
1
Improvements in Safety Analysis for Safety-critical
Software Systems
March 20–23, 2017
© 2017 Carnegie Mellon University

[Distribution statement A. Approved for Public Release;
Distribution is Unlimited 1

Software Solutions Symposium 2017

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

Improvements in Safety Analysis for Safety-
critical Software Systems
© 2017 Carnegie Mellon University

Distribution statement A. Approved for Public Release;
Distribution is Unlimited

Improvements in Safety
Analysis for Safety-
critical Software Systems
Peter Feiler

2
Improvements in Safety Analysis for Safety-critical
Software Systems
March 20–23, 2017
© 2017 Carnegie Mellon University

[Distribution statement A. Approved for Public Release;
Distribution is Unlimited 2

Software Solutions Symposium 2017

Copyright 2017 Carnegie Mellon University

This material is based upon work funded and supported by the Department of Defense under Contract
No. FA8721-05-C-0003 with Carnegie Mellon University for the operation of the Software Engineering
Institute, a federally funded research and development center.

Any opinions, findings and conclusions or recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the United States Department of Defense.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING
INSTITUTE MATERIAL IS FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY
MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER
INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR
MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL.
CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH
RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

[Distribution Statement A] This material has been approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government use and distribution.

This material may be reproduced in its entirety, without modification, and freely distributed in written or
electronic form without requesting formal permission. Permission is required for any other use. Requests
for permission should be directed to the Software Engineering Institute at permission@sei.cmu.edu.

Carnegie Mellon® is registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.

DM-0004559

3
Improvements in Safety Analysis for Safety-critical
Software Systems
March 20–23, 2017
© 2017 Carnegie Mellon University

[Distribution statement A. Approved for Public Release;
Distribution is Unlimited 3

Software Solutions Symposium 2017

Improvements in Safety Analysis for Safety-
critical Software Systems
© 2017 Carnegie Mellon University

[Distribution statement A. Approved for Public Release;
Distribution is Unlimited

Challenges in Existing System
Safety Practices

4
Improvements in Safety Analysis for Safety-critical
Software Systems
March 20–23, 2017
© 2017 Carnegie Mellon University

[Distribution statement A. Approved for Public Release;
Distribution is Unlimited 4

Software Solutions Symposium 2017

Current Reliance on Engineering Process
Guidelines for Robust & Reliable Aircraft
DO-178B-Software Considerations in Airborne Systems and Equipment Certification

DO-248B-Final Report for the Clarification of DO-178B

DO-278-Guidelines for Communications, Navigation, Surveillance, and Air Traffic Management (CNS/ATM) Systems Software Integrity Assurance

DO-254-Design Assurance Guidance for Airborne Electronic Hardware

DO-297-Integrated Modular Avionics (IMA) Development Guidance and Certification Considerations

SAE-ARP4754-Certification Consideration for Highly Integrated or Complex Aircraft Systems

SAE-ARP4671- Guidelines and Methods for Conducting the Safety Assessment Process on Airborne Systems and Equipment

FAA Advisory Circular AC27-1B-Certification of Normal Category Rotorcraft

FAA Advisory Circular AC29-2C-Certification of Transport Category Rotorcraft

ISO/IEC 12207-Software Life-cycle Processes

ARINC 653-Specification Standard for Time and System Partition

MIL-STD-882D-DoD System Safety

ADS-51-HDBK-Rotorcraft and Aircraft Qualification Handbook

AR-70-62-Airworthiness Release Standard

ADS-75-SS-Army Aviation System Safety Assessments and Analyses

ADS-48-PRF-Performance Specification for Airworthiness Qualification Requirements for Operation of Aircraft in Instrument Meteorological Conditions and Civil
Instrument Flight Rules

ADS-64-SP-Airworthiness Requirements for Military Rotorcraft

SED-SES-PMHFSA001-Software Engineering Directorate (SED) Software Engineering Evaluation System (SEES) Program Manager Handbook for Flight Software
Airworthiness

SED-SES-PMHSS001 SED SEES Program Manager Handbook for Software Safety

Current methods explicitly depend on
• standards and regulations
• rigorous examination of whole finished system
and implicitly depend on
• conservative practices and safety culture (Rushby)

5
Improvements in Safety Analysis for Safety-critical
Software Systems
March 20–23, 2017
© 2017 Carnegie Mellon University

[Distribution statement A. Approved for Public Release;
Distribution is Unlimited 5

Software Solutions Symposium 2017

Safety Practice in Development Process Context

Labor-intensive
Early in system engineering
Largely Ignores Software as Hazard Source
Rarely repeated due to cost

Leveson (MIT) Socio-technical Control
Framework based on Rasmussen (NASA)
model of risk management
Multiple hazard contributors in development
and operational context

6
Improvements in Safety Analysis for Safety-critical
Software Systems
March 20–23, 2017
© 2017 Carnegie Mellon University

[Distribution statement A. Approved for Public Release;
Distribution is Unlimited 6

Software Solutions Symposium 2017

We Rely on Software for Safe Aircraft Operation

Embedded software systems introduce a new
class of problems not addressed by traditional

system safety analysis

7
Improvements in Safety Analysis for Safety-critical
Software Systems
March 20–23, 2017
© 2017 Carnegie Mellon University

[Distribution statement A. Approved for Public Release;
Distribution is Unlimited 7

Software Solutions Symposium 2017

Requirements
Architecture Design

Acceptance TestUnit
Test

Code Integration Test Operation

Where Faults are Found

Where Faults are Introduced

Nominal Cost Per Fault for
Fault Removal

Safety Critical Software System Challenges

80% of faults discovered post unit test

Post-unit test software rework cost 50% of
total system development cost & growing

Recertification cost is not
proportional to system changes

8
Improvements in Safety Analysis for Safety-critical
Software Systems
March 20–23, 2017
© 2017 Carnegie Mellon University

[Distribution statement A. Approved for Public Release;
Distribution is Unlimited 8

Software Solutions Symposium 2017

Mismatched Assumptions in Safety-Critical
System Interactions

System Engineer Control Engineer

System
Under
Control

Control
System

Physical Plant
Characteristics

Operator Error

Sy
st

em
 U

se
r/

En
vi

ro
nm

en
t

System Hazards

Application DeveloperCompute
Platform

Runtime
Architecture

Application
Software

Embedded SW System Engineer

Time-sensitive
Processing

Measurement units, value
range, Boolean flags vs data
abstraction

Concurrency &
Communication

Virtualization &
Redundancy

Hardware
Engineer

Embedded software system
as major source of hazards

Why do system level failures still occur despite fault
tolerance techniques being deployed in systems?

9
Improvements in Safety Analysis for Safety-critical
Software Systems
March 20–23, 2017
© 2017 Carnegie Mellon University

[Distribution statement A. Approved for Public Release;
Distribution is Unlimited 9

Software Solutions Symposium 2017

Software Reliability
Observations

• Software reliability does not adhere to the bathtub failure rate curve for hardware

• Software errors are design errors
• Software is not perfectable (unreasonable Zero defect assumption)
• Software is sensitive to operational context; testing has limited effectiveness

Multi-release error rate of operating systemsLifespan of single design and physical product

Improve Quality
Analytical verification

Coverage of exceptional conditions
Resilience to software defects

In a given use scenario the software
defect is triggered every time

10
Improvements in Safety Analysis for Safety-critical
Software Systems
March 20–23, 2017
© 2017 Carnegie Mellon University

[Distribution statement A. Approved for Public Release;
Distribution is Unlimited 10

Software Solutions Symposium 2017

Operator Error Statistics

80% of accidents identified as due to pilot/operator errors
• References: http://www.vtol.org/safety.html (AF, Army), Leveson & other studies

• Result of single root cause event chain & focus on blame
• Operational procedures are not always in line with actual system

operation
• Up to 75% of time dealing with operational work-around procedures

instead of correcting the problem in software

Need for re-certification cost reduction

http://www.vtol.org/safety.html

11
Improvements in Safety Analysis for Safety-critical
Software Systems
March 20–23, 2017
© 2017 Carnegie Mellon University

[Distribution statement A. Approved for Public Release;
Distribution is Unlimited 11

Software Solutions Symposium 2017

Challenges in Safety-Critical Digital Systems

Embedded software system as major hazard source
• High interaction complexity, mismatched assumptions, mode confusion
• Accidents due to combinations of major and minor hazard contributors

System safety analysis
• Safety engineering largely viewed as a system engineering practice
• Safety analysis processes are labor-intensive
• Consistency between evolving architecture design and safety analysis

models

12
Improvements in Safety Analysis for Safety-critical
Software Systems
March 20–23, 2017
© 2017 Carnegie Mellon University

[Distribution statement A. Approved for Public Release;
Distribution is Unlimited 12

Software Solutions Symposium 2017

Improvements in Safety Analysis for Safety-
critical Software Systems
© 2017 Carnegie Mellon University

[Distribution statement A. Approved for Public Release;
Distribution is Unlimited

Virtual System Integration
and Verification

13
Improvements in Safety Analysis for Safety-critical
Software Systems
March 20–23, 2017
© 2017 Carnegie Mellon University

[Distribution statement A. Approved for Public Release;
Distribution is Unlimited 13

Software Solutions Symposium 2017

Reliability & Qualification Improvement Strategy

Model
RepositoryMission

Requirements
Function
Behavior

Performance

Survivability
Requirements
Reliability
Safety
Security

Architecture-led
Requirement Specification

Architecture
Model

Component
Models

System
Implementation

2010 SEI Study for AMRDEC
Aviation Engineering Directorate

Four pillars for Improving Quality of Critical Software-reliant Systems

Architecture-centric Virtual
System Integration

Resource,
Timing &
Performance
Analysis

Reliability,
Safety,
Security
Analysis

Operational &
failure modes

Static Analysis &
Compositional Verification

Incremental Assurance Plans
& Cases throughout Life

Cycle

System
configuration

14
Improvements in Safety Analysis for Safety-critical
Software Systems
March 20–23, 2017
© 2017 Carnegie Mellon University

[Distribution statement A. Approved for Public Release;
Distribution is Unlimited 14

Software Solutions Symposium 2017

Software for Dependable Systems:
Sufficient Evidence? (National Research
Council Study)
Testing is indispensable BUT

• “A rigorous development process in which testing and code
review are the only verification techniques cannot justify
claims of extraordinarily high levels of dependability”

• “Execution of even a large set of end-to-end tests, even with
high levels of code coverage, in itself says little about the
dependability of the system as a whole.”

• “For testing to be a credible component of a [case for
dependability], the relation between testing and properties
claimed will need to be explicitly justified”

• “Credible claims of dependability are usually impossible or
impractically expensive to demonstrate after design and
development are complete”

Assurance that a system is dependable requires the construction and
evaluation of a “dependability case”

• Claims, arguments, evidence, expertise

15
Improvements in Safety Analysis for Safety-critical
Software Systems
March 20–23, 2017
© 2017 Carnegie Mellon University

[Distribution statement A. Approved for Public Release;
Distribution is Unlimited 15

Software Solutions Symposium 2017

SAE Architecture Analysis & Design Language (AADL)
Standard Suite

Analysis of AADL models results in early discovery of
mismatched interaction assumptions and system level problems

SAE AS5506
International

Standard Suite

Basis for Virtual
System Integration

and Analysis

16
Improvements in Safety Analysis for Safety-critical
Software Systems
March 20–23, 2017
© 2017 Carnegie Mellon University

[Distribution statement A. Approved for Public Release;
Distribution is Unlimited 16

Software Solutions Symposium 2017

Analyzable Architecture Models Discover System
Level Issues Early in Development

SAE AS5506 AADL

Generation of analysis models
propagates architecture changes

SAFETY &
RELIABILITY

17
Improvements in Safety Analysis for Safety-critical
Software Systems
March 20–23, 2017
© 2017 Carnegie Mellon University

[Distribution statement A. Approved for Public Release;
Distribution is Unlimited 17

Software Solutions Symposium 2017

Three Dimensions of Requirement Coverage

Guarantees
Assumptions

Implementation
constraints

Invariants

Exceptionalco
nditions

System interactions, state, behavior Design & operational quality attributes

System Under Control

Behavior

Actuator Sensor

State

Control System

Behavior

Output Input
StateValue errors

Timing errors

Rate errors Concurrency
errors

Replication
errors

Sequence errors

Omission errors Commission
errors

Authentication
errors

Authorization
errors

Fault Propagation Ontology

Fault impact & contributors

18
Improvements in Safety Analysis for Safety-critical
Software Systems
March 20–23, 2017
© 2017 Carnegie Mellon University

[Distribution statement A. Approved for Public Release;
Distribution is Unlimited 18

Software Solutions Symposium 2017

Improvements in Safety Analysis for Safety-
critical Software Systems
© 2017 Carnegie Mellon University

[Distribution statement A. Approved for Public Release;
Distribution is Unlimited

Automation of Safety Analysis

19
Improvements in Safety Analysis for Safety-critical
Software Systems
March 20–23, 2017
© 2017 Carnegie Mellon University

[Distribution statement A. Approved for Public Release;
Distribution is Unlimited 19

Software Solutions Symposium 2017

Why Safety & Reliability Analysis Automation
Current process is

• Labor-intensive, years between repetition
• Prone to inconsistencies with evolving architecture and other

analyses
• Requires knowledge of Markov, Petri net, and other notations

Early automation experiments with AADL
Steven Vestal, Honeywell, MetaH, Error Model, AADL committee, Avionics system trade
studies during bidding (1999-)

Myron Hecht, Aerospace Corp., member of AADL & DO-178C committee, Automated
safety analysis of several satellite systems for JPL (2009-)
FMEA with 26,000 failure modes and 25 levels of effects

Thomas Noll, University of Aachen, COMPASS project, Automated safety analysis and
verification of satellite systems for ESA (2008-)

20
Improvements in Safety Analysis for Safety-critical
Software Systems
March 20–23, 2017
© 2017 Carnegie Mellon University

[Distribution statement A. Approved for Public Release;
Distribution is Unlimited 20

Software Solutions Symposium 2017

AADL Error Model Scope and Purpose
System safety process uses many individual methods and analyses, e.g.

• hazard analysis
• failure modes and effects analysis
• fault trees
• Markov processes

Goal: a general facility for modeling fault/error/failure behaviors that can be
used for several modeling and analysis activities.

Related analyses are also useful for other purposes, e.g.
• maintainability
• availability
• Integrity
• Security

SAE ARP 4761 Guidelines and Methods for Conducting the Safety Assessment
Process on Civil Airborne Systems and Equipment
Demonstrated in SAVI Wheel Braking System Example

Annotated architecture model permits checking for consistency and
completeness between these various declarations.

System

Component

Subsystem

Capture FMEA model

Capture hazards

Capture risk mitigation architecture

Error Model Annex can be adapted to other ADLs

21
Improvements in Safety Analysis for Safety-critical
Software Systems
March 20–23, 2017
© 2017 Carnegie Mellon University

[Distribution statement A. Approved for Public Release;
Distribution is Unlimited 21

Software Solutions Symposium 2017

Automation of Safety Analysis Practice (SAVI)
A public Aircraft Wheel Brake System model

https://wiki.sei.cmu.edu/aadl/index.php/ARP4761_-_Wheel_Brake_System_%28WBS%29_Example

Use of Error-Model and ARINC653 annexes
Relevance for the avionics community

Comparative study
Federated vs. Integrated Modular Avionics (IMA) architecture

Support of SAE ARP 4761 System Safety Assessment Practice
Hazards (FHA), Fault Trees (FTA), Fault Impact (FMEA)
Reliability/Availability (Markov Chain/Dependence Diagram)

https://wiki.sei.cmu.edu/aadl/index.php/ARP4761_-_Wheel_Brake_System_(WBS)_Example

22
Improvements in Safety Analysis for Safety-critical
Software Systems
March 20–23, 2017
© 2017 Carnegie Mellon University

[Distribution statement A. Approved for Public Release;
Distribution is Unlimited 22

Software Solutions Symposium 2017Error Propagation Paths
Error Model V2 Annotations of AADL Model
Three levels of abstraction expressed by EMV2

• Focus on fault propagation across components
- Probabilistic error sources, sinks, paths and transformations
- Fault propagation and Transformation Calculus (FPTC) from York U.

• Focus on fault behavior of components
- Probabilistic typed error events, error states, propagations
- Voting logic, error detection, recovery, repair

• Focus on fault behavior in terms of subcomponent fault behaviors
- Composite error behavior state logic maps states of parts into (abstracted)

states of composite

Fault tree generated from
EMV2 annotations and
propagation paths inferred
from AADL model

23
Improvements in Safety Analysis for Safety-critical
Software Systems
March 20–23, 2017
© 2017 Carnegie Mellon University

[Distribution statement A. Approved for Public Release;
Distribution is Unlimited 23

Software Solutions Symposium 2017

Fault Propagation Taxonomy

System Under Control

Behavior

Actuator Sensor

State

Control System

Behavior

Output Input

State

Coverage of Fault Propagation Taxonomy

Cmd Input
Output

24
Improvements in Safety Analysis for Safety-critical
Software Systems
March 20–23, 2017
© 2017 Carnegie Mellon University

[Distribution statement A. Approved for Public Release;
Distribution is Unlimited 24

Software Solutions Symposium 2017

Functional and System Architecture

Refinement of Functional Architecture & Fault Model

Functional Architecture

System Architecture

Functional Architecture

Refinement of System Architecture

System Architecture

Consistency of Functional and System Fault Models
Function Mappings Imply System Components as Common Error Source

25
Improvements in Safety Analysis for Safety-critical
Software Systems
March 20–23, 2017
© 2017 Carnegie Mellon University

[Distribution statement A. Approved for Public Release;
Distribution is Unlimited 25

Software Solutions Symposium 2017

Software Induced Flight Safety Issue

Auto Pilot

FMS
Processor

Operational

Failed

Flight Mgnt System

Anticipated: No
Stall Propagation

FMS Power

Airspeed
Data

Failed

Actuator
Cmd

Stall
NoService

Anticipated:
NoService

Operational
NoData

EGI

Oper’l

Failed

Anticipated:
No EGI data

NoData

Original Preliminary System Safety Analysis (PSSA)
System engineering activity with focus on failing components.

26
Improvements in Safety Analysis for Safety-critical
Software Systems
March 20–23, 2017
© 2017 Carnegie Mellon University

[Distribution statement A. Approved for Public Release;
Distribution is Unlimited 26

Software Solutions Symposium 2017

Unhandled Hazard Discovery through Virtual Integration

Auto Pilot

FMS
Processor

Operational

Failed

Flight Mgnt System

Response to corrupted
airspeed causes stall

FMS Power

Airspeed
Data

Failed

Actuator
Cmd

Stall
NoService

CorruptedData

Corrupted data shows airspeed
of 2000 knots

Operational
NoData

EGI

EGI HW

EGI Logic

Oper’l
Failed

Oper’l

Failed

Corrupted

Virtual integration of architecture fault models recording SIL test
observations detects unhandled fault.

Vibration causes data
corruption through touching

boards

27
Improvements in Safety Analysis for Safety-critical
Software Systems
March 20–23, 2017
© 2017 Carnegie Mellon University

[Distribution statement A. Approved for Public Release;
Distribution is Unlimited 27

Software Solutions Symposium 2017

Improvements in Safety Analysis for Safety-
critical Software Systems
© 2017 Carnegie Mellon University

[Distribution statement A. Approved for Public Release;
Distribution is Unlimited

Automated Fault Tree and
Common Cause Analysis

28
Improvements in Safety Analysis for Safety-critical
Software Systems
March 20–23, 2017
© 2017 Carnegie Mellon University

[Distribution statement A. Approved for Public Release;
Distribution is Unlimited 28

Software Solutions Symposium 2017

Automated Fault Tree Analysis from AADL Models

Fault tree generation from annotated AADL model
• AADL focuses on embedded software systems
• Error Model V2 Annex specifies error behavior at three levels of

abstraction
• Architecture design changes are consistently reflected in fault tree

Use of fault propagation taxonomy
• Bounded set of failure effect types
• Taxonomy coverage
• Error propagation contracts and unhandled faults

Common cause failure contributors
• Identification of fan-out in propagation paths
• Transformation of generated fault graph to eliminate/reduce dependent

fault tree events

29
Improvements in Safety Analysis for Safety-critical
Software Systems
March 20–23, 2017
© 2017 Carnegie Mellon University

[Distribution statement A. Approved for Public Release;
Distribution is Unlimited 29

Software Solutions Symposium 2017

AADL core model provides propagation paths
• Port connections, access connections, remote service calls
• Deployment binding of SW to HW

Abstracted dependency
graph
Example: Petri net
OSATE2 uses compact
propagation graph
derived from instance
model

Resulting impact trace

Flow mappings and
component error
behavior specs

Propagation
Paths

Propagation
Paths

Propagation
Paths

Propagation and Recovery Dependency Graph

30
Improvements in Safety Analysis for Safety-critical
Software Systems
March 20–23, 2017
© 2017 Carnegie Mellon University

[Distribution statement A. Approved for Public Release;
Distribution is Unlimited 30

Software Solutions Symposium 2017

Example System: GPS
Dual redundant satellite signal receivers

• One is sufficient for less precise location output
Single power supply

• Common cause failure source

31
Improvements in Safety Analysis for Safety-critical
Software Systems
March 20–23, 2017
© 2017 Carnegie Mellon University

[Distribution statement A. Approved for Public Release;
Distribution is Unlimited 31

Software Solutions Symposium 2017

Error Propagation Specification

Error paths include propagation
from processor binding

Out propagation of
different error types

32
Improvements in Safety Analysis for Safety-critical
Software Systems
March 20–23, 2017
© 2017 Carnegie Mellon University

[Distribution statement A. Approved for Public Release;
Distribution is Unlimited 32

Software Solutions Symposium 2017

Component Error Behavior Specification

Failure modes and handling of
different error types

33
Improvements in Safety Analysis for Safety-critical
Software Systems
March 20–23, 2017
© 2017 Carnegie Mellon University

[Distribution statement A. Approved for Public Release;
Distribution is Unlimited 33

Software Solutions Symposium 2017

Handling Common Cause Failure Source

Transformations on common
cause elements
Move common event up
(SSR1 or PS) and (SSR2 or PS)

=> PS or (SSR1 and SSR2)

Absorb subgate with common event
(SSR1 or PS) and PS => PS

Eliminate replicate events
PS or PS => PS

Flatten nested gates
E1 or (E2 or E3) => or{E1, E2, E3}

Elimination of dependent events simplifies
occurrence probability calculation

Propagation path fan out identifies
common cause source

34
Improvements in Safety Analysis for Safety-critical
Software Systems
March 20–23, 2017
© 2017 Carnegie Mellon University

[Distribution statement A. Approved for Public Release;
Distribution is Unlimited 34

Software Solutions Symposium 2017

Fault Tree for Degraded Mode

Condition: only one receiver fails
• Cannot include common cause

contributors

35
Improvements in Safety Analysis for Safety-critical
Software Systems
March 20–23, 2017
© 2017 Carnegie Mellon University

[Distribution statement A. Approved for Public Release;
Distribution is Unlimited 35

Software Solutions Symposium 2017

Scalability and Incremental Safety Analysis

Abstraction across one or more architecture layers/tiers

Abstract and Composite Error Model
Specification at each architecture layer

[1 ormore(FG1.Failed or AP1.Failed) and
1 ormore(FG2.Failed or AP2.Failed) or AC.Failed]->Failed

Abstracted Parent Error Behavior
Model

Abstraction from parts error models
Composite error behavior states

Fault Propagation & Transformation
Probabilistic error flows
Probabilistic error events & states

Reduce state-space through layered abstraction

Consistency of abstract specification compositional
specification and implementation fault models

[1 ormore(FG1.Failed or AP1.Failed) and
1 ormore(FG2.Failed or AP2.Failed) or AC.Failed]->Failed

36
Improvements in Safety Analysis for Safety-critical
Software Systems
March 20–23, 2017
© 2017 Carnegie Mellon University

[Distribution statement A. Approved for Public Release;
Distribution is Unlimited 36

Software Solutions Symposium 2017

Understanding the Cause of Faults
Through model-based analysis identify architecture induced unhandled,
testable, and untestable faults and understand root causes, contributing
factors, impact, and potential mitigation options.

Fault Impact & FDIR
Analysis

Architecture Fault Model
Analysis

Discover testable and
untestable faults

Discover unhandled
faults & safety
violations

FADEC Operational Mode &
Fault Mgnt Behavior
Analysis

Model validation
Requirements

Faults that
can be tested

Decision coverage

Faults that
cannot be tested

Race conditions

Improved
documentation &
design

Faults that
are unhandled

Transient data loss
in protocol

C

Fault Impact Analysis

Omission

Detection of Unhandled
Data Loss Fault

Sequence

Fault propagation Effects Engine Control Mode to
Issue Shut Down Engine Sequence

Reachability Analysis
Of Unsafe States

Root Cause of Data Loss Is Non-
deterministic Temporal Buffer
Read/Write Ordering

Processor
Cyclic Executive RMS

Config1 Config2

Read/write Timeline Analysis
Under Cyclic Executive &
Preemptive Scheduler

Demonstrated in COMPASS project
Use of text templates as formalism frontend

From PSSA to SSA

37
Improvements in Safety Analysis for Safety-critical
Software Systems
March 20–23, 2017
© 2017 Carnegie Mellon University

[Distribution statement A. Approved for Public Release;
Distribution is Unlimited 37

Software Solutions Symposium 2017

Benefits of Safety Analysis Automation

Automation allows for
• Early identification of potential problems

- Single points of failure
- Unanticipated effects

• Larger set of failure modes and combinations
• More levels of effects
• Safety analysis of system and software architecture
• More frequent re-analysis
• Architecture trade studies
• Consistency across analysis results

38
Improvements in Safety Analysis for Safety-critical
Software Systems
March 20–23, 2017
© 2017 Carnegie Mellon University

[Distribution statement A. Approved for Public Release;
Distribution is Unlimited 38

Software Solutions Symposium 2017

Increased Confidence Through Verification And Testing

Benefits of Virtual System Integration &
Incremental Lifecycle Assurance

39
Improvements in Safety Analysis for Safety-critical
Software Systems
March 20–23, 2017
© 2017 Carnegie Mellon University

[Distribution statement A. Approved for Public Release;
Distribution is Unlimited 39

Software Solutions Symposium 2017

References

Website www.aadl.info
Public Wiki https://wiki.sei.cmu.edu/aadl
Error Model V2 Annex Standard, SAE AS-5506/1A, Sept 2015.
AADL Fault Modeling and Analysis Within an ARP4761 Safety
Assessment, SEI Technical Report, CMU/SEI-2014-TR-020, 2014.
Architecture Fault Modeling and Analysis with the Error Model Annex V2,
SEI Technical Report, CMU/SEI-2016-TR-009, 2016.
Improving Quality Using Architecture Fault Analysis with Confidence
Arguments, SEI Technical Report, CMU/SEI-2015-TR-006, 2015.
Automated Fault-Tree Analysis from AADL Models, Feiler & Delange,
ACM High Integrity Language Technology International Workshop (HILT)
2016.
Julien Delange, Peter Feiler, Neil Ernst, Incremental Life Cycle
Assurance of Safety-Critical Systems, 8th European Congress on
Embedded Real Time Software and Systems (ERTS 2016), Jan 2016.

http://www.aadl.info/
https://wiki.sei.cmu.edu/aadl

40
Improvements in Safety Analysis for Safety-critical
Software Systems
March 20–23, 2017
© 2017 Carnegie Mellon University

[Distribution statement A. Approved for Public Release;
Distribution is Unlimited 40

Software Solutions Symposium 2017

Contact Information

U.S. Mail:
Software Engineering Institute
Carnegie Mellon University
4500 Fifth Avenue
Pittsburgh, PA 15213-3890

World Wide Web:
http://www.sei.cmu.edu/architecture/research/model-based-engineering/
www.aadl.info
www.aadl.info/wiki
osate.org
www.github.org/osate

Peter Feiler
SEI Fellow
Telephone: +1 412.268.7790
Email: phf@sei.cmu.edu

http://www.sei.cmu.edu/architecture/research/model-based-engineering/
http://www.aadl.info/wiki
mailto:name@sei.cmu.edu

	Improvements in Safety Analysis for Safety-critical Software Systems
	Slide Number 2
	Slide Number 3
	Current Reliance on Engineering Process
	Safety Practice in Development Process Context
	We Rely on Software for Safe Aircraft Operation
	Slide Number 7
	Mismatched Assumptions in Safety-Critical System Interactions
	Software Reliability
	Operator Error Statistics
	Challenges in Safety-Critical Digital Systems
	Slide Number 12
	Reliability & Qualification Improvement Strategy
	Software for Dependable Systems: Sufficient Evidence? (National Research Council Study)
	SAE Architecture Analysis & Design Language (AADL) Standard Suite�
	Analyzable Architecture Models Discover System Level Issues Early in Development
	Three Dimensions of Requirement Coverage
	Slide Number 18
	Why Safety & Reliability Analysis Automation
	AADL Error Model Scope and Purpose
	Automation of Safety Analysis Practice (SAVI)
	Error Propagation Paths
	Slide Number 23
	Functional and System Architecture
	Software Induced Flight Safety Issue
	Unhandled Hazard Discovery through Virtual Integration
	Slide Number 27
	Automated Fault Tree Analysis from AADL Models
	Propagation and Recovery Dependency Graph
	Example System: GPS
	Error Propagation Specification
	Component Error Behavior Specification
	Handling Common Cause Failure Source
	Fault Tree for Degraded Mode
	Scalability and Incremental Safety Analysis
	Understanding the Cause of Faults
	Benefits of Safety Analysis Automation
	Benefits of Virtual System Integration & Incremental Lifecycle Assurance
	References
	Contact Information

