Improvements in Safety Analysis for Safety- Distribution statement A. Approved for Public Release;
critical Software Systems Distribution is Unlimited
© 2017 Carnegie Mellon University

Mellon University

Software Solutions Symposium 2017

Copyright 2017 Carnegie Mellon University

This material is based upon work funded and supported by the Department of Defense under Contract
No. FA8721-05-C-0003 with Carnegie Mellon University for the operation of the Software Engineering
Institute, a federally funded research and development center.

Any opinions, findings and conclusions or recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the United States Department of Defense.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING
INSTITUTE MATERIAL IS FURNISHED ON AN “AS-1S” BASIS. CARNEGIE MELLON UNIVERSITY
MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER
INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR
MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL.
CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH
RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

[Distribution Statement A] This material has been approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government use and distribution.

This material may be reproduced in its entirety, without modification, and freely distributed in written or
electronic form without requesting formal permission. Permission is requwed for any other use. Requests
for permission should be directed to the Software Engineering Institute at permission@sei.cmu.edu.

Carnegie Mellon® is registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.

DM-0004559

Improvements in Safety Analysis for Safety-critical [Distribution statement A. Approved for Public Release;
Software Systems Distribution is Unlimited

== Software Engineering Institute | Carnegie Mellon University March 20-23, 2017
- © 2017 Carnegie Mellon University

Improvements in Safety Analysis for Safety- [Distribution statement A. Approved for Public Release;
critical Software Systems Distribution is Unlimited
© 2017 Carnegie Mellon University

Software Engineering Institute | Carnegie Mellon University

Software Solutions Symposium 2017

Current Reliance on Engineering Process

Guidelines for Robust & Reliable Aircraft

DO-178B-Software Considerations in Airborne Systems and Equipment Certification

Overview of
the ISO/IEC
SC 7 Process

Implementation
andAssessment

Process Product

Froa

o paciE]
127

za)

Standards 26702 p—
DO-248B-Final Report for the Clarification of DO-178B 24783
T L Foundation softwsre|
DO-278-Guidelines for Communications, Navigation, Surveillance, and Air Traffic Manager| Egnesrnay P Brsusien
’ ’
DO-254-Design Assurance Guidance for Airborne Electronic Hardware focstuszry e
DO-297-Integrated Modular Avionics (IMA) Development Guidance and Certification Consi 90003 Hos 1498 =] E{e'suua?:
14?56 eries

SAE-ARP4754-Certification Consideration for Highly Integrated or Complex Aircraft Syster|

SAE-ARP4671- Guidelines
FAA Advisory Circular AC
FAA Advisory Circular AC

14102 10746,13235 15437

ISO/IEC 12207-Software Lif o R/~R 14471 14750,14752 15474 15909
and implicitly depend on 15040 14795, 14708 bl I et

18018 14771,15414 15476 8807

ARINC 653-Specification St

Current methods explicitly depend on
e standards and regulations

* rigorous examination of whole finished system

e conservative practices and safety culture (Rushby)

agement M

16085 |
15026 ||—
Risk & Assuranc .

42010
TBD

N 4
10770 ‘ | 14764 || 16326 \ 15030
L _..‘;:" 3 issswrament

Pl Fastrack

of B! 15000}

rrocess Standards

MIL-STD-882D-DoD Syster

ADS-51-HDBK-Rotorcraft and Aircraft Qualification Handbook
AR-70-62-Airworthiness Release Standard
ADS-75-SS-Army Aviation System Safety Assessments and Analyses

ADS-48-PRF-Performance Specification for Airworthiness Qualification Requirements for (

Instrument Flight Rules

ADS-64-SP-Airworthiness Requirements for Military Rotorcraft
SED-SES-PMHFSAQ001-Software Engineering Directorate (SED) Software Engineering Ev

Airworthiness

SED-SES-PMHSS001 SED SEES Program Manager Handbook for Software Safety

SATCLy

Improvements

IEC/ISO 12207

Software Lifecycle
Processes
Acquisition — Maintenance
Ausditing Activities

Generic

IEC/ISO 15288

Systems Lifecycle
Processes
Agreement, enterprise, project, and
technical
effort to align with 12207

|EEE 1471-2000
Recommended practice for
architectural description of
software intensive systems

Architecral desciiplans and views
Vil should aniain

DO-178B
Airbome Systems and

RTCA/DO-254
Design Assurance Guidance for
Airborne Electronic Hardware
Considerations in Airborne

Systems and Equipment
Certification

UK 00-56
Safety management
requirements for defense
systems

SAE ARP 4754

Certification Considerations

for Highly-Integrated or
ComplexAircraft Systems

IEC/ISO 15026
System & Software Integrity

Levels

ARINC ARP 4761

Guidelines and Methods for
Conducting the Safety

Assessment Process on

Civil Airborne Systems and
Equipment

IEC 61508

Eunctional safety of
electrical/electronic/programmab

le safety related systems

Software Systems DISIbution 1s Uniimited
March 20-23, 2017

© 2017 Carnegie Mellon University

% Software Engineering Institute | Carnegie Mellon University

Software Solutions Symposium 2017

Safety Practice

1 1]] 1 1 1

: : : - : - i

AIRCRAFT 1 SYSTEM | ITEM H : H : H
SYSTEM AIRCRAFT

REQUIREMENTS ||| REQUIREMENTS |! | REQUIREMENTS |!| ITEMDESIGN |! vsmch:TmN | veriFication | '] VERIFICATION I

IDENTIFICATION IDENTIFICATION | IDENTIFICATION [BE H-] H

! 2158431 s17845[8 26284631 551 551 55!

Aircraft FHA

PASA
Aircraft CCA

‘Validation of
requiremenis at
the next highest
level

Top Down
Safety

Requirements

Development &
Validation

System CCA

‘alidation of
requirements at
the next highest
level

System FTA
System CMA

“Validation of
requirements at
the next highest
level

Software Design
Hardware Design | !

Labor-intensive

Early in system engineering
Largely Ignores Software as Hazard Source

Bottom Up
Safety

Requirements
\arifiratinn

In Development Process Context

ARP4754A Process

| DO-178B/D0254 Process |

Leveson (MIT) Socio-technical Control
Framework based on Rasmussen (NASA)

model of risk management

Multiple hazard contributors in development

and operational context

Software Engineering Institute ‘ Carnegie Mellon University

| SYSTEM DEVELOPMENT |

Congress and Legislatures

i Govemment Repors
Lothying
Hearings and opan mestings
Accidents

Legiskstion l

Government Regulatory Agencies
Industry Associations,
User Associations, Unions,
Insurance Companies, Courts.

| SYSTEM OPERATIONS

Congress and Legislatures
LASErTanl Hagens
Loabying
Hearngs a
Accidents

neetings

Lagisiation }

Government Regulatory Agencies
Industry Associations,
User Associations. Unions.
Insurance Companies, Courts

Fegulations e S "
Bhndards C 2:::';_5‘:::5 Accident and incklent repars
i ‘Cparatons repars
Legal pandliies W e Maintenance Rapars
ety Mocidents and incidents Legal panalties Charge raports
s Law Caze Law [P —
Company "
Managemant
Safesy Paicy)} Saws Repors ,"‘:"mp‘s""’m
Stancens | Rish A8 A nagame
Rescurces incicdant Fraports Sataty Policy Oparations Repons
Policy, shds. Standards -)
¥ Project Rasaurces
Manmgement :
Hazard Analysss Operations
I Analyses Sakoty—Feslasad Changes Managemeant
52 Repors Frogress Repart e
ogress Reports Wik Ingtnucions Changa raquests
Audit repants
Problem repans
Dponaling Mooy mpsons
spans Oparating Proceduras o
perating Process
o Analyaes - .
w Rtz Hunan Cantralbans)
Aevigad Cermircliar
operating procadunes:
Analysas Scltwans revisions = Chcusaris) [Sensoris)
«tatian Hardwara replacaments T_
Fationale Physical

Malntenance
and Evolution

TG o

Process

Probiem Reparts
Incidents

Gharga Requests

Parformrance Audils

Improvements in Safety Analysis for Safety-critical

Software Systems
March 20-23, 2017

Distribution is Unlimited

© 2017 Carnegie Mellon University

[Distribution statement A. Approved for Public Release;

Software Solutions Symposium 2017

We Rely on Software for Safe Aircraft Operation

Quantas Airbus A330-300 Forced to make Emergency |
Landing - 36 Injured
S Embedded software systems introduce a new
ms Class of problems not addressed by traditional

in & rnic .
emerge system safety analysis

Tuesday

The terrifying incident saw the Airbus A330-300 issue a
mayday call when it suddenly changed altitude during a flight
fram Singapore to Perth, Qantas said.

Oct. 15 (Blaomberg) -- Airbus SAS issued an alert to airli FAA Says SOftware prOblem With

after Australian investigators said a computer fault on a 4

Ltd. flight switched off the autopilot and generated false Boeing 78 7S could be ca‘tastrophic

jet to nosedive.,

The airbus 4330-300 was cruising at 37,000 feet {11,277| By Dan Catchpole

computer fed incorrect information to the flight control sy

fustralian Transport Safety Bureau said yesterday, The
650 feet within seconds, slamming passengers and crew fThe Federal Aviation Administration saysa\

@dcatchpole

ceiling, before the pilots regained contral. software problem with Boeing 787 1] The Buzz: Hipster's dilemma

C This appears to be a unigue event,” the Dlreau said, 3 Dreamliners could lead to one of the [1] Boeing & aerospace news
Toulolse; T fld's largest makeN ,qvanced jetliners losing electrical power in

aircraft, issued a telex |ate yesterday to airlines that fly
fitted with the same air-data computer. The advisory is ©
rminimizing the risk in the unlikely event of a similar ocoury

E] Aerospace blog

flight, which could lead to loss of control. y

The FAA notified operators of the airplane Friday that if a 787 is powered continuously for

248 days, the plane will automatically shut down its alternating current (AC) electrical power.

%__é Software Engineering Institute | Carnegie Mellon University March 2023, 2017)

© 2017 Carnegie Mellon University

Software Solutions Symposium 2017

Safety Critical Software System Challenges

Where Faults are Introdyced

o i
¥ 70% % 20% % 10% 80% of faults discovered post unit test

‘ Requirements Code Unit Integration Test | Acceptance Test Operation

Architecture Design Test

Where Faults are Found

* * * * *
3.5% 16% 50.5% 9% 20.5%

Nominal Cost Per Fault for
Fault Removal

S R A G LA LR, DR), G (R
. U 5. G . R CNOh. GRG. CRE. GRO

s Por o Fu oo 30810

Sources: Critice! Code; NIET, MASA, INCOEE, and Aircralt Industry Studies

Post-unit test software rework cost 50% of Recertification cost is not
total system development cost & growing proportional to system changes
o Improvements in Safety Analysis for Safety-critical [Distribution statement A. Approved for Public Release;
=== Software Engineering Institute | Carnegie Mellon University orch 902 S0r preriutionts Lnimies

© 2017 Carnegie Mellon University

Software Solutions Symposium 2017

Mismatched Assumptions in Safety-Critical
System Interactions

System Engineer Physical Plant Control Engineer
Measurement units, value

System Hazards Characteristics
range, Boolean flags vs data

% abstraction
£ Q System Control S
2 Under System 3]
E Control Time-sensitive =
= Processing >
5 Operator ErrorI r<?
> ®
£ - .. o
% CETTIE @ Runtime Application -‘?'3
A Platform Architecture Software
I_é?]rgcj\:eaerf Virtualization & Concurrency &
Redundancy Communication
Embedded SW System Engineer
Embedded software system Why do system level failures still occur despite fault
as major source of hazards tolerance techniques being deployed in systems?

Improvements in Safety Analysis for Safety-critical [Distribution statement A. Approved for Public Release;
== Software Systems Distribution is Unlimited
= Software Engineering Institute ‘ Carnegie Mellon University March 20-23, 2017

© 2017 Carnegie Mellon University

Software Solutions Symposium 2017

Software Reliability

Observations
» Software reliability does not adhere to the bathtub failure rate curve for hardware

Burnin Useful Life Wear out Test/Debug Useful Life Otsclescence

Failure Rate

Failure Rate

>

Time ‘ ,
Time

Figure 2. Revised bathtub curve for software reliability

Figure 1. Bathtub curve for hardware reliability

Lifespan of single design and physical product Multi-release error rate of operating systems

» Software errors are design errors
» Software is not perfectable (unreasonable Zero defect assumption)

» Software is sensitive to operational context; testing has limited effectiveness

In a given use scenario the software Improve Quality
defect is triggered every time Analytical verification

Coverage of exceptional conditions
Resilience to software defects

[Distribution statement A. Approved for Public Release;

Improvements in Safety Analysis for Safety-critical
Distribution is Unlimited

= —% . . . Y . . Software Syst:
== Software Engineering Institute | Carnegie Mellon University M(;,CV.: 2'8_!; 017
© 2017 Carnegie Mellon University

Software Solutions Symposium 2017

Operator Error Statistics

80% of accidents identified as due to pilot/operator errors

« References: http://www.vtol.org/safety.html (AF, Army), Leveson & other studies
» Result of single root cause event chain & focus on blame
« Operational procedures are not always in line with actual system

operation
* Up to 75% of time dealing with operational work-around procedures

Instead of correcting the problem in software

[Need for re-certification cost reduction]

Improvements in Safety Analysis for Safety-critical [Distribution statement A. Approved for Public Release;
Software System Distribution is Unlimited 10

== Software Engineering Institute | Carnegie Mellon University March 20-23, 2017
- © 2017 Carnegie Mellon University

http://www.vtol.org/safety.html

Software Solutions Symposium 2017

Challenges in Safety-Critical Digital Systems

Embedded software system as major hazard source
 High interaction complexity, mismatched assumptions, mode confusion
» Accidents due to combinations of major and minor hazard contributors

System safety analysis
» Safety engineering largely viewed as a system engineering practice

» Safety analysis processes are labor-intensive
» Consistency between evolving architecture design and safety analysis

models

Improvements in Safety Analysis for Safety-critical [Distribution statement A. . Approved for Public Release;
—— - - - . _ . . Software Systems Distribution is Unlimited
== Software Engineering Institute | Carnegie Mellon University March 20-23, 2017 11
© 2017 Carnegie Mellon University

Improvements in Safety Analysis for Safety- [Distribution statement A. Approved for Public Release;
critical Software Systems Distribution is Unlimited
© 2017 Carnegie Mellon University

Software Engineering Institute | Carnegie Mellon University

Software Solutions Symposium 2017

Reliability & Qualification Improvement Strategy

2010 SEI Study for AMRDEC __*.
Aviation Engineering Directorate nT=C

AR
STRERGTR TERCH TEERONIET

Incremental Assurance Plans

Architecture-led Architecture-centric Virtual Static Analysis & & Cases throughout Life
Requirement Specification System Integration Compositional Verification Cycl eg
(@
2
v LD
— Model
M‘ISSIOI'I Repository Operational &
Requirements failure modes

Function Architecture
Behavior Model

Performance Resource,
(“I/tl')r:prnent Timing &
odels
Survivability) Performance
i Analysis
Reﬁu:f.ments System Y.
Reliability Implementation Reliability,
SafetY Safety,
Security System Security
configuration Analysis

J
y S y S l S
— é\\é —

Four pillars for Improving Quality of Critical Software-reliant Systems

Improvements in Safety Analysis for Safety-critical [Distribution statement A. Approved for Public Release;
— - = = . . . Software Systems Distribution is Unlimited
= Software Engineering Institute ‘ Carnegie Mellon University March 20-23, 2017 13
© 2017 Carnegie Mellon University

Software Solutions Symposium 2017

Software for Dependable Systems: | Frf‘h‘
Sufficient Evidence? (National Research \’vgq,{»?i:ﬂgwj
Council Study) [|
Testing is indispensable BUT &~

* “Arigorous development process in which testing and code
review are the only verification techniques cannot justify
claims of extraordinarily high levels of dependability”

* “Execution of even a large set of end-to-end tests, even with
high levels of code coverage, in itself says little about the
dependability of the system as a whole.”

* “For testing to be a credible component of a [case for
dependability], the relation between testing and properties
claimed will need to be explicitly justified”

* “Credible claims of dependability are usually impossible or
Impractically expensive to demonstrate after design and
development are complete”

Assurance that a system is dependable requires the construction and
evaluation of a “dependability case”

« Claims, arguments, evidence, expertise

Improvements in Safety Analysis for Safety-critical [Distribution statement A. . Approved for Public Release;

—— - - - . _ . . Soft Syst Distribution is Unlimited
= Software Engineering Institute ‘ Carnegie Mellon University M‘;,C”.!Z’S_zy; 017
2017 Cal

Software Solutions Symposium 2017

SAE Architecture Analysis & Design Language (AADL)
Standard Suite

The Physical System command

& Control
- o=

Aircraft, Car, Train

Physical Interface Deployed on
Platform Component Utilizes

Basis for Virtual SAE AS§506
International

Syst Int ti
ystem In egra? lon Standard Suite
and Analysis

for Public

Improvements in Safety Analysis for Safety-critical [Distribution A. Appi
Software Systems Distribution is Unlimited 1 5

“£= Software Engineering Institute | Carnegie Mellon University — wochao 5 5007

© 2017 Carnegie Mellon University

Software Solutions Symposium 2017

Analyzable Architecture Models Discover System
Level Issues Early in Development

Generation of analysis models
propagates architecture changes

RESOURCE
CONSUMPTION

Bandwidth
CPU Time
Power Consumption

SECURITY

Intrusion
Integrity
Confidentiality

SAFETY &
RELIABILITY

Hazard Analysis

ARCHITECTURAL

SAE

REAL-TIME l
PERFORMANCE

Deadlock/ Starvation
Latency
Execution Time/ Deadline

———g_ Software Engineering Institute | Carnegie Mellon University

MODEL

AS5506 AADL

‘ DATA
QUALITY

Temporal Correctness
Data Precision/ Accuracy
Confidence

Improvements in Safety Analysis for Safety-critical
Software Systems

March 20-23, 2017

© 2017 Carnegie Mellon University

[Distribution statement A. Approved for Public Release;
Distribution is Unlimited

16

Guarantees
Assumptions

Invariants

Software Solutions Symposium 2017

Three Dimensions of Requirement Coverage

[System interactions, state, behavior

] [Design & operational quality attributes]

Environment

Exceptionalco

[Fault impact & contributors

Commission
errors

Omission errors

Value errors Sequence errors

. Replication
Timing errors
errors
Concurrenc
Rate errors Y
errors

Authentication Authorization
errors errors

%__% Software Engineering Institute

Fault Propagation Ontology

Carnegie Mellon University

ULility e

Data

— Performance Latency
Transaction
Throughput

New products
— Modifiability Change
CcoTs

— HW failure

— Availability =

L COTS SIW
failures

Output

— Security =— confidentiality

Data
— inteqgrity

Behavior

Control System

l State I

-

Actuator

\

l Behavior l

— Data —_—

(L,M)

r— Reduce storage latency on

customer DB to < 200 ms.

— Deliver video in real time.

(M.M) ‘ ‘

“’*-ﬂ Add CORBA middleware
in < 20 person-months.

Change Web user interface
(H,L)
" in < 4 person-weeks

(H.H) Power outage at site requires traffic

redirected to site2 in < 3 seconds.

Network failure detected and recovered
(H,H) in < 1.5 minutes.

(H.M)

Credit card transactions are secure
99.999% of the time.

Customer DB authorization works

e AISTOTY !
(H,L) 99.999% of the time.

System Under Control L

l State ' y

Improvements in Safety Analysis for Safety-critical

Software Systems
March 20-23, 2017

Distribution

© 2017 Carnegie Mellon University

Sensor

[Distribution statement A. Approved for Public Release;

is Unlimited 17

Improvements in Safety Analysis for Safety- [Distribution statement A. Approved for Public Release;
critical Software Systems Distribution is Unlimited
© 2017 Carnegie Mellon University

Software Engineering Institute | Carnegie Mellon University

Software Solutions Symposium 2017

Why Safety & Reliability Analysis Automation

Current process Is
 Labor-intensive, years between repetition
* Prone to inconsistencies with evolving architecture and other

analyses
* Requires knowledge of Markov, Petri net, and other notations

Early automation experiments with AADL

Steven Vestal, Honeywell, MetaH, Error Model, AADL committee, Avionics system trade
studies during bidding (1999-)

Myron Hecht, Aerospace Corp., member of AADL & DO-178C committee, Automated
safety analysis of several satellite systems for JPL (2009-)
FMEA with 26,000 failure modes and 25 levels of effects

Thomas Noll, University of Aachen, COMPASS project, Automated safety analysis and
verification of satellite systems for ESA (2008-)

Improvements in Safety Analysis for Safety-critical [Distribution statement A. Approved for Public Release;

== - = = . . . Software Systems Distribution is Unlimited
=== Software Engineering Institute | Carnegie Mellon University March 20-23, 2017 19
© 2017 Carnegie Mellon University

Software Solutions Symposium 2017

AADL Error Model Scope and Purpose

System safety process uses many individual methods and analyses, e.qg.
* hazard analysis
» failure modes and effects anal

o fault trees
» Markov processes

Capture hazards

Capture risk mitigation architecture

Capture FMEA model

Goal: a general facility for modeling fault/error/failure behaviors that can be
used for several modeling and analysis activities.

Annotated architecture model permits checking for consistency and
completeness between these various declarations.

Related analyses are also useful for other purposes, e.g.
e maintainabil Ity SAE ARP 476_1 _Gw:delines and Methods for. Conducting the Safety Assessment
Process on Civil Airborne Systems and Equipment

o availability Demonstrated in SAVI Wheel Braking System Example
* Integrity

e Secu rity Error Model Annex can be adapted to other ADLs

Improvements in Safety Analysis for Safety-critical [Distribution statement A. Approved for Public Release;
Software System Distribution is Unlimited 20

== Software Engineering Institute | Carnegie Mellon University v T
© 2017 Carnegie Mellon University

Software Solutions Symposium 2017

Automation of Safety Analysis Practice (SAVI)

A public Aircraft Wheel Brake System model

https://wiki.sei.cmu.edu/aadl/index.php/ARP4761 - Wheel Brake System %28WBS%29 Example

Error Sources

Use of Error-Model and ARINC653 annexes wsonr
Relevance for the avionics community s |||

Comparative study soarsnar _—1

Federated vs. Integrated Modular Avionics (IMA) architecture |

Support of SAE ARP 4761 System Safety Assessment Practice

Hazards (FHA), Fault Trees (FTA), Fault Impact (FMEA)

Reliability/Availability (Markov Chain/Dependence Diagram)

Functon Failure Faur Faiure Detecton Method ‘Comments.
Name | Mode | R | Phase | Elea ==
3 £ [T [v L Power Supny Monior | BSGU 0 0
spoc. P ips, sturs cown supply | channel fais = —
shutdown | 0 passes vl e [
power supply [P/S)" 10 = & 0.75
other BSCU sysiem) =
5V short | 0.2857 A 5 Power supply moniior | BSGU . - = - E = - - £
10 ground shutdosn | passes swakd P/Sto | channel feis Supplier = E . — - — = E
{ other BSCU system __J - = — = = =1 L = 050 /
Tossal/ | 03671 A Tcrease | May pass out of spec_ | May cause Subsystem B T: J E p- = = |
reduced Fiple | vokage o resi of BSCU | spurious PIS
fitarng ripple is such that it is. | monior tip
not detecied by the P/S l ‘ ‘ I
mondor
+5Vopen 05714) TR ‘Power supply moniior | BSGU
shudown | passes mald P/S 1o | chamne tais
e cther BSCU poyrem | =
Tio Blect_| 0 - - -
= o I] WO ENect | Nonemo Efiect No Eect o ﬁ—,‘ — =1 - 7.71\ - v 1 2 3 & 5 & 7 8 5 WU
Falue)
Rato of
5V
Suppy
Improvements in Safety Analysis for Safety-critical [Distribution statement A. Approved for Public Release;
== . - . q 7 q Software Systems Distribution is Unlimited
== Software Engineering Institute | Carnegie Mellon University March 20-23, 2017

© 2017 Carnegie Mellon University

https://wiki.sei.cmu.edu/aadl/index.php/ARP4761_-_Wheel_Brake_System_(WBS)_Example

Solhrare S0'uiicins SvriposiuT 2237

Error Model V2 Annotations of AADL Model

Three levels of abstraction expressed by EMV2

* Focus on fault propagation across components
- Probabilistic error sources, sinks, paths and transformations
- Fault propagation and Transformation Calculus (FPTC) from York U.

* Focus on fault behavior of components
- Probabilistic typed error events, error states, propagations
- Voting logic, error detection, recovery, repair

» Focus on fault behavior in terms of subcomponent fault behaviors

- Composite error behavior state logic maps states of parts into (abstracted)
states of composite

cmoronn = b Components
Fault tree generated from / Qiz)# Q}

EMV2 annotations and
propagation paths inferred — . -
from AADL model = 2 —

Improvements in Safety Analysis for Safety-critical [Distribution statement A. Approved for Public Release;

== . . o . n " . Software Systems Distribution is Unlimited

=== Software Engineering Institute | Carnegie Mellon University March 20-23, 2017 22
© 2017 Carnegie Mellon University

Software Solutions Symposium 2017

Coverage of Fault Propagation Taxonomy

Fault Propagation Taxonomy

Service errors

M

Omission Commission

Omission: Vi, (ts; eST;) v(Vj2its; = =)

Value errors Sequence errors |

—-— e s o e ol

~

! Behavior l
Output ontrol System [

State

J

Timing errors Replication errors |

Actuator]

—_——— = = =]

—— e — — e o o

Rate errors | Concurrency errors |
(R — (R |

Extensions to Powell/Vasiliades
Ontologies

Fault Lattice for |V | Ix —
Data streams dlue errors | |m|ngerrors|

%__é Software Engineering Institute | Carnegie Mellon University

L] System Under C
Cmd Input
State
J

~
ontrol C

Improvements in Safety Analysis for Safety-critical
Software Systems

March 20-23, 2017

© 2017 Carnegie Mellon University

[Distribution statement A. Approved for Public Release;
Distribution is Unlimited

23

Software Solutions Symposium 2017

Functional and System Architecture

F t i I .t t -
unctional Architecture -
] ————
=
e s
P = srera insemnce [s —
e e o — fromiElectncal Decelerate T
= — .
Fro rndh ulic
e Deceleratewneers
fromElectrical
ey F Dn'lHydrﬁ
e
o T =tesnn fromStesring
omStatus
— =
-~ =
."-.

signall signal2

reen_pum

N2,

annunciation

| .nf.mat.n

boolean_input
output

p%a” pedal2
sub1

| brake

pedalvalus

, wvalid
brake skid

skid

S

select_alternate

cmd_nor

cmd_alt

4

green_input blue_input

accumulator_input <_{

green_output blue_output

&

input]

emd_input

T

wheel

emd_input

output
Ny,

cmd_alt -}
cmd_nor]

L2
green_input
input

%
blue_input

Consistency of Functional and System Fault Models
Function Mappings Imply System Components as Common Error Source

%__% Software Engineering Institute ‘ Carnegie Mellon University

Improvements in Safety Analysis for Safety-critical
Software Systems

March 20-23, 2017

© 2017 Carnegie Mellon University

[Distribution statement A. Approved for Public Release;
Distribution is Unlimited

24

Software Solutions Symposium 2017

Software Induced Flight Safety Issue

{ Anticipated:

]/Flight Mgnt System

4 Anticipated:
EGI No EGI data
Oper’l NoData NoData

Airspeed
Failed IR —>—
_

_

NoService

Auto Pilot
Operational

b
Failed p {__>tal — ;

(" FMS
Processor

Anticipated: No
Stall Propagation

Operational

i Failed

FMS Power

Original Preliminary System Safety Analysis (PSSA)
System engineering activity with focus on failing components.

%__é Software Engineering Institute

Carnegie Mellon University

Improvements in Safety Analysis for Safety-critical

Software Systems
March 20-23, 2017

[Distribution statement A. Approved for Public Release;

Distribution is Unlimited 2 5

© 2017 Carnegie Mellon University

Software Solutions Symposium 2017

Unhandled Hazard Discovery through Virtual Integration

system
features

trueairspeed:
flows
fl: flow so

l\;?tency (EGl \
'EGI Logic)

annex EMV2 {1
Oper’l

error prg
use typed
use beha
trued
flows

efl:errd
ef2:errd

properties
EMV2: :hazard
[crossrefd

Failed

out data port DataDictionary::Velocity;

Flight Mgnt System

rary;
eefrrorStates;

{Failure, CorruptedData}; NOData
lure} when FailedState;

uptedDatal} when BadValueStateAlrspeed

Auto Pilot
Operational

failure 3
phase =>
descriptd
severity
criticaliy
comment

system implem
subcomponen
PilotGrip)
Positions|
EGI: syst
FMS: proces™
Actuatorl: device Actuator ;
Actuator2: device Actuator ;

N

Corru pted Data _

peed reading due to synchronization error";

/N

f no visual
[Corrupted data shows airspeedl

of 2000 knots

Vibration causes data

boards

corruption through touching

FMSProcessor: processor PowerP
connections
pilotCmd: pert PilotGrip.Desir
sensedPosition: port PositionSensor.PositionReading - FMs.Position;
ActuatorlCmd: port FMS5.ActCmd -> Actuatorl.ActCmd;
Actuator2Cmd: peort FMS.ActCmd -»> Actuator2.ActCmd;

vitx: port EGI.TruefAirSpeed -» FMS.TrueAirSpeed;

Failed

" FMS

Actuator
Cmd

NoService

\
Stall I

RN

Response to corrupted
airspeed causes stall

]

[@ Qutgoing propagation {Failure, CorruptedData} is not handled. Expected incoming Fallure}‘ -

Processor [
Operational
i Failed
FMS Power

ACTUE TOT TC

{
Latency => 15 ms ..

1;

20 ms;

%__é Software Engineering Institute

ACCOETOT I TS

Carnegie Mellon University

[

observations detects unhandled fault.

Virtual integration of architecture fault models recording SIL test]

Improvements in Safety Analysis for Safety-critical

Software Systems
March 20-23, 2017

Distribution is Unlimited

© 2017 Carnegie Mellon University

[Distribution statement A. Approved for Public Release;

26

Improvements in Safety Analysis for Safety- [Distribution statement A. Approved for Public Release;
critical Software Systems Distribution is Unlimited
© 2017 Carnegie Mellon University

Software Engineering Institute | Carnegie Mellon University

Software Solutions Symposium 2017

Automated Fault Tree Analysis from AADL Models

Fault tree generation from annotated AADL model

* AADL focuses on embedded software systems

« Error Model V2 Annex specifies error behavior at three levels of
abstraction

 Architecture design changes are consistently reflected in fault tree

Use of fault propagation taxonomy
* Bounded set of failure effect types

e Taxonomy coverage
 Error propagation contracts and unhandled faults

Common cause failure contributors

* |[dentification of fan-out in propagation paths

* Transformation of generated fault graph to eliminate/reduce dependent
fault tree events

Improvements in Safety Analysis for Safety-critical [Distribution statement A. . Approved for Public Release;

== - = = Y . . Software Systems ~ Distributionis Unlimited
=== Software Engineering Institute | Carnegie Mellon University o e 28
© 2017 Carnegie Mellon University

Software Solutions Symposium 2017

Propagation and Recovery Dependency Graph
AADL core model provides propagation paths
* Port connections, access connections, remote service calls
* Deployment binding of SW to HW

Component A Component B r&
N

A Flow mappings and
4 component error

Propagation
behavior specs

Paths

I Resulting impact trace
[T 2 T — T
Abstracted dependency (C rtmaintey 3= ==
Y T)
g ra p h B&?ew‘n " ﬂ‘}'l‘é_,;,.__ Payload Recovering h b
. . Y !
Example: Petri net e -
Payload Wiorkin P
OSATE2 uses compact S e . foreeet
propagation graph sed_Bus_ba_Up | Bus Down PTIQOC Stdbyt Bus_Down_Payload_Stdby2
. . ey
derived from instance | _/ R R T Salila ™ pa
model f)4 vm-ax\r — N
— ayionc Falre - ._1/" ﬁﬁﬁﬁﬁ ecovery L
T ’— — \ 'U_N:_n_‘:"'---..__\) I’n-_.-ln;;d. Bus is Up
(Payload Si d ¥ jo—
Improvements in Safety Analysis for Safety-critical [Distribution statement A. Approved for Public Release;
== . - . q 5 q Software Systems Distribution is Unlimited
== Software Engineering Institute | Carnegie Mellon University March 20-23. 2017

© 2017 Carnegie Mellon University

Software Solutions Symposium 2017

Example System: GPS

Dual redundant satellite signal receivers
* One is sufficient for less precise location output

Single power supply
e Common cause failure source

GPS _basic_Instance

_ SatelliteSignalReceiver1

satelliteSignal processing
sensedData T—ﬂr—*P inSensor1
4 location
networkaccess inSensor2 Pl
powersource location ™
4

) SatelliteSignaIQ@iverZ]

satelliteSignal
sensedData
networkaccess

D networkaccess
powersource

powersource
Y
power
Improvements in Safety Analysis for Safety-critical [Distribution statement A. Approved for Public Release;
== . - - . n " 5 Software Systems Distribution is Unlimited
== Software Engineering Institute | Carnegie Mellon University o e 30

© 2017 Carnegie Mellon University

Software Solutions Symposium 2017

Error Propagation Specification

abstract GPSProcessing
features
inSensorl: in data port;
inSensor2: in data port;
location: out data port;
annex EMV2 {**
use types ErrorLibrary, GPSErrorLibrary;
error propagations Out propagation of
inSensorl : in propagation {ServiceOmission}; different error types
inSensor?2 : in propagation {ServiceOmission};
location : out propagation {ServiceOmission, LowPrecisionData,IncorrectData};
processor: in propagation {ServiceOmission};
flows
sltoloc: error path inSensorl{ServiceOmission} => location{ServiceOmission};
s2toloc: error path inSensor2{ServiceOmission} =-> location{ServiceOmission};
ptoloc: error path processor{ServiceOmission} => location{ServiceOmission};
gpssrc: error source location{LowPrecisionData, IncorrectData};
end propagations;
X%} Error paths include propagation
end GPSProcessing; from processor binding

Improvements in Safety Analysis for Safety-critical [Distribution statement A. Approved for Public Release;

—_— - 0 O 0 . . Software Systems Distribution is Unlimited

= Software Engineering Institute | Carnegie Mellon University March 20-23, 2017 31
© 2017 Carnegie Mellon University

Software Solutions Symposium 2017

Component Error Behavior Specification

abstract GPSProcessing computeError extends GPSProcessing
annex EMV2 {**
use types ErrorlLibrary, GPSErrorLibrary;
use behavior GPSErrorLibrary::GPSProcessingFailed;
component error behavior

events Failure modes and handling of
computekrror: error Event; different error tvpbes
transitions yp

internal: Operational =-[computeError]-> Incorrect;
lowPrecision: Operational|—[inSensorl{ServiceOmission}

or inSensor2{ServiceOmission}]-> LowPrecision;
inputNoService: all -[inSensorl{ServiceOmission}

and inSensor2{ServiceOmission}]-> NoService;
CPUNoService: all -[processor {ServiceOmission}]-> NoService;

propagations

outNoService: NoService-[]-> location{ServiceOmission};
outLowPrecision: LowPrecision-[]-> location{LowPrecisionData};

outComputeErrorEfect: Incorrect-[]-> location{IncorrectData}l;
end component;

properties
emv2::0ccurrenceDistribution => [ProbabilityValue => 7.5e-4
Distribution => Polsson;

] applies to computeError;
**};

.
r

end GPSProcessing computeError;

Improvements in Safety Analysis for Safety-critical [Distribution statement A. Approved for Public Release;

= — . - - N . . Software System Distribution is Unlimited
= Software Engineering Institute ‘ Carnegie Mellon University v T

© 2017 Carnegie Mellon University

Software Solutions Symposium 2017

Handling Common Cause Failure Source

Propagation path fan out identifies
common cause source

Transformations on common
cause elements

Move common event up

(SSR1 or PS) and (SSR2 or PS)

=> PS or (SSR1 and SSR2)

Absorb subgate with common event
(SSR1 or PS) and PS => PS

Eliminate replicate events
PS or PS => PS

Flatten nested gates
El or (E2 or E3) => or{E1l, E2, E3}

Elimination of dependent events simplifies
occurrence probability calculation

%_% Software Engineering Institute | Carnegie Mellon University

gpssystem_gps_cebound-location-serviceomission (8.81525E-5)

powersupply1-power_es-
serviceomission (3.5E-5)
Error source power _es on
component powersupply1 from
bower with types {ServiceOmission|

O

@

gpssystem_gps_cebound-
satellitesignal-nosignal (9.0E-8)

omponent GPS_CEBound_Instance
with in propagation satelliteSignal

(]

‘ Intermediate0 (6.25E-8) ‘

kcpu1-failstop-serviceomission (2.8E-5
component cpu in state FailStop

O

batellitesignalreceiver2-sensorfailsrg
serviceomission (2.5E-4)
Error source sensorfailsrc on
lcomponent SatelliteSignalReceiver?)
from sensedData with types

[SenviceQmissiont

Improvements in Safety Analysis for Safety-critical
Software Systems

March 20-23, 2017

© 2017 Carnegie Mellon University

AND

network-network_access_es-
serviceomission (2.5E-5)
Error source network_access_es on|
compenent network with types
{ServiceOmission}

O

Batellitesignalreceiver1-sensorfailsrg
serviceomission (2.5E-4)
Error source sensorfailsrc on
omponent SatelliteSignalReceiver1
from sensedData with types

[ServiceOmissiont

[Distribution statement A. Approved for Public Release;
Distribution is Unlimited

33

Software Solutions Symposium 2017

Fault Tree for Degraded Mode

Condition: only one recelver fails

e Cannot include common cause
contributors

%__% Software Engineering Institute | Carnegie Mellon University

gpssystem_gps_cebound-location-lowprecision...

ﬁA

satellitesignalreceiver1-sensorfailsrc]
serviceomission (2.5E-4)
Error source sensorfailsrc on
component SatelliteSignalReceiver1
from sensedData with types

{ServiceOmission}

satellitesignalreceiver2-sensorfailsrc|
serviceomission (2.5E-4)

Error source sensorfailsrc on
component SatelliteSignalReceiver2
from sensedData with types
{ServiceOmission}

Improvements in Safety Analysis for Safety-critical
Software Systems

March 20-23, 2017

© 2017 Carnegie Mellon University

[Distribution statement A. Approved for Public Release;
Distribution is Unlimited

Software Solutions Symposium 2017

Scalability and Incremental Safety Analysis

Abstract and Composite Error Model
Specification at each architecture layer

blue_pum

p

pedals power areen_pum
battery1 battery2 [pressu% output [

pressure_ou

tput

socket socket

signall signal2

accumulator
ssure_output

U,:I elector
Repair i
M le
I
1 I
pedall pedal2 ’ | nciation
..'-.\ L |
@ L/ N liformatio

/ / i '

MoIRE A
e — — Fail N’ e
FG S o= up - ' pown 1
Faliune .{_:) / t cmd_nor outpm! 1’ ot

[1 ormore(FG1.Failed or AP1.Failed) and

1 ormore(FG2.Failed or AP2.Failed) or AC.Failed]->Failed

Al _2 a2 0l N_

T whs_ima_lnstance

[pedals [

sh

-

Sl -

%5* [e

| -
pedalvalue o :dalvalue
-

Consistency of abstract specification compositional
specification and implementation fault models

Navale

it i g

¢

[1 ormore(FG1.Failed or AP1.Failed) and
1 ormore(FG2.Failed or AP2.Failed) or AC.Failed]->Failed

Abstraction across one or more architecture layers/tiers

I
green_pump ”

. Reduce state-space through layered abstraction

%_% Software Engineering Institute ‘ Carnegie Mellon University

Improvements in Safety Analysis for Safety-critical
Software Systems

March 20-23, 2017

© 2017 Carnegie Mellon University

[Distribution statement A. Approved for Public Release;
Distribution is Unlimited

35

Software Solutions Symposium 2017

Understanding the Cause of Faults

Through model-based analysis identify architecture induced unhandled,
testable, and untestable faults and understand root causes, contributing

factors, impact, and potential mitigation options.

CAAS
Avionics System
et =i .
Root Cause of Data LossIs Non- [g
deterministic Temporal Buffer &
Read/Write Ordering

Configl Config2
& Processor — - g-
Simulation
T e X < TrRus_
NS = = =

Step3 [Steps

Read/write Timeline Analysis
Under Cyclic Executive & _
Preemptive Scheduler —

Step?.

Demonstrated in COMPASS project
Use of text templates as formalism frontend

From PSSA to SSA

[Distribution statement A. Approved for Public Release;

Improvements in Safety Analysis for Safety-critical
Distribution is Unlimited

Software Systems

== Software Engineering Institute | Carnegie Mellon University o e
© 2017 Carnegie Mellon University

36

Software Solutions Symposium 2017

Benefits of Safety Analysis Automation

Automation allows for
 Early identification of potential problems
- Single points of failure
- Unanticipated effects
 Larger set of failure modes and combinations
* More levels of effects
« Safety analysis of system and software architecture
* More frequent re-analysis
 Architecture trade studies
« Consistency across analysis results

Improvements in Safety Analysis for Safety-critical [Distribution statement A. Approved for Public Release;
== . . o . n " . Software Systems Distribution is Unlimited
= Software Engineering Institute | Carnegie Mellon University March 20-23, 2017

© 2017 Carnegie Mellon University

37

Software Solutions Symposium 2017

Benefits of Virtual System Integration &
Incremental Lifecycle Assurance

Requirements ' Architecture . Acceptance
Engineering | * |Validation Modeling Test
Analysis &
Generation
System arge " Isystem
Design ——— e ITest

Software — -
Architectural ntegration
D:;ignc " Test 80% Post
Unit Test
Component .
Software Validation DISCOVEI’Y
Design
Assure the

" [Test System

Build the [oore
SYStem |De\relopment

Increased Confidence Through Verification And Testing

Improvements in Safety Analysis for Safety-critical [Distribution statement A. Approved for Public Release;
Software Systems Distribution is Unlimited

———:‘_; Software Engineering Institute | Carnegie Mellon University March 2023, 2017

© 2017 Carnegie Mellon University

38

Software Solutions Symposium 2017

References

Website www.aadl.info
Public Wiki https://wiki.sei.cmu.edu/aadl
Error Model V2 Annex Standard, SAE AS-5506/1A, Sept 2015.

AADL Fault Modeling and Analysis Within an ARP4761 Safety
Assessment, SEI Technical Report, CMU/SEI-2014-TR-020, 2014.

Architecture Fault Modeling and Analysis with the Error Model Annex V2,
SEI Technical Report, CMU/SEI-2016-TR-009, 2016.

Improving Quality Using Architecture Fault Analysis with Confidence
Arguments, SEI Technical Report, CMU/SEI-2015-TR-006, 2015.

Automated Fault-Tree Analysis from AADL Models, Feiler & Delange,
ACM High Integrity Language Technology International Workshop (HILT)
2016.

Julien Delange, Peter Feiler, Neil Ernst, Incremental Life Cycle
Assurance of Safety-Critical Systems, 8" European Congress on
Embedded Real Time Software and Systems (ERTS 2016), Jan 2016.

— - - - . _ . . Soft S Distribution is Unlimited
== Software Engineering Institute | Carnegie Mellon University v T 39
" o

http://www.aadl.info/
https://wiki.sei.cmu.edu/aadl

Software Solutions Symposium 2017

Contact Information

Peter Feller

SEI Fellow

Telephone: +1 412.268.7790
Email: phf@sei.cmu.edu

U.S. Mail:

Software Engineering Institute
Carnegie Mellon University
4500 Fifth Avenue

Pittsburgh, PA 15213-3890

World Wide Web:
http://www.sei.cmu.edu/architecture/research/model-based-engineering/
www.aadl.info

www.aadl.info/wiki

osate.org

www.github.org/osate

Improvements in Safety Analysis for Safety-critical [Distribution statement A. . Approved for Public Release;
= — . - - . 5 a Software Systems Distribution is Unlimited
=== Software Engineering Institute | Carnegie Mellon University March 20-23, 2017

© 2017 Carnegie Mellon University

http://www.sei.cmu.edu/architecture/research/model-based-engineering/
http://www.aadl.info/wiki
mailto:name@sei.cmu.edu

	Improvements in Safety Analysis for Safety-critical Software Systems
	Slide Number 2
	Slide Number 3
	Current Reliance on Engineering Process
	Safety Practice in Development Process Context
	We Rely on Software for Safe Aircraft Operation
	Slide Number 7
	Mismatched Assumptions in Safety-Critical System Interactions
	Software Reliability
	Operator Error Statistics
	Challenges in Safety-Critical Digital Systems
	Slide Number 12
	Reliability & Qualification Improvement Strategy
	Software for Dependable Systems: Sufficient Evidence? (National Research Council Study)
	SAE Architecture Analysis & Design Language (AADL) Standard Suite�
	Analyzable Architecture Models Discover System Level Issues Early in Development
	Three Dimensions of Requirement Coverage
	Slide Number 18
	Why Safety & Reliability Analysis Automation
	AADL Error Model Scope and Purpose
	Automation of Safety Analysis Practice (SAVI)
	Error Propagation Paths
	Slide Number 23
	Functional and System Architecture
	Software Induced Flight Safety Issue
	Unhandled Hazard Discovery through Virtual Integration
	Slide Number 27
	Automated Fault Tree Analysis from AADL Models
	Propagation and Recovery Dependency Graph
	Example System: GPS
	Error Propagation Specification
	Component Error Behavior Specification
	Handling Common Cause Failure Source
	Fault Tree for Degraded Mode
	Scalability and Incremental Safety Analysis
	Understanding the Cause of Faults
	Benefits of Safety Analysis Automation
	Benefits of Virtual System Integration & Incremental Lifecycle Assurance
	References
	Contact Information

