Software Solutions Symposium 2017

March 20-23, 2017

How to Minimize Configuration Switching Time and Cost for Design of Experiments

Bob Binder

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

Copyright 2017 Carnegie Mellon University

This material is based upon work funded and supported by the Department of Defense under Contract No. FA8721-05-C-0003 with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research and development center.

References herein to any specific commercial product, process, or service by trade name, trade mark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by Carnegie Mellon University or its Software Engineering Institute.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.
[Distribution Statement A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-US Government use and distribution.
This material may be reproduced in its entirety, without modification, and freely distributed in written or electronic form without requesting formal permission. Permission is required for any other use. Requests for permission should be directed to the Software Engineering Institute at permission@sei.cmu.edu.
Carnegie Mellon® is registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.

DM-0004337

Dedication

Notes on Linear Programming: Part I THE GENERALIZED SIMPLEX METHOD for
MODELING A LINEAR FORM UNDER LINEAR INEQUALITY CONSTRAINTS

> George B. Dantzig Alex Orden Phillp Wolfe

Motivation

If we have solid reasons to conclude that we can improve the efficiency of DT\&E (and we should always be looking for sources of efficiencies), then we should take those efficiencies into account in our planning, but hope is still not a method.

Frank Kendall, Under Secretary of Defense for Acquisition, Technology and Logistics
"Perspectives on Developmental Test and Evaluation," ITEA Journal 2013; 34: 6-10

Motivation

Design of Experiments (DOE)

- Technique to select a minimal and adequate set of test configurations
- Quantitative criteria for completeness and confidence
- DOT\&E requires ("should") for
- Developmental Testing (DT)
- Operational Testing (OT)
- Typically dozens of test configurations
- Many configuration sequences possible
- If some configuration sequences are more expensive than others:

How to sequence configurations?
What is the least cost sequence?
What is the shortest sequence?

Test Configurations: Factors and Levels

FACTOR	LEVEL
Terrain	Desert
	Mountain
	Urban
	Littoral
Target Orientation	Horizontal Face
	Vertical Face
Contrast	High
	$<\mathbf{1 / 2}$ peak AM or PM
	$>\mathbf{1 / 2}$ peak AM or PM

	Terrain	Target	Contrast	Sun
$\mathbf{1}$	Desert	Horizontal	Low	Over Peak
$\mathbf{2}$	Desert	Vertical	High	Under Peak
$\mathbf{3}$	Mountain	Horizontal	High	Over Peak
$\mathbf{4}$	Mountain	Vertical	Low	Under Peak
$\mathbf{5}$	Urban	Horizontal	High	Under Peak
$\mathbf{6}$	Urban	Vertical	Low	Over Peak
7	Littoral	Horizontal	High	Under Peak
$\mathbf{8}$	Littoral	Vertical	Low	Over Peak

- 8 test configurations cover all twoway interactions
- 40,320 possible configuration sequences

Precision Guided Weapon Example. Table D-4. OT\&E Factors and Levels for STW. DOT\&E TEMP Guidebook 3.0, 2015.

Test Configurations: Factors and Levels

FACTOR	LEVEL
Mission Load	Standard High
Track Density	Standard High
Mission Duration	Short (4 hours) $\mathbf{2 4}$ hour
Configuration	Small Medium Large Environment
	Desert Hot \& Humid Cold

	Load	Density	Duration	Size	Envmt
$\mathbf{1}$	High	High	24Hour	Small	Desert
$\mathbf{2}$	Standard	Standard	Short	Small	HotHumid
$\mathbf{3}$	High	Standard	24Hour	Small	Cold
$\mathbf{4}$	Standard	High	Short	Medium	Desert
$\mathbf{5}$	High	Standard	24Hour	Medium	HotHumid
$\mathbf{6}$	Standard	High	Short	Medium	Cold
$\mathbf{7}$	High	Standard	Short	Large	Desert
$\mathbf{8}$	Standard	High	24Hour	Large	HotHumid
$\mathbf{9}$	High	High	Short	Large	Cold

- 9 test configurations cover all twoway interactions
- 362,880 possible configuration sequences

Example for Software-Intensive System. Table 3-3. Overview of DOE Strategy to assess COI 1:
System's ability to support mission of agency 1. DOT\&E TEMP Guidebook 3.0, 2015.

Switching Costs

Typical testing activities

- Setup configuration
- Run test
- Analyze results
- Teardown configuration

Configuration switch cost

- Total of all factor/level switch costs for C_{p} to C_{q}
- \quad Switch $p q=$

Teardown $p q+$ Setup $p q+$
Run $p q$ + Analyze $p q$

- May be same or zero

Setup	From/To	Desert	Mountain	Urban	Littoral
	Desert	100	1500	500	1000
	Mountain	3000	250	3500	4500
	Urban	500	2000	250	2500
	Littoral	1000	5000	3500	500
Run	From/To	Desert	Mountain	Urban	Littoral
	Desert	250	400	100	175
	Mountain	250	400	100	175
	Urban	250	400	100	175
	Littoral	250	400	100	175
Analyze	From/To	Desert	Mountain	Urban	Littoral
	Desert	200	200	200	200
	Mountain	200	200	200	200
	Urban	200	200	200	200
	Littoral	200	200	200	200
Teardown	From/To	Desert	Mountain	Urban	Littoral
	Desert	150	500	3000	1500
	Mountain	4500	300	2500	250
	Urban	2500	250	300	2000
	Littoral	500	3500	950	350
TOTAL	From/To	Desert	Mountain	Urban	Littoral
	Desert	700	2600	3800	2875
	Mountain	7950	1150	6300	5125
	Urban	3450	2850	850	4875
	Littoral	1950	9100	4750	1225

All values notional

Switching Costs

Change to any level can result in switching cost. In the example:

- Setup costs depend on travel
- Run costs differ, no relation to prior level
- Analyze costs all same
- Teardown costs depend on locale
- YMMV

Assumptions

- First and last unique
- Costs mostly different
- Costs significant ("material")
- Independent of other factors

	From/To	Desert	Mountain	Urban	Littoral
	Desert	100	1500	500	1000
Setup	Mountain	3000	250	3500	4500
	Urban	500	2000	250	2500
	Littoral	1000	5000	3500	500
	From/To	Desert	Mountain	Urban	Littoral
	Desert	250	400	100	175
Run	Mountain	250	400	100	175
	Urban	250	400	100	175
	Littoral	250	400	100	175
	From/To	Desert	Mountain	Urban	Littoral
	Desert	200	200	200	200
Analyze	Mountain	200	200	200	200
	Urban	200	200	200	200
	Littoral	200	200	200	200
	From/To	Desert	Mountain	Urban	Littoral
	Desert	150	500	3000	1500
Teardown	Mountain	4500	300	2500	250
	Urban	2500	250	300	2000
	Littoral	500	3500	950	350
	From/To	Desert	Mountain	Urban	Littoral
	Desert	700	2600	3800	2875
TOTAL	Mountain	7950	1150	6300	5125
	Urban	3450	2850	850	4875
	Littoral	1950	9100	4750	1225

All values notional

Consider a simple two-factor design

FACTOR	LEVEL
Terrain	Desert
	Urban
	Nominal
Interference (EMI)	J amming

	Terrain	EMI
C1	Desert	Nominal
C2	Desert	J amming
C3	Urban	J amming
C4	Urban	Nominal

- 4 Configurations cover all 2-way interactions

Software Solutions Symposium 2017

Generate n-way covering configurations

- ACTS, free Combination test design tool from NIST
- http://csrc.nist.gov/groups/SNS/acts/index.htm

Which plan has the lowest switching costs?

- 24 possible configuration sequences

Switching costs, each factor and level

	Factor 1: Terrain			Factor 2: EMI		
SETUP	From/To	Desert	Urban	From/To	Nominal	Jamming
	Desert	100	4500	Nominal	100	500
	Urban	3500	250	Jamming	500	250
RUN	From/To	Desert	Urban	From/To	Nominal	Jamming
	Desert	100	100	Nominal	100	300
	Urban	100	300	Jamming	200	100
ANALYZE	From/To	Desert	Urban	From/To	Nominal	Jamming
	Desert	200	200	Nominal	200	200
	Urban	200	200	Jamming	200	200
TEARDOWN	From/To	Desert	Urban	From/To	Nominal	Jamming
	Desert	150	3000	Nominal	100	500
	Urban	2500	300	Jamming	500	250
TOTAL	From/To	Desert	Urban	From/To	Nominal	J amming
	Desert	550	7800	Nominal	500	1500
	Urban	6300	1050	J amming	1400	800

Desert:Jamming \rightarrow Urban:Nominal $=7800+1400=9200$

Configuration Switching Costs

From/To	Initial	C1: Desert, Nominal	C2: Desert, Jamming	C3: Urban, Nominal	C4: Urban, J amming	Final
Initial	NA	200	350	350	500	NA
C1: Desert, Nominal	NA	1050	2050	6800	9300	250
C2: Desert, J amming	NA	1950	1350	9200	8600	400
C3: Urban, Nominal	NA	6800	7800	1550	2550	400
C4: Urban, J amming	NA	7700	7100	2450	1850	550
Final	NA	NA	NA	NA	NA	NA

Which plan has the lowest switching costs?

From/To	Initial	C1: Desert, Nominal	C2: Desert, Jamming	C3: Urban, Nominal	C4: Urban, J amming	Final
Initial	NA	1200	350	350	500	NA
C1: Desert, Nominal	NA	1050	22050	6800	9300	250
C2: Desert, J amming	NA	1950	1350	9200	38600	400
C3: Urban, Nominal	NA	6800	7800	1550	2550	5400
C4: Urban, J amming	NA	7700	7100	42450	1850	550
Final	NA	NA	NA	NA	NA	NA

[^0]
Which plan has the lowest switching costs?

From/To	Initial	C1: Desert, Nominal	C2: Desert, Jamming	C3: Urban, Nominal	C4: Urban, J amming	Final
Initial	NA	1200	350	350	1500	NA
C1: Desert, Nominal	NA	1050	22050	36800	9300	250
C2: Desert, J amming	NA	1950	1350	9200	38600	5400
C3: Urban, Nominal	NA	6800	47800	1550	2550	5400
C4: Urban, J amming	NA	27700	7100	42450	1850	550
Final	NA	NA	NA	NA	NA	NA
Heuristic A - Always choose lowest $\quad 13,700$		Heuristic B Always choose	$\text { highest } \mathbf{2 3 , 2 0 0}$		al: Stay tuned	

Which plan has the lowest switching costs?

- Number of possible configuration sequences is n !
- Expert or randomized plan very likely non-optimal

N configurations	Possible Sequences
1	1
2	2
3	6
4	24
5	120
6	720
7	5,040
8	40,320
9	362,880
10	3,628,800
11	39,916,800
12	479,001,600
13	6,227,020,800
14	87,178,291,200
15	1,307,674,368,000
16	20,922,789,888,000

Software Solutions Symposium 2017

Quantitative Optimization

What is quantitative optimization?

Aka Operations Research

- First used during WW II for logistics planning
- Successful and routine application in many domains

Linear Programming is a foundational technique

- Model with system of linear equations
- Constraints and costs
- Decision variables
- Objective function

Many low cost, high-power, user-friendly software
 solvers available

What is Linear Programming?

Six-ounce glasses
$x 1$: number of 6 oz . to make, each yields 500 units of profit x2: number of 10 oz . to make, each yields 450 units of profit Z : total profit for a given quantity of x 1 and x 2

$$
\begin{array}{ll}
\begin{array}{l}
\text { Maximize } \\
z=500 \times 1+450 \times 2
\end{array} & \\
\text { Subject to } & \\
6 x 1+5 \times 2 \leq 60 & \text { production hours } \\
10 \times 1+20 \times 2 \leq 150 & \text { sq. ft. storage } \\
x 1 \leq 8 & \text { sales limit, } 6 \text { oz. } \\
x 1 \geq 0, x 2 \geq 0 &
\end{array}
$$

Bradley, Applied Mathematical Programming, MIT Press, 1997.

What is Linear Programming?

$x 1$: number of 6 oz . to make, each yields 500 units of profit x2: number of 10 oz . to make, each yields 450 units of profit Z : total profit for a given quantity of x 1 and x 2

$$
\begin{array}{|ll|}
\hline \text { Maximize } & \\
z=500 \times 1+450 \times 2 & \\
& \\
\text { Subject to } & \\
6 \times 1+5 \times 2 \leq 60 & \text { production hours } \\
10 \times 1+20 \times 2 \leq 150 & \text { sq. ft. storage } \\
x 1 \leq 8 & \text { sales limit, } 6 \text { oz. unit } \\
x 1 \geq 0, x 2 \geq 0 & \\
\hline
\end{array}
$$

The Traveling Salesman Problem

What is the least cost route to visit each city once, starting and stopping at the same city?

- In theory, NP-complete
- In practice, many feasible strategies for exact optimization
- Solved with Integer Programming
- Just like Linear Programming, but variables may be limited to whole numbers

http://www.codeproject.com/Articles/259926/Introduction-to-Genetic-Algorithm-Encoding-Camel

Which plan has the lowest switching costs?

From/To	Initial	C1: Desert, Nominal	C2: Desert, Jamming	C3: Urban, Nominal	C4: Urban, J amming	Final
Initial	NA	1200	1350	350	1500	NA
C1: Desert, Nominal	NA	1050	22050	$36800{ }^{2}$	9300	250
C2: Desert, J amming	NA	31950	1350	9200	38600	5400
C3: Urban, Nominal	NA	6800	47800	1550	42550	5400
C4: Urban, J amming	NA	27700	7100	42450	1850	5550
Final	NA	NA	NA	NA	NA	NA
Heuristic A - Always choose lowest 13,700		Heuristic B Always choose	$\text { highest } 23,200$		mal:	12,200

Test
 Configuration Sequence Optimization Model

- Many FOSS and COTS solvers
https://en.wikipedia.org/wiki/List of optimization software
- Demo uses "What's Best"
- Excel front-end for the Lindo Systems optimization suite
http://www.lindo.com/
Test Configuration Optimization
Objective
Find a sequence of test configurations that minimizes switching cost of test configurations.

* $\$ 12,200$ dollars

Configuration Switching Cost Matrix
Each cell in the transition cost matrix is the estimated total cost of switching from one configuration t This is the total of teardown, setup, run, and analyze cost for each factor in the configuration. For any pair of configurations x and y, the switching cost $x-y$ is not necessarily the same as that of

FromlTo	$\alpha-\omega$	Des-Nom-Jam						Urb-Nom	Urb-Jam
a-w	0	200	350	350	500				
D Des-Nom	250	1050	2050	6800	9300				
2 Des-Jam	400	1950	1350	9200	8600				
3 Urb-Nom	400	6800	7800	1550	2550				
4 Urb-Jam	550	7700	7100	2450	1850				
	1	2	3	4	5				

Configuration Sequence Selections
A selected transition is indicated with a "1" and indicates that the TC of that row is followed by the TC of that column. This is the output of the optimization model.

```Fromlto \(\alpha-\omega\) 1 Des-Nom 2 Des-Jam 3 Urb-Nom 4 Urb-Jam```	a-w	Des-Nom	Des-Jam	Urb-Nom	Urb-Jam
	0	0	1	0	0
	0	0	0	1	0
	0	1	0	0	0
	0	0	0	0	1
	1	0	0	0	0
Sum:	1	1	1	1	1
Must enter:	\#NAME?	\#NAME?	\#NAME?	\#NAME?	\#NAME?
	1	1	1	1	1

ints
Do not allow partial or unconnected sequences. Aka Miller/Tucker/Zemlin subtour constraints.
Number of configurations
5

tep		$\alpha-\omega$	Des-Nom	Des-Jam	Urb-Nom	Urb-Jam
0	$\alpha-\omega$		\#NAME?	\#NAME	\#NAME?	\#NAME?
2	1 Des-Nom			\#NAME?	\#NAME?	\#NAME?
1	2 Des-Jam		\#NAME?		\#NAME?	\#NAME?
	3 Urb-Nom		\#NAME?	\#NAME?		\#NAME?
	4 Urb-Jam		\#NAME?	\#NAME?	\#NAME	

Optional Tightening constraints:
0 \#NAME? Step assignments must exactly correspond to numbe Kill symmetry if distance matrix symmetric

## Test Configuration Sequence Optimization



## Usage considerations

Use cases

- Planning at any stage
- Evaluate expert plan
- Evaluate randomized plan
- Identify alternatives
- Re-plan after changes
- Retrospective analysis


## Open questions

- Are switching cost assumptions valid?
- Does an optimal schedule confound statistical assumptions?
- How much better is an optimized schedule than expert or random plan?
- Is the real world too constrained or uncontrollable for optimization?


## So What?

Decision support for key test management questions

- Which is the least cost sequence?
- Which is the shortest duration sequence?
- What is the time/cost effect of adding, dropping, or reducing levels or factors?
- What will an alternate plan cost?


## Compelling ROI opportunity

- Program analysis and modeling cost << one person year
- Suppose TCSO reduces MDAP DT/OT cost by $1 \%$
- Field critical systems sooner
- Same or better DOE coverage
- Avoid ~\$45M of testing cost, annually


## Implementation

## Program Applicability

- Using DOE
- Enough DT/OT lead time
- Non-trivial switching costs
- Configuration sequence is flexible


## Next Steps

- Pilot program
- Refine
- Develop Dot Net UI
- Rollout, training, support


## Sensitivity Analysis ;-)



## SELUNG ON EBAY:

O(1)
STIL WORKING ON YOUR ROUTE?

http://xkcd.com/399/


[^0]:    Heuristic A:
    Always choose lowest
    13,700

