Software Solutions Symposium 2017 March 20–23, 2017

How to Minimize Configuration Switching Time and Cost for Design of Experiments

Bob Binder

Software Engineering Institute Carnegie Mellon University Pittsburgh, PA 15213

Software Engineering Institute | Carnegie Mellon University

How to Minimize Configuration Switching Time and Cost for Design of Experiments © 2017 Carnegie Mellon University

Copyright 2017 Carnegie Mellon University

This material is based upon work funded and supported by the Department of Defense under Contract No. FA8721-05-C-0003 with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research and development center.

References herein to any specific commercial product, process, or service by trade name, trade mark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by Carnegie Mellon University or its Software Engineering Institute.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

[Distribution Statement A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-US Government use and distribution.

This material may be reproduced in its entirety, without modification, and freely distributed in written or electronic form without requesting formal permission. Permission is required for any other use. Requests for permission should be directed to the Software Engineering Institute at permission@sei.cmu.edu.

Carnegie Mellon® is registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.

DM-0004337

How to Minimize Configuration Switching Time and Cost for Design of Experiments March 20–23, 2017 © 2017 Carnegie Mellon University

Dedication

Notes on Linear Programming: Part I THE GENERALIZED SIMPLEX METHOD for MODELING A LINEAR FORM UNDER LINEAR INEQUALITY CONSTRAINTS

> George B. Dantzig Alex Orden Phillp Wolfe

Software Engineering Institute | Carnegie Mellon University

How to Minimize Configuration Switching Time and Cost for Design of Experiments March 20–23, 2017 © 2017 Carnegie Mellon University [Distribution Statement A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-US Government use and distribution.

Motivation

If we have solid reasons to conclude that we can improve the efficiency of DT&E (and we should always be looking for sources of efficiencies), then we should take those efficiencies into account in our planning, but hope is still not a method.

Frank Kendall, Under Secretary of Defense for Acquisition, Technology and Logistics

"Perspectives on Developmental Test and Evaluation," *ITEA Journal* 2013; 34: 6–10

How to Minimize Configuration Switching Time and Cost for Design of Experiments March 20–23, 2017 © 2017 Carnegie Mellon University [Distribution Statement A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-US Government use and distribution.

Motivation

Design of Experiments (DOE)

- Technique to select a minimal and adequate set of test configurations
- Quantitative criteria for completeness and confidence
- DOT&E requires ("should") for
 - Developmental Testing (DT)
 - Operational Testing (OT)

- Typically dozens of test configurations
- Many configuration sequences possible
- If some configuration sequences are more expensive than others:

How to sequence configurations? What is the least cost sequence? What is the shortest sequence?

How to Minimize Configuration Switching Time and Cost for Design of Experiments March 20–23, 2017 © 2017 Carnegie Mellon University

Test Configurations: Factors and Levels

FACTOR	LEVEL		
	Desert		
	Mountain		
Terrain	Urban		
	Littoral		
	Horizontal Face		
Target Orientation	Vertical Face		
	High		
Contrast	Low		
Sun Elevation	<1/2 peak AM or PM		
	>1/2 peak AM or PM		

	Terrain	Target	Contrast	Sun
1	Desert	Horizontal	Low	Over Peak
2	Desert	Vertical	High	Under Peak
3	Mountain	Horizontal	High	Over Peak
4	Mountain	Vertical	Low	Under Peak
5	Urban	Horizontal	High	Under Peak
6	Urban	Vertical	Low	Over Peak
7	Littoral	Horizontal	High	Under Peak
8	Littoral	Vertical	Low	Over Peak

- 8 test configurations cover all twoway interactions
- 40,320 possible configuration sequences

Precision Guided Weapon Example. Table D-4. OT&E Factors and Levels for STW. DOT&E TEMP Guidebook 3.0, 2015.

How to Minimize Configuration Switching Time and Cost for Design of Experiments March 20–23, 2017 © 2017 Carnegie Mellon University

Test Configurations: Factors and Levels

FACTOR	LEVEL
Mission Load	Standard
	High
Trock Donoity	Standard
Track Density	High
	Short (4 hours)
Mission Duration	24 hour
	Small
Configuration	Medium
	Large
	Desert
Environment	Hot & Humid
	Cold

	Load	Density	Duration	Size	Envmt
1	High	High	24Hour	Small	Desert
2	Standard	Standard	Short	Small	HotHumid
3	High	Standard	24Hour	Small	Cold
4	Standard	High	Short	Medium	Desert
5	High	Standard	24Hour	Medium	HotHumid
6	Standard	High	Short	Medium	Cold
7	High	Standard	Short	Large	Desert
8	Standard	High	24Hour	Large	HotHumid
9	High	High	Short	Large	Cold

- 9 test configurations cover all twoway interactions
- 362,880 possible configuration sequences

Example for Software-Intensive System. Table 3-3. Overview of DOE Strategy to assess COI 1: System's ability to support mission of agency 1. *DOT&E TEMP Guidebook 3.0,* 2015.

How to Minimize Configuration Switching Time and Cost for Design of Experiments March 20–23, 2017 © 2017 Carnegie Mellon University

Switching Costs

Typical testing activities

- Setup configuration
- Run test
- Analyze results
- Teardown configuration

Configuration switch cost

- Total of all factor/level switch costs for C_p to C_q
- Switch *pq* =

Teardown *pq* + Setup *pq* + Run *pq* + Analyze *pq*

May be same or zero

	From/To	Desert	Mountain	Urban	Littoral
	Desert	100	1500	500	1000
Setup	Mountain	3000	250	3500	4500
	Urban	500	2000	250	2500
	Littoral	1000	5000	3500	500
	From/To	Desert	Mountain	Urban	Littoral
	Desert	250	400	100	175
Run	Mountain	250	400	100	175
	Urban	250	400	100	175
	Littoral	250	400	100	175
	From/To	Desert	Mountain	Urban	Littoral
	Desert	200	200	200	200
Analyze	Mountain	200	200	200	200
	Urban	200	200	200	200
	Littoral	200	200	200	200
	From/To	Desert	Mountain	Urban	Littoral
	Desert	150	500	3000	1500
Teardown	Mountain	4500	300	2500	250
	Urban	2500	250	300	2000
	Littoral	500	3500	950	350
	From/To	Desert	Mountain	Urban	Littoral
	Desert	700	2600	3800	2875
TOTAL	Mountain	7950	1150	6300	5125
	Urban	3450	2850	850	4875
	Littoral	1950	9100	4750	1225

All values notional

How to Minimize Configuration Switching Time and Cost for Design of Experiments March 20–23, 2017 © 2017 Carnegie Mellon University

Switching Costs

Change to any level can result in switching cost. In the example:

- Setup costs depend on travel
- *Run* costs differ, no relation to prior level
- Analyze costs all same
- Teardown costs depend on locale
- YMMV

Assumptions

- First and last unique
- Costs mostly different
- Costs significant ("material")
- Independent of other factors

	From/To	Desert	Mountain	Urban	Littoral
	Desert	100	1500	500	1000
Setup	Mountain	3000	250	3500	4500
	Urban	500	2000	250	2500
	Littoral	1000	5000	3500	500
	From/To	Desert	Mountain	Urban	Littoral
	Desert	250	400	100	175
Run	Mountain	250	400	100	175
	Urban	250	400	100	175
	Littoral	250	400	100	175
	From/To	Desert	Mountain	Urban	Littoral
	Desert	200	200	200	200
Analyze	Mountain	200	200	200	200
	Urban	200	200	200	200
	Littoral	200	200	200	200
	From/To	Desert	Mountain	Urban	Littoral
	Desert	150	500	3000	1500
Teardown	Mountain	4500	300	2500	250
	Urban	2500	250	300	2000
	Littoral	500	3500	950	350
	From/To	Desert	Mountain	Urban	Littoral
	Desert	700	2600	3800	2875
TOTAL	Mountain	7950	1150	6300	5125
	Urban	3450	2850	850	4875
	Littoral	1950	9100	4750	1225

All values notional

How to Minimize Configuration Switching Time and Cost for Design of Experiments March 20–23, 2017 © 2017 Carnegie Mellon University

Consider a simple two-factor design

FACTOR	LEVEL		Terrain	EMI
	Desert	C1	Desert	Nominal
Terrain	Urban	C2	Desert	Jamming
Electro Magnetic	Nominal	C3	Urban	Jamming
Interference (EMI)	Jamming	C4	Urban	Nominal

4 Configurations cover all 2-way interactions

How to Minimize Configuration Switching Time and Cost for Design of Experiments March 20–23, 2017 © 2017 Carnegie Mellon University

Generate n-way covering configurations

ACTS - ACTS Main Window System Edit Operations Help	POG	Strength: 2				
System View	Т	est Result	CS			
E- [Root Node]	I	MISSIONLOAD	TRACKDENSITY	MISSIONDURATION	CONFIGSIZE	ENVIRONMENT
SYSTEM-Config-Cost-Minimization]	1 H	ligh	High	24Hours	Small	Desert
🗄 🖳 Terrain		tandard	Standard	Short	Small	HotHumid
	3 H	ligh	Standard	24Hours	Small	Cold
	4 S	tandard	High	Short	Medium	Desert
	5 H	ligh	Standard	24Hours	Medium	HotHumid
	6 S	itandard	High	Short	Medium	Cold
	7 H	ligh	Standard	Short	Large	Desert
Environment	8 S	tandard	High	24Hours	Large	HotHumid
E in Environmente	9 H	ligh	High	Short	Large	Cold

- ACTS, free Combination test design tool from NIST
- http://csrc.nist.gov/groups/SNS/acts/index.htm

Software Engineering Institute Carnegie Mellon University

How to Minimize Configuration Switching Time and Cost for Design of Experiments March 20–23, 2017 © 2017 Carnegie Mellon University [Distribution Statement A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-US Government use and distribution.

• 24 possible configuration sequences

Software Engineering Institute | Carnegie Mellon University

How to Minimize Configuration Switching Time and Cost for Design of Experiments March 20–23, 2017 © 2017 Carnegie Mellon University

[Distribution Statement A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-US Government use and distribution.

Switching costs, each factor and level

	Factor 1: Terrain				Factor 2: EMI			
	From/To	Desert	Urban		From/To	Nominal	Jamming	
SETUP	Desert	100	4500		Nominal	100	500	
	Urban	3500	250		Jamming	500	250	
	From/To	Desert	Urban		From/To	Nominal	Jamming	
RUN	Desert	100	100		Nominal	100	300	
	Urban	100	300		Jamming	200	100	
	From/To	Desert	Urban		From/To	Nominal	Jamming	
ANALYZE	Desert	200	200		Nominal	200	200	
	Urban	200	200		Jamming	200	200	
	From/To	Desert	Urban		From/To	Nominal	Jamming	
TEARDOWN	Desert	150	3000		Nominal	100	500	
	Urban	2500	300		Jamming	500	250	
	From/To	Desert	Urban		From/To	Nominal	Jamming	
TOTAL	Desert	550	7800)	Nominal	500	1500	
	Urban	6300	1050		Jamming	1400	800	

All values notional

13

Desert:Jamming \rightarrow Urban:Nominal = 7800 + 1400 = 9200

Software Engineering Institute | Carnegie Mellon University

How to Minimize Configuration Switching Time and Cost for Design of Experiments March 20–23, 2017 © 2017 Carnegie Mellon University

Configuration Switching Costs

From/To	Initial	C1: Desert, Nominal	C2: Desert, Jamming	C3: Urban, Nominal	C4: Urban, Jamming	Final
Initial	NA	200	350	350	500	NA
C1: Desert, Nominal	NA	1050	2050	6800	9300	250
C2: Desert, Jamming	NA	1950	1350	9200	8600	400
C3: Urban, Nominal	NA	6800	7800	1550	2550	400
C4: Urban, Jamming	NA	7700	7100	2450	1850	550
Final	NA	NA	NA	NA	NA	NA

How to Minimize Configuration Switching Time and Cost for Design of Experiments March 20–23, 2017 © 2017 Carneqie Mellon University

From/To	Initial	C1: Desert, Nominal	C2: Desert, Jamming	C3: Urban, Nominal	C4: Urban, Jamming	Final
Initial	NA	1 200	350	350	500	NA
C1: Desert, Nominal	NA	1050	22050	6800	9300	250
C2: Desert, Jamming	NA	1950	1350	9200	3 8600	400
C3: Urban, Nominal	NA	6800	7800	1550	2550	5 400
C4: Urban, Jamming	NA	7700	7100 (4 2450	1850	550
Final	NA	NA	NA	NA	NA	NA

Heuristic A: Always choose lowest

13,700

How to Minimize Configuration Switching Time and Cost for Design of Experiments March 20-23, 2017 © 2017 Carnegie Mellon University

[Distribution Statement A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-US Government use and distribution.

From/To	Initial	C1: Desert, Nominal	C2: Desert, Jamming	C3: Urban, Nominal	C4: Urban, Jamming	Final	
Initial	NA	1 200	350	350	1 500	NA	
C1: Desert, Nominal	NA	1050	22050	36800	9300	250	
C2: Desert, Jamming	NA	1950	1350	9200	<u>3 8600</u>	5 400	
C3: Urban, Nominal	NA	6800	4 7800	1550	2550	⁵ 400	
C4: Urban, Jamming	NA	2 7700	7100	4 2450	1850	550	
Final	NA	NA	NA	NA	NA	NA	
Heuristic A - Always choose lowest 13,700 Always choose highest 23,200 Optimal: <i>Stay tuned</i>							

How to Minimize Configuration Switching Time and Cost for Design of Experiments March 20–23, 2017 © 2017 Carnegie Mellon University

- Number of possible configuration sequences is *n*!
- Expert or randomized plan very likely non-optimal

N configurations	Possible Sequences
1	. 1
2	2
3	6
4	24
5	120
6	720
7	5,040
8	40,320
9	362,880
10	3,628,800
11	39,916,800
12	479,001,600
13	6,227,020,800
14	87,178,291,200
15	1,307,674,368,000
16	20,922,789,888,000

Software Engineering Institute | Carnegie Mellon University

How to Minimize Configuration Switching Time and Cost for Design of Experiments March 20–23, 2017 © 2017 Carnegie Mellon University

Quantitative Optimization

Software Engineering Institute | Carnegie Mellon University

How to Minimize Configuration Switching Time and Cost for Design of Experiments © 2017 Carnegie Mellon University

What is quantitative optimization?

Aka Operations Research

- First used during WW II for logistics planning
- Successful and routine application in many domains

Linear Programming is a foundational technique

- Model with system of linear equations
 - Constraints and costs
 - Decision variables
 - Objective function

Many low cost, high-power, user-friendly software solvers available

Software Engineering Institute | Carnegie Mellon University

How to Minimize Configuration Switching Time and Cost for Design of Experiments March 20–23, 2017 © 2017 Carnegie Mellon University [Distribution Statement A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-US Government use and distribution.

What is Linear Programming?

Six-ounce glasses

x1: number of 6 oz. to make, each yields 500 units of profit *x2*: number of 10 oz. to make, each yields 450 units of profit *Z*: total profit for a given quantity of x1 and x2

Maximize z = 500 <i>x1</i> + 450 <i>x2</i>	
Subject to	
$6x1 + 5x2 \le 60$ $10x1 + 20x2 \le 150$ $x1 \le 8$ $x1 \ge 0, x2 \ge 0$	production hours sq. ft. storage sales limit, 6 oz. unit

Bradley, Applied Mathematical Programming, MIT Press, 1997.

How to Minimize Configuration Switching Time and Cost for Design of Experiments March 20–23, 2017 © 2017 Carnegie Mellon University [Distribution Statement A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-US Government use and distribution.

What is Linear Programming?

x1: number of 6 oz. to make, each yields 500 units of profit *x2*: number of 10 oz. to make, each yields 450 units of profit *Z*: total profit for a given quantity of x1 and x2

Maximize z = 500 <i>x1</i> + 450 <i>x2</i>	
Subject to	
$6x1 + 5x2 \le 60$ $10x1 + 20x2 \le 150$ $x1 \le 8$ $x1 \ge 0, x2 \ge 0$	production hours sq. ft. storage sales limit, 6 oz. unit

Bradley, Applied Mathematical Programming, MIT Press, 1997.

How to Minimize Configuration Switching Time and Cost for Design of Experiments March 20–23, 2017 © 2017 Carnegie Mellon University [Distribution Statement A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-US Government use and distribution.

The Traveling Salesman Problem

What is the least cost route to visit each city once, starting and stopping at the same city?

- In theory, NP-complete
- In practice, many feasible strategies for exact optimization
- Solved with Integer Programming
 - Just like Linear Programming, but variables may be limited to whole numbers

http://www.codeproject.com/Articles/259926/Introduction-to-Genetic-Algorithm-Encoding-Camel

How to Minimize Configuration Switching Time and Cost for Design of Experiments March 20–23, 2017 © 2017 Carnegie Mellon University [Distribution Statement A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-US Government use and distribution.

From/To	Initial	C1: Desert, Nominal	C2: Desert, Jamming	C3: Urban, Nominal	C4: Urban, Jamming	Final
Initial	NA	1 200	1 350	350	1 500	NA
C1: Desert, Nominal	NA	1050	22050	36800 ²	9300	250
C2: Desert, Jamming	NA	³ 1950	1350	9200	<u>3 8600</u>	5 400
C3: Urban, Nominal	NA	6800	4 7800	1550 (4 2550	5 400
C4: Urban, Jamming	NA	2 7700	7100	4 2450	1850	⁵ 550
Final	NA	NA	NA	NA	NA	NA
Heuristic A - Always choose lowest 13,70		Heuristic B - Always choose	highest 23,200	Optin	mal:	12,200

How to Minimize Configuration Switching Time and Cost for Design of Experiments March 20-23, 2017 © 2017 Carnegie Mellon University

[Distribution Statement A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-US Government use and distribution.

Test Configuration Sequence Optimization Model

Many FOSS and COTS solvers

https://en.wikipedia.org/wiki/List_of_optimization_ software

- Demo uses "What's Best"
- Excel front-end for the Lindo Systems optimization suite

http://www.lindo.com/

31 001	nfigura	ation Optimiz	ation							
Objec	tive									
		quence of test co	nfiguration	s that min	imizes swi	itchina cos	t of test co	nfigura	ations.	
			J			J				
1	Ainimize	Total Cost		\$12,200	dollars					
Confie	guration	h Switching Co	st Matrix						-	
		in the transition			timated tot	al cost of s	witching fr	om on	e confir	uration
_		e total of teardow					0			
									,	-
F	or any p	air of configuratio	ns x and y	, the switt	ching cost	x->y is not	necessari	ly the	same a	s that (
		From\To	α-ω	Des-Nom	Des- lam	Urb-Nom	Urb-Jam		-	-
	1	α-ω	0	200	350	350	500			
	2	1 Des-Nom	250	1050	2050	6800	9300			-
	3	2 Des-Jam	400	1950	1350	9200	8600			-
	4	3 Urb-Nom	400	6800	7800	1550	2550			-
	5	4 Urb-Jam	550	7700	7100	2450	1850		-	1
	Ĵ,	, one carl	1	2	3	4	5		-	1
Confi	ruration	n Sequence Se	elections							
		d transition is ind		n a "1" and	l indicates	that the TO	C of that rov	w		
i	s followe	d by the TC of the	t column.	This is th	e output of	f the optimi	zation mod	del.		
									Requir	e row s
		From\To	α-ω	Des-Nom	Des-Jam	Urb-Nom	Urb-Jam		Each o	configu
		α-ω	0	0	1	0	0		1	#####
		1 Des-Nom	0	0	0	1	0		1	#####
		2 Des-Jam	0	1	0	0	0		1	#####
		3 Urb-Nom	0	0	0	0	1		1	#####
		4 Urb-Jam	1	0	0	0	0		1	#####
		Sum:		1	1	1	1		_	
		Must enter:								_
			1	1	1	1	1		_	
		Require column s	sum == 1:	each cont	iguration m	nust be use	ed exactly o	once		
T . (·								
	Constra									
		low partial or unco	onnected s		. Aka Mille	er/Tucker/Z	emlin subt	our co	onstraint	s.
		of configurations		5						
	ssigned									
	Step		α-ω			Urb-Nom				-
		α-ω		#NAME?		#NAME?				
	0	1 Des-Nom				#NAME?			-	-
	2	O Dec. Inc.		#NAME?			#NAME? #NAME?		-	
	2	2 Des-Jam		HALANATO						
	2 1 3	3 Urb-Nom		#NAME?		#NIAME?				
	2					#NAME?				
	2 1 3 4	3 Urb-Nom 4 Urb-Jam	ainte			#NAME?				_
	2 1 3 4	3 Urb-Nom 4 Urb-Jam Tightening constra	aints:		#NAME?		ust exactly		enond	to num

How to Minimize Configuration Switching Time and Cost for Design of Experiments March 20–23, 2017 © 2017 Carnegie Mellon University

[Distribution Statement A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-US Government use and distribution.

Test Configuration Sequence Optimization

How to Minimize Configuration Switching Time and Cost for Design of Experiments March 20–23, 2017 © 2017 Carnegie Mellon University

Usage considerations

Use cases

- Planning at any stage
- Evaluate expert plan
- Evaluate randomized plan
- Identify alternatives
- Re-plan after changes
- Retrospective analysis

Open questions

- Are switching cost assumptions valid?
- Does an optimal schedule confound statistical assumptions?
- How much better is an optimized schedule than expert or random plan?
- Is the real world too constrained or uncontrollable for optimization?

So What?

Decision support for key test management questions

- Which is the least cost sequence?
- Which is the shortest duration sequence?
- What is the time/cost effect of adding, dropping, or reducing levels or factors?
- What will an alternate plan cost?

Compelling ROI opportunity

- Program analysis and modeling cost << one person year
- Suppose TCSO reduces MDAP DT/OT cost by 1%
 - Field critical systems sooner
 - Same or better DOE coverage
 - Avoid ~\$45M of testing cost, annually

Software Engineering Institute | Carnegie Mellon University

How to Minimize Configuration Switching Time and Cost for Design of Experiments March 20–23, 2017 © 2017 Carnegie Mellon University

[Distribution Statement A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-US Government use and distribution.

Implementation

Program Applicability

- Using DOE
- Enough DT/OT lead time
- Non-trivial switching costs
- Configuration sequence is flexible

Next Steps

- Pilot program
- Refine
- Develop Dot Net UI
- Rollout, training, support

How to Minimize Configuration Switching Time and Cost for Design of Experiments March 20–23, 2017 © 2017 Carnegie Mellon University

Sensitivity Analysis ;-)

http://xkcd.com/399/

How to Minimize Configuration Switching Time and Cost for Design of Experiments March 20–23, 2017 © 2017 Carnegie Mellon University [Distribution Statement A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-US Government use and distribution.