[Distribution Statement A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government
use and distribution.

24

Software Solutions Symposium 2017

• Establish threat model
• Determine common

system view
• Inspect connections

between systems
• Evaluate

• Consequences
• Likelihood
• Risk

Security Engineering Risk Analysis approach

WEA Alert Workflow (Top Level)

Al
er

t O
rig

in
at

or
 (A

O
)

In
iti

at
or

 (e
.g

.,
Fi

rs
t R

es
po

nd
er

)

Fe
de

ra
l

Em
er

ge
nc

y
M

an
ag

em
en

t
Ag

en
cy

 (F
EM

A)

Co
m

m
er

ci
al

M

ob
ile

 S
er

vi
ce

Pr

ov
id

er
s

(C
M

SP
)

Re
ci

pi
en

ts

Submit alert
request to local

AO.

Decide to issue
alert.

Process alert.

Process alert.

Receive alert.

Alert not
forwarded to

FEMA

Alert not
forwarded to

FEMA

If alert is
issued

If alert is not issued

Process alert
request.

Monitor alert
status.

Monitor alert
queue.

Note: AO monitors FEMA systems
for status information and pulls
data on alert status from FEMA

systems.

Note: CMSP monitors FEMA
systems for alerts and pulls data

from FEMA systems when an alert
is available.

Initiator alert
request

Alert message
content

CAP-compliant
alert message

IPAWS
certificate

IPAWS receipt
status

Workflow View

Stakeholder View

Stakeholder Mission Interest

First responders Get content to the AOS operator within a required timeframe

AOS operators Enter alert message into AOS in the required timeframe

AO managers Maintain their organization’s authority to operate, including applying for and
maintaining certificate for their AOS

FEMA Transmit alert messages to CMSP within a requires timeframe and maintain
trust in WEA and the overall emergency alert system

CMSP Get alert messages to their customers as rapidly as possible without adversely
affecting customer satisfaction

Recipients (residents of given area
covered by WEA)

Indirectly provide funding to the AO funding source
Receive and act on wireless alert messages in the area where they reside

Recipients (transient population
visiting an area)

Receive and act on wireless alert messages within the given area covered by the
AO

Providers and maintainers of AOS Maintain trust in the services provided and in the security of their equipment

AO funding source (e.g.,
government)

Provide funding to operate the WEA service

AO community Promote the value of the WEA service.
Share information related to the WE service (e.g., problems, lessons learned)

Stakeholder View

Initiator Networks

FEMA Networks

Internet

RouterFirewall

Switch

Router
Firewall

Switch

Switch

AO Desktop AO Desktop

Router

Firewall

SwitchSwitch

Vendor Desktop

AOS Server

AOS Database Server

Note: Information is transferred
from AOS clients to AO Desktops
using USB drives.

AOS Client 2

AOS Client 1

Email Server

WebServer

Email Server

WebServer

Printer

Vendor Off-Site Data Storage

AO Off-Site Data Storage

AO System Administration

AO Development

Switch

AO Development

Back-Up Communications

Back-Up Communications

Network View

Data Requirements

Data Element Form Confidentiality Integrity Availability

Initiator alert request Verbal or
Electronic

There are no restrictions on who can
view this data element. (public data)

The data element must be correct and
complete. (high data integrity)

This data element must be available
when needed. (high availability)

Alert message content Verbal,
Electronic, or
Physical

There are no restrictions on who can
view this data element. (public data)

The data element must be correct and
complete. (high data integrity)

This data element must be available
when needed. (high availability)

CAP-compliant alert
message

Electronic There are no restrictions on who can
view this data element. (public data)

The data element must be correct and
complete. (high data integrity)

This data element must be available
when needed. (high availability)

IPAWS certificate Electronic Only authorized people can view this
data element. (sensitive but
unclassified)

The data element must be correct and
complete. (high data integrity)

This data element must be available
when needed. (high availability)

IPAWS receipt status Electronic There are no restrictions on who can
view this data element. (public data)

The data element must be correct and
complete. (high data integrity)

No availability requirement for this data
element.

Data View

M

C

AO Operator Room

AO Server Room

AO Manager’s
Office

AO System
Administrators

Office

AOS ClientsAOS Clients

AO DesktopsAO Desktops

AO ServersAO Servers

AO Desktop with AOS
management capability
AO Desktop with AOS

management capability

AO System
Administration

Computer

AO System
Administration

Computer

Note: Keypad access is
required for entry.
Note: Keypad access is
required for entry.

Note: The door to the server
room is open during business
hours. A physical key is required
for entry outside of business
hours.

Note: The door to the server
room is open during business
hours. A physical key is required
for entry outside of business
hours.

Note: Door can be locked
using physical key.
Note: Door can be locked
using physical key.

Hotline with initiators.Hotline with initiators.

Mobile AO capabilityMobile AO capability

Physical View

Use Case Scenario

Step Actor and Action Data Items involved Technology Security Controls/Relevant
Standards and Regulations

1 AOS operator logs on to the AOS using account and authenti-
cation information [Note: operator log on and session auditing
(next step) are performed by team at start of shift]

Account information
Authentication information
Procedures

AOS Client
AO Desktop
Server
USB?

User authentication
Firewall

2 AOS logon activates auditing of the AOS operator’s session
starting the session log.

Session log
Backup of session log

Session log software
Server

3 AOS operator enters the approved alert message (text and
optional audio/visual) including the relevant command “alert”,
“cancel”, or “update message” with status of “actual”1 indicating
this is an actual alert or command. [also includes the distribu-
tion channels via FEMA, of which wireless is the only relevant
channel, and the actual geographic distribution for the alert]

Alert message
Command (which is incorporated
into CAP-compliant message)
Procedures
Alert scripts
Session log data – record of
input and all the sources it went
to (in addition to wireless)

4 AOS converts alert message to CAP-compliant format. Alert message (original format,
text piece)
Alert message in CAP-compliant
format
Backup or saved version of
CAP-compliant message
Session log data

AOS Database server
AOS server

5 AOS transmits alert message to the IPAWS-OPEN Gateway. Alert message (CAP-compliant
format)
Session log data
IPAWS certificate

6 IPAWS-OPEN Gateway verifies2 alert message using authen-
tication information and logs the receipt of message in IPAWS
log.

Alert message
Status message
Authentication information
Message validation scripts
IPAWS log

7 AOS operator pulls the IPAWS receipt status from IPAWS log. IPAWS log/IPAWS Receipt Sta-
tus
Procedures for checking IPAWS
log

1 Other status values include “test” and “system.” Test will be addressed in an another use case.

2 In this table, message verification includes authenticating the message and ensuring that it is in the correct format.

Use-Case View

Comprehensive context Determining actions

http://resources.sei.cmu.edu/library/asset-view.cfm?assetid=427321

http://resources.sei.cmu.edu/library/asset-view.cfm?assetid=427321

25
Building Secure Software for Mission Critical Systems
March 20–23, 2017
© 2017 Carnegie Mellon University

[Distribution Statement A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government
use and distribution.

25

Software Solutions Symposium 2017

Development

26
Building Secure Software for Mission Critical Systems
March 20–23, 2017
© 2017 Carnegie Mellon University

[Distribution Statement A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government
use and distribution.

26

Software Solutions Symposium 2017

Architecture Analysis & Design Language (AADL)

Distributed Computer
Platform

Physical system

Command &
Control

Deployed on

Physical interface

AADL Addresses Increasing Interaction Complexity
and Mismatched Assumptions

Task & Communication
Architecture

SW Design Architecture

27
Building Secure Software for Mission Critical Systems
March 20–23, 2017
© 2017 Carnegie Mellon University

[Distribution Statement A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government
use and distribution.

27

Software Solutions Symposium 2017

Team Software Process
TSP is an agile, team-focused process for
software and systems development.

The TSP strategy improves software engineering
from the bottom up.

• Instills engineering discipline in software developers
• Builds high-performance trusted teams

TSP works in practice

Performance Category Typical TSP
Result

Typical Industry
Result

Effort estimation error <10% >30%

Schedule estimation error <10% >30%

Product quality (defects/KLOC) 0.01 to 0.5 1.0 to 7.0

28
Building Secure Software for Mission Critical Systems
March 20–23, 2017
© 2017 Carnegie Mellon University

[Distribution Statement A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government
use and distribution.

28

Software Solutions Symposium 2017

Extending TSP with security

• Adding secure design
• Minimize attack surfaces
• Defense in depth for software

development

• Adding secure coding
• Adopting secure coding practices

• Tooling support for automated
conformance checking

• Tracking security defects
• Monitoring results of tests with

respect to security

29
Building Secure Software for Mission Critical Systems
March 20–23, 2017
© 2017 Carnegie Mellon University

[Distribution Statement A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government
use and distribution.

29

Software Solutions Symposium 2017

Integrating security into Agile (Scrum) development

1. Code hygiene – introduce secure coding
2. Secure DevOps – include security tools
3. Threat modeling – represent a new role
4. Risk analysis – prioritize in backlog

Persona
non grata

Code hygiene
Secure DevOps

Threat modeling

Risk analysis

(See also: Bellomo and Woody, DoD Information
Assurance and Agile: Challenges and
Recommendations Gathered Through Interviews
with Agile Program Managers and DoD
Accreditation Reviewers
(http://repository.cmu.edu/cgi/viewcontent.cgi?
article=1674&context=sei)

http://repository.cmu.edu/cgi/viewcontent.cgi?article=1674&context=sei

30
Building Secure Software for Mission Critical Systems
March 20–23, 2017
© 2017 Carnegie Mellon University

[Distribution Statement A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government
use and distribution.

30

Software Solutions Symposium 2017

Adoption of secure coding rules

Training
Integrated

development
environments

31
Building Secure Software for Mission Critical Systems
March 20–23, 2017
© 2017 Carnegie Mellon University

[Distribution Statement A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government
use and distribution.

31

Software Solutions Symposium 2017

Collected wisdom from thousands of contributors
on community wiki since Spring 2006
SEI CERT C Coding Standard

• Free PDF download:
http://cert.org/secure-coding/products-
services/secure-coding-download.cfm
• Basis for ISO TS 17961 C Secure Coding Rules

SEI CERT C++ Coding Standard
• Free PDF download (Released March 2017):
http://cert.org/secure-coding/products-
services/secure-coding-cpp-download-2016.cfm

CERT Oracle Secure Coding Standard for Java
“Current” guidelines available on CERT Secure
Coding wiki

• https://www.securecoding.cert.org

CERT Secure Coding Standards

http://cert.org/secure-coding/products-services/secure-coding-download.cfm
http://cert.org/secure-coding/products-services/secure-coding-cpp-download-2016.cfm
https://www.securecoding.cert.org/

32
Building Secure Software for Mission Critical Systems
March 20–23, 2017
© 2017 Carnegie Mellon University

[Distribution Statement A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government
use and distribution.

32

Software Solutions Symposium 2017

Learning from rules and recommendations

Rules and recommendations in the secure coding standards focus to improve behavior

The “Ah ha”
moment:
Noncompliant code
examples or
antipatterns in a
pink frame—do not
copy and paste into
your code

Compliant solutions
in a blue frame that
conform with all
rules and can be
reused in your code

33
Building Secure Software for Mission Critical Systems
March 20–23, 2017
© 2017 Carnegie Mellon University

[Distribution Statement A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government
use and distribution.

33

Software Solutions Symposium 2017

Secure Coding in C/C++ Training

The Secure Coding course is designed for C and C++
developers. It encourages programmers to adopt security best
practices and develop a security mindset that can help protect
software from tomorrow’s attacks, not just today’s.

Topics
• String management
• Dynamic memory management
• Integral security
• Formatted output
• File I/O

Additional information at ttp://www.sei.cmu.edu/training/p63.cfm

http://www.sei.cmu.edu/training/p63.cfm

34
Building Secure Software for Mission Critical Systems
March 20–23, 2017
© 2017 Carnegie Mellon University

[Distribution Statement A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government
use and distribution.

34

Software Solutions Symposium 2017

Tools encourage application of secure coding

Moving rules into IDE improves application
of secure coding

• Early feedback corrects errors on introduction
• Exceptions are understood in context
• Feedback improves developer skill

Target Clang static analyzer (C based
languages)

• Widely used open source front end for popular
compilers

• Integrated into Apple’s Xcode IDE

Target FindBugs (Java)
• Integrated into Eclipse and JDeveloper

35
Building Secure Software for Mission Critical Systems
March 20–23, 2017
© 2017 Carnegie Mellon University

[Distribution Statement A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government
use and distribution.

35

Software Solutions Symposium 2017

Software is more assembled than built

General
Ledger

SQL Server WebSphere

HTTP
server

XML Parser

Oracle DB
SIP servlet
container

GIF library

Note: hypothetical application composition

“Development” is now “assembly”
using collective development
• Too large for single

organization
• Too much specialization
• Too little value in individual

components

36
Building Secure Software for Mission Critical Systems
March 20–23, 2017
© 2017 Carnegie Mellon University

[Distribution Statement A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government
use and distribution.

36

Software Solutions Symposium 2017

The rise of open source

• 90% of modern applications are
assembled from 3rd party components

• Most applications are now assembled from
hundreds of open source components,
often reflecting as much as 90% of an
application

• At least 75% of organizations rely on open
source as the foundation of their
applications

Distributed development –
context:
• Amortize expense
• Outsource non-differential

features
• Lower acquisition (CapEx)

expense

Sources: Geer and Corman, “Almost Too Big To Fail,” ;login: (Usenix), Aug 2014; Sonatype, 2014 open source development and application security
survey

37
Building Secure Software for Mission Critical Systems
March 20–23, 2017
© 2017 Carnegie Mellon University

[Distribution Statement A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government
use and distribution.

37

Software Solutions Symposium 2017

The rise of open source

• 90% of modern applications are
assembled from 3rd party components

• At least 75% of organizations rely on open source
as the foundation of their applications

• Most applications are now assembled
from hundreds of open source
components, often reflecting as much
as 90% of an application

Distributed development –
context:
• Amortize expense
• Outsource non-differential

features
• Lower acquisition (CapEx)

expense

Sources: Geer and Corman, “Almost Too Big To Fail,” ;login: (Usenix), Aug 2014; Sonatype, 2014 open source development and application security
survey

“Developers are gorging themselves on an ever
expanding supply of open source components”

Sonatype, “2016 State of the Software Supply Chain”

38
Building Secure Software for Mission Critical Systems
March 20–23, 2017
© 2017 Carnegie Mellon University

[Distribution Statement A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government
use and distribution.

38

Software Solutions Symposium 2017

Open source is not secure
Heartbleed and
Shellshock were found
by exploitation

Other open source
software illustrates
vulnerabilities from cursory
inspection

Sources: Steve Christey (MITRE) & Brian Martin (OSF), Buying Into the Bias: Why Vulnerability Statistics Suck, https://media.blackhat.com/us-13/US-13-
Martin-Buying-Into-The-Bias-Why-Vulnerability-Statistics-Suck-Slides.pdf; Sonatype, Sonatype Open Source Development and Application Security Survey;
Sonatype, 2016 State of the Software Supply Chain; Aspect Software “The Unfortunate Reality of Insecure Libraries,” March 2012

https://media.blackhat.com/us-13/US-13-Martin-Buying-Into-The-Bias-Why-Vulnerability-Statistics-Suck-Slides.pdf

39
Building Secure Software for Mission Critical Systems
March 20–23, 2017
© 2017 Carnegie Mellon University

[Distribution Statement A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government
use and distribution.

39

Software Solutions Symposium 2017

Open source is not secure
Heartbleed and
Shellshock were found
by exploitation

Other open source
software illustrates
vulnerabilities from cursory
inspection

Sources: Steve Christey (MITRE) & Brian Martin (OSF), Buying Into the Bias: Why Vulnerability Statistics Suck, https://media.blackhat.com/us-13/US-13-
Martin-Buying-Into-The-Bias-Why-Vulnerability-Statistics-Suck-Slides.pdf; Sonatype, Sonatype Open Source Development and Application Security Survey;
Sonatype, 2016 State of the Software Supply Chain; Aspect Software “The Unfortunate Reality of Insecure Libraries,” March 2012, Mike Pittenger, Black
Duck, “Open Source Security Analysis,” 2016

1.8 billion vulnerable open
source components
downloaded in 2015

26% of the most common
open source components

have high risk vulnerabilities

On average, applications
have 22.5 open source

vulnerabilities

https://media.blackhat.com/us-13/US-13-Martin-Buying-Into-The-Bias-Why-Vulnerability-Statistics-Suck-Slides.pdf

40
Building Secure Software for Mission Critical Systems
March 20–23, 2017
© 2017 Carnegie Mellon University

[Distribution Statement A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government
use and distribution.

40

Software Solutions Symposium 2017

Reducing software supply chain risk
factors

Software supply chain risk for a
product needs to be reduced to
acceptable level

Operational
Product Control

Product is used in a
secure manner

Product

Distribution

Methods of
transmitting the
product to the
purchaser guard
again tampering

Delivered or
updated product
is acceptably
secure

Product
Security

Supplier follows
practices that
reduce supply
chain risks

Supplier
Capability

41
Building Secure Software for Mission Critical Systems
March 20–23, 2017
© 2017 Carnegie Mellon University

[Distribution Statement A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government
use and distribution.

41

Software Solutions Symposium 2017

Connecting automotive systems to internet
opens system to attack

Extending systems opens
vulnerabilities not anticipated

• Optimizations performed
assuming one attack method

• Assumptions no longer hold with
additional integrations

Studies suggest that new
operational environments are a
leading cause for introducing new
vulnerabilities in existing systems.

Source: http://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/
Clark, Frei, Blaze, Smith, “Familiarity Breeds Contempt: The Honeymoon Effect and the Role of Legacy Code in Zero-Day Vulnerabilities,” ACSAC
’10 Dec. 6-10, 2010, p. 251-260.”

http://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/

42
Building Secure Software for Mission Critical Systems
March 20–23, 2017
© 2017 Carnegie Mellon University

[Distribution Statement A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government
use and distribution.

42

Software Solutions Symposium 2017

Machine-learning based systems increase
exposures

Operations are driven by high
volume, high velocity sensor data

Decision making is based on
“trained” models of behaviors

Conventional code development
techniques of modest help

Understand the limits of training

“the [Tesla] car's driverless technology
failed to detect the white side of the
tractor-trailer against a brightly lit sky, so
the brake wasn't activated.”
-ABC7News, July 1, 2016

Source: http://abc7news.com/automotive/tesla-self-driving-car-fails-to-detect-truck-in-fatal-crash/1410042/

43
Building Secure Software for Mission Critical Systems
March 20–23, 2017
© 2017 Carnegie Mellon University

[Distribution Statement A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government
use and distribution.

43

Software Solutions Symposium 2017

Recognizing and recovering poisoned systems
• “Chaff” and “noise” can emerge

as vulnerabilities

• Defensive strategy based on “it
is difficult to lie at scale”

• Tactics include consistency
checks, such as

• Multiple models in a single unit
• Coordination among units
• Coordination with environment

Source: Battista Biggio, Blaine Nelson, Pavel Laskov, Poisoning Attacks against Support Vector Machines, 2012, arxiv.org/abs/1206.6389

http://arxiv.org/abs/1206.6389

44
Building Secure Software for Mission Critical Systems
March 20–23, 2017
© 2017 Carnegie Mellon University

[Distribution Statement A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government
use and distribution.

44

Software Solutions Symposium 2017

Deployment and operations

45
Building Secure Software for Mission Critical Systems
March 20–23, 2017
© 2017 Carnegie Mellon University

[Distribution Statement A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government
use and distribution.

45

Software Solutions Symposium 2017

Static Testing – Source code analysis tools

Secure Code Analysis Laboratory (SCALe)

• C, C++, Java, PERL, Python, Android
rule conformance checking

• Thread safety analysis

• Information flows across Android
applications

• Operating system call flows

46
Building Secure Software for Mission Critical Systems
March 20–23, 2017
© 2017 Carnegie Mellon University

[Distribution Statement A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government
use and distribution.

46

Software Solutions Symposium 2017

SCALe Multitool evaluation
Improve expert review
productivity by focusing on high
priority violations

Filter select secure coding rule
violations

• Eliminate irrelevant
diagnostics

• Convert to common CERT
Secure Coding rule labeling

Single view into code and all
diagnostics

Maintain record of decisions

47
Building Secure Software for Mission Critical Systems
March 20–23, 2017
© 2017 Carnegie Mellon University

[Distribution Statement A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government
use and distribution.

47

Software Solutions Symposium 2017

Optimizing multitool evaluations

Analyzers

Analyzers

Analyzers

Diagnostics
from each

tool

Expert
(Oracle)

Code
Repositories

Prioritized
diagnostics

list

Analyzers

Analyzers

Analyzers

Diagnostics
from each

tool

Test
Code

Active ML with
STEM

Learn Apply
Code

Metadata

48
Building Secure Software for Mission Critical Systems
March 20–23, 2017
© 2017 Carnegie Mellon University

[Distribution Statement A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government
use and distribution.

48

Software Solutions Symposium 2017

Dynamic testing and evaluation – fuzzing

Fuzz testing of attack surfaces

• Based on techniques used in CERT’s Basic
Fuzzing Framework (BFF)

• mutational fuzzing

• machine learning and evolutionary computing
techniques

• adjusts its configuration parameters based on what
it finds (or does not find) over the course of a
fuzzing campaign

49
Building Secure Software for Mission Critical Systems
March 20–23, 2017
© 2017 Carnegie Mellon University

[Distribution Statement A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government
use and distribution.

49

Software Solutions Symposium 2017

Automation; Acquisition (Supply chain); Building skills (Workforce development); Metrics, Models, and Measurement

Review: Secure Software Development Lifecycle

Mission Ready Diagnostics;
Threat Modeling;

SQUARE;
Security Engineering

Risk Analysis

Architecture Analysis
& Design Language

Team Software Process;
Secure TSP;

Secure Agile;
Secure Coding;

SCALe

Run time support;
Vulnerability

Analysis

Forensic
Operations

&
Investigations

Software Assurance Framework

50
Building Secure Software for Mission Critical Systems
March 20–23, 2017
© 2017 Carnegie Mellon University

[Distribution Statement A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government
use and distribution.

50

Software Solutions Symposium 2017

Contact Information

Mark Sherman

(412) 268-9223

mssherman@sei.cmu.edu

Web Resources (CERT/SEI)

http://www.cert.org/

http://www.sei.cmu.edu/

	Building Secure Software for Mission Critical Systems
	Slide Number 2
	Agenda
	“Software is eating the world”
	Software is the new hardware – IT
	Software is the new hardware – cyber physical
	Mission function is increasingly delivered in software
	Software vulnerabilities are ubiquitous
	Existing Customer Premise Equipment (SOHO) typically vulnerable
	Steel furnaces have been successfully attacked
	Electric grid under attack
	Weapons platforms potential cyber attack targets
	An ounce of prevention ….
	Software and security failures are expensive
	Catching software faults early saves money
	Slide Number 16
	Room for improvement
	Requirements
	Threat analysis tools help derive abuse and misuse cases
	Embedded systems represent new classes of vulnerabilities
	Security approaches for IT systems do not cover embedded system security
	Programming for security is not the same as programming for safety
	Slide Number 23
	Security Engineering Risk Analysis approach
	Development
	Architecture Analysis & Design Language (AADL)
	Team Software Process
	Extending TSP with security
	Integrating security into Agile (Scrum) development
	Adoption of secure coding rules
	CERT Secure Coding Standards
	Learning from rules and recommendations
	Secure Coding in C/C++ Training
	Tools encourage application of secure coding
	Software is more assembled than built
	The rise of open source
	The rise of open source
	Open source is not secure
	Open source is not secure
	Reducing software supply chain risk factors
	Connecting automotive systems to internet opens system to attack
	Machine-learning based systems increase exposures
	Recognizing and recovering poisoned systems
	Deployment and operations
	Static Testing – Source code analysis tools
	SCALe Multitool evaluation
	Optimizing multitool evaluations
	Dynamic testing and evaluation – fuzzing
	Slide Number 49
	Contact Information

