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Safety Practice
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We Rely on Software for Safe Aircraft Operation

Quantas Airbus A330-300 Forced to make Emergency |
Landing - 36 Injured
S Embedded software systems introduce a new
ms Class of problems not addressed by traditional

in & rnic .
emerge system safety analysis

Tuesday

The terrifying incident saw the Airbus A330-300 issue a
mayday call when it suddenly changed altitude during a flight
fram Singapore to Perth, Qantas said.

Oct. 15 (Blaomberg) -- Airbus SAS issued an alert to airli FAA Says SOftware prOblem With

after Australian investigators said a computer fault on a 4

Ltd. flight switched off the autopilot and generated false Boeing 78 7S could be ca‘tastrophic

jet to nosedive.,

The airbus 4330-300 was cruising at 37,000 feet {11,277| By Dan Catchpole

computer fed incorrect information to the flight control sy

fustralian Transport Safety Bureau said yesterday, The
650 feet within seconds, slamming passengers and crew fThe Federal Aviation Administration saysa\

@dcatchpole

ceiling, before the pilots regained contral. software problem with Boeing 787 1] The Buzz: Hipster's dilemma

C This appears to be a unigue event,” the Dlreau said, 3 Dreamliners could lead to one of the [1] Boeing & aerospace news
Toulolse; T fld's largest makeN ,qvanced jetliners losing electrical power in

aircraft, issued a telex |ate yesterday to airlines that fly
fitted with the same air-data computer. The advisory is ©
rminimizing the risk in the unlikely event of a similar ocoury

E] Aerospace blog

flight, which could lead to loss of control. y

The FAA notified operators of the airplane Friday that if a 787 is powered continuously for

248 days, the plane will automatically shut down its alternating current (AC) electrical power.
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Safety Critical Software System Challenges

Where Faults are Introdyced

o i
¥ 70% % 20% % 10% 80% of faults discovered post unit test

‘ Requirements Code Unit Integration Test | Acceptance Test Operation

Architecture Design Test

Where Faults are Found

* * * * *
3.5% 16% 50.5% 9% 20.5%

Nominal Cost Per Fault for
Fault Removal

S R A G LA LR, DR ), G (R
. U 5. G . R CNOh. GRG. CRE. GRO

s Por o Fu oo 30810

Sources: Critice! Code; NIET, MASA, INCOEE, and Aircralt Industry Studies

Post-unit test software rework cost 50% of Recertification cost is not
total system development cost & growing proportional to system changes
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Mismatched Assumptions in Safety-Critical
System Interactions

System Engineer Physical Plant Control Engineer
Measurement units, value

System Hazards Characteristics
range, Boolean flags vs data

% abstraction
£ Q System Control S
2 Under System 3]
E Control Time-sensitive =
= Processing >
5 Operator ErrorI r<?
> ®
£ - .. o
% CETTIE @ Runtime Application -‘?'3
A Platform Architecture Software
I_é?]rgcj\:eaerf Virtualization & Concurrency &
Redundancy Communication
Embedded SW System Engineer
Embedded software system Why do system level failures still occur despite fault
as major source of hazards tolerance techniques being deployed in systems?
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Software Reliability

Observations
» Software reliability does not adhere to the bathtub failure rate curve for hardware

Burnin Useful Life Wear out Test/Debug Useful Life Otsclescence

Failure Rate

Failure Rate

>

Time ‘ ,
Time

Figure 2. Revised bathtub curve for software reliability

Figure 1. Bathtub curve for hardware reliability

Lifespan of single design and physical product Multi-release error rate of operating systems

» Software errors are design errors
» Software is not perfectable (unreasonable Zero defect assumption)

» Software is sensitive to operational context; testing has limited effectiveness

In a given use scenario the software Improve Quality
defect is triggered every time Analytical verification

Coverage of exceptional conditions
Resilience to software defects
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Operator Error Statistics

80% of accidents identified as due to pilot/operator errors

« References: http://www.vtol.org/safety.html (AF, Army), Leveson & other studies
» Result of single root cause event chain & focus on blame
« Operational procedures are not always in line with actual system

operation
* Up to 75% of time dealing with operational work-around procedures

Instead of correcting the problem in software

[ Need for re-certification cost reduction ]
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Challenges in Safety-Critical Digital Systems

Embedded software system as major hazard source
 High interaction complexity, mismatched assumptions, mode confusion
» Accidents due to combinations of major and minor hazard contributors

System safety analysis
» Safety engineering largely viewed as a system engineering practice

» Safety analysis processes are labor-intensive
» Consistency between evolving architecture design and safety analysis

models
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Reliability & Qualification Improvement Strategy

2010 SEI Study for AMRDEC __*.
Aviation Engineering Directorate nT=C

AR
STRERGTR TERCH TEERONIET

Incremental Assurance Plans

Architecture-led Architecture-centric Virtual Static Analysis & & Cases throughout Life
Requirement Specification System Integration Compositional Verification Cycl eg
(@
2
v LD
— Model
M‘ISSIOI'I Repository Operational &
Requirements failure modes

Function Architecture
Behavior Model

Performance Resource,
(“I/tl')r:prnent Timing &
odels
Survivability ) Performance
i Analysis
Reﬁu:f.ments System Y.
Reliability Implementation Reliability,
SafetY Safety,
Security System Security
configuration Analysis

J
y S y S l S
— é\\é —

Four pillars for Improving Quality of Critical Software-reliant Systems
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Software for Dependable Systems: | Frf‘h‘
Sufficient Evidence? (National Research \’vgq,{»?i:ﬂgwj
Council Study) [ |
Testing is indispensable BUT &~

* “Arigorous development process in which testing and code
review are the only verification techniques cannot justify
claims of extraordinarily high levels of dependability”

* “Execution of even a large set of end-to-end tests, even with
high levels of code coverage, in itself says little about the
dependability of the system as a whole.”

* “For testing to be a credible component of a [case for
dependability], the relation between testing and properties
claimed will need to be explicitly justified”

* “Credible claims of dependability are usually impossible or
Impractically expensive to demonstrate after design and
development are complete”

Assurance that a system is dependable requires the construction and
evaluation of a “dependability case”

« Claims, arguments, evidence, expertise
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SAE Architecture Analysis & Design Language (AADL)
Standard Suite

The Physical System  command

& Control
- o=

Aircraft, Car, Train

Physical Interface Deployed on
Platform Component Utilizes

Basis for Virtual SAE AS§506
International

Syst Int ti
ystem In egra? lon Standard Suite
and Analysis

for Public
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Analyzable Architecture Models Discover System
Level Issues Early in Development

Generation of analysis models
propagates architecture changes

RESOURCE
CONSUMPTION

Bandwidth
CPU Time
Power Consumption

SECURITY

Intrusion
Integrity
Confidentiality

SAFETY &
RELIABILITY

Hazard Analysis

ARCHITECTURAL

SAE

REAL-TIME l
PERFORMANCE

Deadlock/ Starvation
Latency
Execution Time/ Deadline
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MODEL

AS5506 AADL

‘ DATA
QUALITY

Temporal Correctness
Data Precision/ Accuracy
Confidence
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Guarantees
Assumptions

Invariants

Software Solutions Symposium 2017

Three Dimensions of Requirement Coverage

[ System interactions, state, behavior

] [ Design & operational quality attributes ]

Environment

Exceptionalco

[ Fault impact & contributors

Commission
errors

Omission errors

Value errors Sequence errors

. Replication
Timing errors
errors
Concurrenc
Rate errors Y
errors

Authentication Authorization
errors errors
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Fault Propagation Ontology

Carnegie Mellon University

ULility e

Data

— Performance Latency
Transaction
Throughput

New products
— Modifiability Change
CcoTs

— HW failure

— Availability =

L COTS SIW
failures

Output

— Security =— confidentiality

Data
— inteqgrity

Behavior

Control System

l State I

-

Actuator

\

l Behavior l

— Data —_—

(L,M)

r— Reduce storage latency on

customer DB to < 200 ms.

—  Deliver video in real time.

(M.M) ‘ ‘

“’*-ﬂ Add CORBA middleware
in < 20 person-months.

Change Web user interface
(H,L)
" in < 4 person-weeks

(H.H) Power outage at site requires traffic

redirected to site2 in < 3 seconds.

Network failure detected and recovered
(H,H) in < 1.5 minutes.

(H.M)

Credit card transactions are secure
99.999% of the time.

Customer DB authorization works

e AISTOTY !
(H,L) 99.999% of the time.

System Under Control L

l State ' y
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Why Safety & Reliability Analysis Automation

Current process Is
 Labor-intensive, years between repetition
* Prone to inconsistencies with evolving architecture and other

analyses
* Requires knowledge of Markov, Petri net, and other notations

Early automation experiments with AADL

Steven Vestal, Honeywell, MetaH, Error Model, AADL committee, Avionics system trade
studies during bidding (1999-)

Myron Hecht, Aerospace Corp., member of AADL & DO-178C committee, Automated
safety analysis of several satellite systems for JPL (2009-)
FMEA with 26,000 failure modes and 25 levels of effects

Thomas Noll, University of Aachen, COMPASS project, Automated safety analysis and
verification of satellite systems for ESA (2008-)
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== - = = . . . Software Systems Distribution is Unlimited
=== Software Engineering Institute | Carnegie Mellon University March 20-23, 2017 19
© 2017 Carnegie Mellon University



Software Solutions Symposium 2017

AADL Error Model Scope and Purpose

System safety process uses many individual methods and analyses, e.qg.
* hazard analysis
» failure modes and effects anal

o fault trees
» Markov processes

Capture hazards

Capture risk mitigation architecture

Capture FMEA model

Goal: a general facility for modeling fault/error/failure behaviors that can be
used for several modeling and analysis activities.

Annotated architecture model permits checking for consistency and
completeness between these various declarations.

Related analyses are also useful for other purposes, e.g.
e maintainabil Ity SAE ARP 476_1 _Gw:delines and Methods for. Conducting the Safety Assessment
Process on Civil Airborne Systems and Equipment

o availability Demonstrated in SAVI Wheel Braking System Example
* Integrity

e Secu rity Error Model Annex can be adapted to other ADLs

Improvements in Safety Analysis for Safety-critical [Distribution statement A. Approved for Public Release;
Software System Distribution is Unlimited 20

== Software Engineering Institute | Carnegie Mellon University v T
© 2017 Carnegie Mellon University



Software Solutions Symposium 2017

Automation of Safety Analysis Practice (SAVI)

A public Aircraft Wheel Brake System model

https://wiki.sei.cmu.edu/aadl/index.php/ARP4761 - Wheel Brake System %28WBS%29 Example

Error Sources

Use of Error-Model and ARINC653 annexes wsonr
Relevance for the avionics community s |||

Comparative study soarsnar _—1

Federated vs. Integrated Modular Avionics (IMA) architecture |

Support of SAE ARP 4761 System Safety Assessment Practice

Hazards (FHA), Fault Trees (FTA), Fault Impact (FMEA)

Reliability/Availability (Markov Chain/Dependence Diagram)

Functon Failure Faur Faiure Detecton Method ‘Comments.
Name | Mode | R | Phase | Elea ==
3 £ [T [ v L Power Supny Monior | BSGU 0 0
spoc. P ips, sturs cown supply | channel fais = —
shutdown | 0 passes vl e [
power supply [P/S)" 10 = & 0.75
other BSCU sysiem ) =
5V short | 0.2857 A 5 Power supply moniior | BSGU . - = - E = - - £
10 ground shutdosn | passes swakd P/Sto | channel feis Supplier = E . — - — = E
{ other BSCU system __J - = — = = =1 L = 050 /
Tossal/ | 03671 A Tcrease | May pass out of spec_ | May cause Subsystem B T: J E p- = = |
reduced Fiple | vokage o resi of BSCU | spurious PIS
fitarng  ripple is such that it is. | monior tip
not detecied by the P/S l ‘ ‘ I
mondor
+5Vopen 05714 ) TR ‘Power supply moniior | BSGU
shudown | passes mald P/S 1o | chamne tais
e cther BSCU poyrem | =
Tio Blect_| 0 - - -
= o I ] WO ENect | Nonemo Efiect No Eect o ﬁ—,‘ — =1 - 7.71\ - v 1 2 3 & 5 & 7 8 5 WU
Falue )
Rato of
5V
Suppy
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Error Model V2 Annotations of AADL Model

Three levels of abstraction expressed by EMV2

* Focus on fault propagation across components
- Probabilistic error sources, sinks, paths and transformations
- Fault propagation and Transformation Calculus (FPTC) from York U.

* Focus on fault behavior of components
- Probabilistic typed error events, error states, propagations
- Voting logic, error detection, recovery, repair

» Focus on fault behavior in terms of subcomponent fault behaviors

- Composite error behavior state logic maps states of parts into (abstracted)
states of composite

cmoronn = b Components
Fault tree generated from / Qiz)# Q}

EMV2 annotations and
propagation paths inferred — . -
from AADL model = 2 —
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Coverage of Fault Propagation Taxonomy

Fault Propagation Taxonomy

Service errors

M

Omission Commission

Omission: Vi, (ts; eST;) v(Vj2its; = =)

Value errors Sequence errors |

—-— e s o e ol

~

! Behavior l
Output ontrol System [

State

J

Timing errors Replication errors |

Actuator ]

—_——— = = = ]

—— e — — e o o

Rate errors | Concurrency errors |
(R — (R |

Extensions to Powell/Vasiliades
Ontologies

Fault Lattice for |V | Ix —
Data streams dlue errors | |m|ngerrors|
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Functional and System Architecture

F t i I .t t -
unctional Architecture -
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Consistency of Functional and System Fault Models
Function Mappings Imply System Components as Common Error Source
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Software Induced Flight Safety Issue

{ Anticipated:

]/Flight Mgnt System

4 Anticipated:
EGI No EGI data
Oper’l NoData NoData

Airspeed
Failed IR —>—
\_

\_

NoService

Auto Pilot
Operational

b
Failed p  {__>tal — ;

(" FMS
Processor

Anticipated: No
Stall Propagation

Operational

i Failed

FMS Power

Original Preliminary System Safety Analysis (PSSA)
System engineering activity with focus on failing components.
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Unhandled Hazard Discovery through Virtual Integration

system
features

trueairspeed:
flows
fl: flow so

l\;?tency ( EGl \
'EGI Logic)

annex EMV2 {1
Oper’l

error prg
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use beha
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efl:errd
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properties
EMV2: :hazard
[ crossrefd

Failed

out data port DataDictionary::Velocity;
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rary;
eefrrorStates;

{Failure, CorruptedData}; NOData
lure} when FailedState;

uptedDatal} when BadValueStateAlrspeed

Auto Pilot
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failure 3
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severity
criticaliy
comment
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Automated Fault Tree Analysis from AADL Models

Fault tree generation from annotated AADL model

* AADL focuses on embedded software systems

« Error Model V2 Annex specifies error behavior at three levels of
abstraction

 Architecture design changes are consistently reflected in fault tree

Use of fault propagation taxonomy
* Bounded set of failure effect types

e Taxonomy coverage
 Error propagation contracts and unhandled faults

Common cause failure contributors

* |[dentification of fan-out in propagation paths

* Transformation of generated fault graph to eliminate/reduce dependent
fault tree events
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Propagation and Recovery Dependency Graph
AADL core model provides propagation paths
* Port connections, access connections, remote service calls
* Deployment binding of SW to HW

Component A Component B r&
N

A Flow mappings and
4 component error

Propagation
behavior specs

Paths

I Resulting impact trace
[T 2 T — T
Abstracted dependency ( C rtmaintey 3= ==
Y T )
g ra p h B&?ew‘n " ﬂ‘}'l‘é_,;,.__ Payload Recovering h b
. . Y !
Example: Petri net e -
Payload Wiorkin P
OSATE2 uses compact S e . foreeet
propagation graph sed_Bus_ba_Up | Bus Down PTIQOC Stdbyt Bus_Down_Payload_Stdby2
. . ey
derived from instance | _/ R R T Salila ™ pa
model f )4 vm-ax\r — N
— ayionc Falre - ._1/" ﬁﬁﬁﬁﬁ ecovery L
T ’— — \ 'U_N:_n_‘:"'---..__\ ) I’n-_.-ln;;d. Bus is Up
( Payload Si d ¥ jo—
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Example System: GPS

Dual redundant satellite signal receivers
* One is sufficient for less precise location output

Single power supply
e Common cause failure source

GPS _basic_Instance

_ SatelliteSignalReceiver1

satelliteSignal processing
sensedData T—ﬂr—*P inSensor1
4 location
networkaccess inSensor2 Pl
powersource location ™
4

) SatelliteSignaIQ@iverZ ]

satelliteSignal
sensedData
networkaccess

D networkaccess
powersource

powersource
Y
power
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Error Propagation Specification

abstract GPSProcessing
features
inSensorl: in data port;
inSensor2: in data port;
location: out data port;
annex EMV2 {**
use types ErrorLibrary, GPSErrorLibrary;
error propagations Out propagation of
inSensorl : in propagation {ServiceOmission}; different error types
inSensor?2 : in propagation {ServiceOmission};
location : out propagation {ServiceOmission, LowPrecisionData,IncorrectData};
processor: in propagation {ServiceOmission};
flows
sltoloc: error path inSensorl{ServiceOmission} => location{ServiceOmission};
s2toloc: error path inSensor2{ServiceOmission} =-> location{ServiceOmission};
ptoloc: error path processor{ServiceOmission} => location{ServiceOmission};
gpssrc: error source location{LowPrecisionData, IncorrectData};
end propagations;
X%} Error paths include propagation
end GPSProcessing; from processor binding

Improvements in Safety Analysis for Safety-critical [Distribution statement A. Approved for Public Release;

—_— - 0 O 0 . . Software Systems Distribution is Unlimited

= Software Engineering Institute | Carnegie Mellon University March 20-23, 2017 31
© 2017 Carnegie Mellon University



Software Solutions Symposium 2017

Component Error Behavior Specification

abstract GPSProcessing computeError extends GPSProcessing
annex EMV2 {**
use types ErrorlLibrary, GPSErrorLibrary;
use behavior GPSErrorLibrary::GPSProcessingFailed;
component error behavior

events Failure modes and handling of
computekrror: error Event; different error tvpbes
transitions yp

internal: Operational =-[computeError]-> Incorrect;
lowPrecision: Operational|—[inSensorl{ServiceOmission}

or inSensor2{ServiceOmission}]-> LowPrecision;
inputNoService: all -[inSensorl{ServiceOmission}

and inSensor2{ServiceOmission}]-> NoService;
CPUNoService: all -[processor {ServiceOmission}]-> NoService;

propagations

outNoService: NoService-[]-> location{ServiceOmission};
outLowPrecision: LowPrecision-[]-> location{LowPrecisionData};

outComputeErrorEfect: Incorrect-[]-> location{IncorrectData}l;
end component;

properties
emv2::0ccurrenceDistribution => [ ProbabilityValue => 7.5e-4
Distribution => Polsson;

] applies to computeError;
**};

.
r

end GPSProcessing computeError;
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Handling Common Cause Failure Source

Propagation path fan out identifies
common cause source

Transformations on common
cause elements

Move common event up

(SSR1 or PS) and (SSR2 or PS)

=> PS or (SSR1 and SSR2)

Absorb subgate with common event
(SSR1 or PS) and PS => PS

Eliminate replicate events
PS or PS => PS

Flatten nested gates
El or (E2 or E3) => or{E1l, E2, E3}

Elimination of dependent events simplifies
occurrence probability calculation

%_% Software Engineering Institute | Carnegie Mellon University
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Fault Tree for Degraded Mode

Condition: only one recelver fails

e Cannot include common cause
contributors
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Scalability and Incremental Safety Analysis

Abstract and Composite Error Model
Specification at each architecture layer
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Understanding the Cause of Faults

Through model-based analysis identify architecture induced unhandled,
testable, and untestable faults and understand root causes, contributing

factors, impact, and potential mitigation options.

CAAS
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et =i .
Root Cause of Data LossIs Non- [ g
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Configl Config2
& Processor — - g-
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Under Cyclic Executive & _
Preemptive Scheduler —
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Use of text templates as formalism frontend
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Benefits of Safety Analysis Automation

Automation allows for
 Early identification of potential problems
- Single points of failure
- Unanticipated effects
 Larger set of failure modes and combinations
* More levels of effects
« Safety analysis of system and software architecture
* More frequent re-analysis
 Architecture trade studies
« Consistency across analysis results
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Benefits of Virtual System Integration &
Incremental Lifecycle Assurance

Requirements ' Architecture . Acceptance
Engineering | * |Validation Modeling Test
Analysis &
Generation
System arge " Isystem
Design ——— e ITest

Software — -
Architectural ntegration
D:;ignc " Test 80% Post
Unit Test
Component .
Software Validation DISCOVEI’Y
Design
Assure the

" [Test System

Build the  [oore
SYStem |De\relopment

Increased Confidence Through Verification And Testing
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