
1
The Relationship Between Design Flaws and
Software Vulnerabilities: A Technical Debt Perspective
March 20–23, 2017
© 2017 Carnegie Mellon University

1

Software Solutions Symposium 2017

[[DISTRIBUTION STATEMENT A]
This material has been approved for public release and
unlimited distribution.

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

The Relationship Between Design Flaws and
Software Vulnerabilities: A Technical Debt Perspective
© 2017 Carnegie Mellon University

[[DISTRIBUTION STATEMENT A]
This material has been approved for public release and unlimited distribution.

The Relationship Between
Design Flaws and
Software Vulnerabilities:
A Technical Debt Perspective
Robert Nord and Ipek Ozkaya

2
The Relationship Between Design Flaws and
Software Vulnerabilities: A Technical Debt Perspective
March 20–23, 2017
© 2017 Carnegie Mellon University

2

Software Solutions Symposium 2017

[[DISTRIBUTION STATEMENT A]
This material has been approved for public release and
unlimited distribution.

Copyright 2017 Carnegie Mellon University. All Rights Reserved.
This material is based upon work funded and supported by the Department of Defense under
Contract No. FA8702-15-D-0002 with Carnegie Mellon University for the operation of the Software
Engineering Institute, a federally funded research and development center.
The view, opinions, and/or findings contained in this material are those of the author(s) and should
not be construed as an official Government position, policy, or decision, unless designated by
other documentation.
NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING
INSTITUTE MATERIAL IS FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON
UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS
TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR
PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF
THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF
ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT
INFRINGEMENT.
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited
distribution. Please see Copyright notice for non-US Government use and distribution.
This material may be reproduced in its entirety, without modification, and freely distributed in
written or electronic form without requesting formal permission. Permission is required for any
other use. Requests for permission should be directed to the Software Engineering Institute at
permission@sei.cmu.edu.
DM17-0039

3
The Relationship Between Design Flaws and
Software Vulnerabilities: A Technical Debt Perspective
March 20–23, 2017
© 2017 Carnegie Mellon University

3

Software Solutions Symposium 2017

[[DISTRIBUTION STATEMENT A]
This material has been approved for public release and
unlimited distribution.

Is technical debt real?

Popular media is recognizing major software failures as technical
debt.

• United Airlines failure (July 8, 2015, “network connectivity”)

• New York Stock Exchange glitch (July 8, 2015, “configuration issue”)

• Healthcare.gov (February 2015, “users cannot access functionality”)

Researchers conservatively estimate $361,000 of technical debt /
100 KLOC as the cost to eliminate structural-quality problems that
seriously threaten an application’s business viability.
Are we being fooled by scare tactics?
How do we understand the real problem, and why should we care?

4
The Relationship Between Design Flaws and
Software Vulnerabilities: A Technical Debt Perspective
March 20–23, 2017
© 2017 Carnegie Mellon University

4

Software Solutions Symposium 2017

[[DISTRIBUTION STATEMENT A]
This material has been approved for public release and
unlimited distribution.

Technical Debt Defined

Our legacy software has code without exception handling, which made sense for
lower capacity processors, today we can’t find and track these issues. These
areas in the code have become nightmares.

Technical debt is a software design issue that:
Exists in an executable system artifact, such as code, build

scripts, data model, automated test suites;
Is traced to several locations in the system, implying issues

are not isolated but propagate throughout the system
artifacts.

Has a quantifiable effect on system attributes of interest to
developers (e.g., increasing defects, negative change in
maintainability and code quality indicators).

5
The Relationship Between Design Flaws and
Software Vulnerabilities: A Technical Debt Perspective
March 20–23, 2017
© 2017 Carnegie Mellon University

5

Software Solutions Symposium 2017

[[DISTRIBUTION STATEMENT A]
This material has been approved for public release and
unlimited distribution.

Technical Debt in Security Issues

10977: Crash due to large negative number

"We could just fend off negative numbers near the crash site or
we can dig deeper and find out how this -10000 is happening."

"Time permitting, I'm inclined to want to know the root cause.
My sense is that if we patch it here, it will pop up somewhere
else later."

“There have been 28 reports from 7 clients… 18 reports from 6
clients.”

“Hmm ... reopening. The test case crashes a debug build, but
not the production build. I have confirmed that the original
source code does crash the production build, so there must be
multiple things going on here.”

6
The Relationship Between Design Flaws and
Software Vulnerabilities: A Technical Debt Perspective
March 20–23, 2017
© 2017 Carnegie Mellon University

6

Software Solutions Symposium 2017

[[DISTRIBUTION STATEMENT A]
This material has been approved for public release and
unlimited distribution.

Misconception: Eliminating defects eliminates
technical debt

This view suffers from the
following shortcomings:
• Focuses only on customer-visible,

functional aspects of system problems
• Results in overlooking underlying

contributors to defects as design
issues

• Fails to recognize accumulating
interest of technical debt that defects
might be signaling

7
The Relationship Between Design Flaws and
Software Vulnerabilities: A Technical Debt Perspective
March 20–23, 2017
© 2017 Carnegie Mellon University

7

Software Solutions Symposium 2017

[[DISTRIBUTION STATEMENT A]
This material has been approved for public release and
unlimited distribution.

Correction: Defects are key symptoms of technical
debt

Defects, especially recurring
defects that have been open for a
long time and that accumulate
around particular aspects of the
system, are symptoms of technical
debt to address.

The quantity of resources and
processes that go into defect
management indicates the
accumulating side effects of
technical debt.

8
The Relationship Between Design Flaws and
Software Vulnerabilities: A Technical Debt Perspective
March 20–23, 2017
© 2017 Carnegie Mellon University

8

Software Solutions Symposium 2017

[[DISTRIBUTION STATEMENT A]
This material has been approved for public release and
unlimited distribution.

Question

Are software components with accrued technical debt more likely to be
vulnerability prone?

Comp. 2

V3
V1

V2
Vn

Comp. 1 Comp. 2Comp. 1

Operation Time
(are there vulnerabilities?)

V3

V1

V2Vn

Comp. 2Comp. 1

Maintenance / Evolution
Time
(will fixing debt fix vulnerabilities?)

Design Time
(debt introduced)

$ $

9
The Relationship Between Design Flaws and
Software Vulnerabilities: A Technical Debt Perspective
March 20–23, 2017
© 2017 Carnegie Mellon University

9

Software Solutions Symposium 2017

[[DISTRIBUTION STATEMENT A]
This material has been approved for public release and
unlimited distribution.

Design Root Cause

A technical debt–aware, graph-based data structure
representing a view of the system enriched with information from
multiple software development artifacts

class file a

class file b

class file c

Current approach: Run static analysis to identify coding
violations.
Vision: Enrich with architectural information.
All these files have integer overflows that cause crashes.
One of the files participates in an architecture violation
(cross-module cycles, improper hierarchy).
Developers create a patch every place they see the similar
integer overflow issue.
The improper hierarchy also has a causal relationship with
bug churn; hence it represents technical debt.

Issue #x

Issue #y

Issue #z
Multiple issues identified as
technical debt by expert tagging all
related to crash based on integer
overflow, resulting in a patch.
Root cause of the integer overflow
is thought to be caused by an
external package.

16 files participate in the original problem.
Identifying the design cause brings in 8
more that provide a more accurate picture
of impact – total bug and change churn
impact increases by at least 30%.

Wrapper for
the external

package

10
The Relationship Between Design Flaws and
Software Vulnerabilities: A Technical Debt Perspective
March 20–23, 2017
© 2017 Carnegie Mellon University

10

Software Solutions Symposium 2017

[[DISTRIBUTION STATEMENT A]
This material has been approved for public release and
unlimited distribution.

Example Data Set

Chromium project
• Began in 2008
• Complex web-based application that operates on sensitive information and allows

untrusted input from both web clients and servers.

Chromium version: 17.0.963.46
Released: February 8, 2012

Files: 18,730;
11k files with bugs
289 files with

vulnerabilities

Issue range: Feb 1, 2010 – Feb 8, 2012

Issues: #bug: 14k;
#security: 79

11
The Relationship Between Design Flaws and
Software Vulnerabilities: A Technical Debt Perspective
March 20–23, 2017
© 2017 Carnegie Mellon University

11

Software Solutions Symposium 2017

[[DISTRIBUTION STATEMENT A]
This material has been approved for public release and
unlimited distribution.

Approach

Test for correlations between
technical debt prone files and files
with known vulnerabilities.

Identify technical debt
apply classification rules to issues
extract design problem and rework from issues
trace to file
indicator from file: bugs and churn
indicator from file: design flaws

Model relationships
design concepts
technical debt indicators

Identify software vulnerabilities
security label
identify indicator from issue: CWE
trace to file

Issue

Name

Status

Priority

Label: Security, Impact,
Severity

Type: Bug, Bug-Security

CVECommit History

Issue

Code

Version history

Code File

Name

LOC

Age

12
The Relationship Between Design Flaws and
Software Vulnerabilities: A Technical Debt Perspective
March 20–23, 2017
© 2017 Carnegie Mellon University

12

Software Solutions Symposium 2017

[[DISTRIBUTION STATEMENT A]
This material has been approved for public release and
unlimited distribution.

Indicator: Technical Debt Tag

Enough
Info? Y

N

Executable?
Y

N

Not
Technical

Debt

Not
Technical

Debt

Type?

Improvement
Type?

Defect
Type?

Accumulation?

Not
Technical

Debt

Technical
Debt

Not
Technical

Debt

Not
Technical

Debt

Crash due to large
negative number.

There have been 28 reports from 7
clients… 18 reports from 6 clients

My sense is that if we patch it here, it
will pop-up somewhere else later.

hmm ... reopening. the test case
crashes a debug build, but not the
production build.

We could just fend off negative numbers
near the crash site or we can dig deeper

Time permitting, I'm inclined to want to
know the root cause.

I have confirmed that the original source
code does crash the production build,
so there must be multiple things
going on here.

21 of 79 issues labeled security
are classified as technical debt.

Bellomo, S., Nord, R.L., Ozkaya, I., Popeck, M. Got technical debt? Surfacing
elusive technical debt in issue trackers. Proceedings of the 13th International
Conference on Mining Software Repositories, 327–338. ACM, 2016.

13
The Relationship Between Design Flaws and
Software Vulnerabilities: A Technical Debt Perspective
March 20–23, 2017
© 2017 Carnegie Mellon University

13

Software Solutions Symposium 2017

[[DISTRIBUTION STATEMENT A]
This material has been approved for public release and
unlimited distribution.

Technical Debt in Issue Trackers

Deployment & Build Out-of-sync build dependencies 3 CN
Version conflict 1 CN

Dead code in build scripts 1 CN

Code Structure Event handling 5 2CH, 3PB
API/Interfaces 5 2CH, 1CN, 2PB

Unreliable output or behavior 5 4CH, 1PA
Type conformance issue 3 CN

UI design 3 PB
Throttling 2 1CH, 1PB

Dead code 2 CN
Large file processing or rendering 2 CH

Memory limitation 2 CH
Poor error handling 1 PA

Performance appending nodes 1 CH
Encapsulation 1 PB

Caching issues 1 CN

Data Model Data integrity 6 PA
Data persistence 3 PB

Duplicate data 2 PA

Regression Tests Test execution 1 CH
Overly complex tests 1 CH

Bellomo, S., Nord, R.L., Ozkaya, I., Popeck, M. Got technical debt? Surfacing
elusive technical debt in issue trackers. Proceedings of the 13th International
Conference on Mining Software Repositories, 327–338. ACM, 2016.

Manual analysis on four data sets reveal some common issues

14
The Relationship Between Design Flaws and
Software Vulnerabilities: A Technical Debt Perspective
March 20–23, 2017
© 2017 Carnegie Mellon University

14

Software Solutions Symposium 2017

[[DISTRIBUTION STATEMENT A]
This material has been approved for public release and
unlimited distribution.

Technical Debt Indicators: Design flaws

Technical debt examples
“We have a model-view controller
framework. Over time we violated the
simple rules of this framework and had to
retrofit many functions later.”
Modularity violation, pattern conformance

“There were two highly coupled modules
that should have been designed
separately from the beginning”
Modularity violation, pattern conformance

“A simple API call turned into a nightmare
[due to not following guidelines]”

Framework, pattern conformance

Example design flaws:
Unstable Interface

Modularity Violation

Improper Inheritance

Cycle

Xiao, L., Cai, Y., Kazman, R. Design rule spaces: A new form of
architecture insight. Proceedings of the 36rd International
Conference on Software Engineering, 967–977. ACM, 2014.

15
The Relationship Between Design Flaws and
Software Vulnerabilities: A Technical Debt Perspective
March 20–23, 2017
© 2017 Carnegie Mellon University

15

Software Solutions Symposium 2017

[[DISTRIBUTION STATEMENT A]
This material has been approved for public release and
unlimited distribution.

Unstable Interface

1 2 3 4 5 6 7 8 9 10 11
1 ui.gfx.size.cc (1) Use,3 ,2 ,3 ,3 ,1 ,1 ,2
2 ui.gfx.size.h Call,3 (2) ,5 ,4 ,2 ,1 ,2 ,1 ,1
3 ui.gfx.point.h ,2 ,5 (3) ,5 ,3 ,1 ,1 ,2 ,1 ,1
4 ui.gfx.rect.h Call,3 Call,4 Call,5 (4) Call,6 ,2 ,2 ,2 ,5 ,2 ,2
5 ui.gfx.rect.cc Call,3 Call,2 Call,3 Call,6 (5) ,1 ,1 ,1 ,3 ,1 ,2

6
webkit.plugins.ppapi.ppapi_plugin_instance.
cc Call,1 Call, Call, Call,2 Call,1 (6) ,1 ,5 ,2 ,2 ,2

7 content.renderer.paint_aggregator.cc Call,1 Call,1 Call,2 Call,1 ,1 (7) ,2 ,2 ,2 ,1
8 content.renderer.render_widget.cc Call,1 Call,2 Call,1 Call,2 Call,1 Call,5 Call,2 (8) ,3 ,1 ,1
9 ui.gfx.rect_unittest.cc ,2 Call,1 ,2 Call,5 Call,3 ,2 ,2 ,3 (9) ,2 ,2

10 webkit.plugins.webview_plugin.cc ,1 ,1 Call,2 ,1 ,2 ,2 ,1 ,2 (10) ,1
11 ui.gfx.blit.cc Call, Call,1 Call,2 Call,2 ,2 ,1 ,1 ,2 ,1 (11)

Xiao, L., Cai, Y., Kazman, R. Design rule spaces: A new form of architecture insight.
Proceedings of the 36rd International Conference on Software Engineering, 967–977. ACM, 2014.

16
The Relationship Between Design Flaws and
Software Vulnerabilities: A Technical Debt Perspective
March 20–23, 2017
© 2017 Carnegie Mellon University

16

Software Solutions Symposium 2017

[[DISTRIBUTION STATEMENT A]
This material has been approved for public release and
unlimited distribution.

Modularity Violation

Shared secret between files

Should be extracted as design rules

1 2

1 ContextConfig.java (1) ,31

2 TldConfig.java ,31 (2)

17
The Relationship Between Design Flaws and
Software Vulnerabilities: A Technical Debt Perspective
March 20–23, 2017
© 2017 Carnegie Mellon University

17

Software Solutions Symposium 2017

[[DISTRIBUTION STATEMENT A]
This material has been approved for public release and
unlimited distribution.

Analysis: Design Flaws - 1

Increased rates of design flaws are strongly correlated with increased rates of
security bugs.

Design flaws extracted using dependency analysis at the class level within files:
unstable interface, modularity violation, improper inheritance, cycles.

Project
Bug/Design Flaw

Correlation
Change/Design Flaw

Correlation
Sec Bug/Design Flaw

Correlation
Chrome 0.987 0.988 0.979

Feng, Q., Kazman, R., Cai, Y., Mo, R., Xiao, L. Towards an architecture-centric approach to security analysis.
Proceedings of the 13th Working IEEE/IFIP Conference on Software Architecture. IEEE, 2016.

18
The Relationship Between Design Flaws and
Software Vulnerabilities: A Technical Debt Perspective
March 20–23, 2017
© 2017 Carnegie Mellon University

18

Software Solutions Symposium 2017

[[DISTRIBUTION STATEMENT A]
This material has been approved for public release and
unlimited distribution.

Analysis: Design Flaws - 2

Moreover, being involved in more types of design flaws correlates with the
presence of vulnerabilities.

Types of
Design Flaws Non-vuln files Vuln files % have vulns.

0 8544 47 0.5%
1 7357 141 2%
2 2345 91 4%
3 194 10 5%
4 1 0 0%

19
The Relationship Between Design Flaws and
Software Vulnerabilities: A Technical Debt Perspective
March 20–23, 2017
© 2017 Carnegie Mellon University

19

Software Solutions Symposium 2017

[[DISTRIBUTION STATEMENT A]
This material has been approved for public release and
unlimited distribution.

Qualitative and Quantitative Analysis

50 15

8 6

Not TD TD

Classifying TD from Issues labeled Security

No Design
Flaws

Design
Flaws

De
te

ct
in

g
De

sig
n

Fl
aw

s i
n

Co
de

79 issues are labeled
security

• 21 are classified as
technical debt

• 65 trace to files containing
design flaws

20
The Relationship Between Design Flaws and
Software Vulnerabilities: A Technical Debt Perspective
March 20–23, 2017
© 2017 Carnegie Mellon University

20

Software Solutions Symposium 2017

[[DISTRIBUTION STATEMENT A]
This material has been approved for public release and
unlimited distribution.

Design Flaws and Future Consequences

50 15

8 6

Not TD TD

Classifying TD from Issues labeled Security

No Design
Flaws

Design
Flaws

68766: I've got my bandaid
fix all reviewed and ready to
check in once the tree
reopens. But this problem
sounds nasty enough that
we definitely need a real fix.”
Flaws: modularity violation,
cycle, improper inheritance

66931: "Is it a workaround …
the root bug ...long term fix“
Flaw: modularity violation

De
te

ct
in

g
De

sig
n

Fl
aw

s i
n

Co
de

21
The Relationship Between Design Flaws and
Software Vulnerabilities: A Technical Debt Perspective
March 20–23, 2017
© 2017 Carnegie Mellon University

21

Software Solutions Symposium 2017

[[DISTRIBUTION STATEMENT A]
This material has been approved for public release and
unlimited distribution.

Partial Evidence

50
Defect: 26
Feature: 1

Design Problem: 23

15

8 6

Not TD TD

Classifying TD from Issues labeled Security

No Design
Flaws

Design
Flaws

67577: "This is a 2-liner.
I'll take it, if only to get
our rampant security bug
list down by one.”
Flaw: modularity violation

64108: “feature was never
fully implemented, we may
not have put in proper
checks to prevent this.”
Flaws: modularity violation,
cycleDe

te
ct

in
g

De
sig

n
Fl

aw
s i

n
Co

de

22
The Relationship Between Design Flaws and
Software Vulnerabilities: A Technical Debt Perspective
March 20–23, 2017
© 2017 Carnegie Mellon University

22

Software Solutions Symposium 2017

[[DISTRIBUTION STATEMENT A]
This material has been approved for public release and
unlimited distribution.

Supplement Static Analysis with Developer Knowledge

50 15

8 6

Not TD TD

Classifying TD from Issues labeled Security

No Design
Flaws

Design
Flaws

10977: “we could just fend
off … or we can dig deeper”
“if we patch it here, it will
pop-up somewhere else
later”

70589: “My plan is to back
out the brokenness, and fix
it properly later”De

te
ct

in
g

De
sig

n
Fl

aw
s i

n
Co

de

23
The Relationship Between Design Flaws and
Software Vulnerabilities: A Technical Debt Perspective
March 20–23, 2017
© 2017 Carnegie Mellon University

23

Software Solutions Symposium 2017

[[DISTRIBUTION STATEMENT A]
This material has been approved for public release and
unlimited distribution.

Take-aways

The more types of design flaws a file is involved in, the
higher the likelihood of it also having vulnerabilities; files
with vulnerabilities tend to have more code churn.

When they address security issues, software developers use
technical debt concepts to discuss design limitations and
their consequences on future work.

24
The Relationship Between Design Flaws and
Software Vulnerabilities: A Technical Debt Perspective
March 20–23, 2017
© 2017 Carnegie Mellon University

24

Software Solutions Symposium 2017

[[DISTRIBUTION STATEMENT A]
This material has been approved for public release and
unlimited distribution.

Take-aways

Technical debt can be made visible earlier when tracked similarly to
defects and vulnerabilities, consequently managed more effectively and
strategically. Organizations can start today.

Defects

Technical
Debt

Vulnerabilities

Not all defects are vulnerabilities, but
defect proneness does imply increased
vulnerability risks

Similarly, technical debt increases
vulnerability risks.

Defects are not technical debt, but
technical debt as it lingers in the system
increases defect proneness.

Some issues just overlap, making it hard
to tease apart!

25
The Relationship Between Design Flaws and
Software Vulnerabilities: A Technical Debt Perspective
March 20–23, 2017
© 2017 Carnegie Mellon University

25

Software Solutions Symposium 2017

[[DISTRIBUTION STATEMENT A]
This material has been approved for public release and
unlimited distribution.

Further Resources

N. Ernst, S. Bellomo, I. Ozkaya, R. L. Nord: What to Fix? Distinguishing between design and non-
design rules in automated tools, International Conference on Software Architecture, 2017.

R. L. Nord, I. Ozkaya, E. J. Schwartz, F. Shull, R. Kazman: Can Knowledge of Technical Debt Help
Identify Software Vulnerabilities? CSET @ USENIX Security Symposium 2016

S. Bellomo, R. L. Nord, I. Ozkaya, M. Popeck: Got Technical Debt? Surfacing Elusive Technical
Debt in Issue Trackers, to appear in proceedings of Mining Software Repositories 2016, collocated
@ICSE 2016.

R. L. Nord, R. Sangwan, J. Delange, P. Feiler, L, Thomas, I. Ozkaya: Missed Architectural
Dependencies: The Elephant in the Room, WICSA 2016.

P. Avgeriou, P. Kruchten, R. L. Nord, I. Ozkaya, C. B. Seaman: Reducing Friction in Software
Development. IEEE Software Future of Software Engineering Special Issue 33(1): 66-73 (2016)

L. Xiao, Y. Cai, R. Kazman, R. Mo, Q. Feng: Identifying and Quantifying Architectural Debts, ICSE
2016.

N. A. Ernst, S. Bellomo, I. Ozkaya, R. L. Nord, I. Gorton: Measure it? Manage it? Ignore it?
software practitioners and technical debt. ESEC/SIGSOFT FSE 2015: 50-60

Managing Technical Debt Research Workshop Series 2010-2016
https://www.sei.cmu.edu/community/td2017/series/

Technical Debt Publications and other resources available at
http://www.sei.cmu.edu/architecture/research/arch_tech_debt/arch_tech_debt_library.cfm

https://www.sei.cmu.edu/community/td2017/series/
http://www.sei.cmu.edu/architecture/research/arch_tech_debt/arch_tech_debt_library.cfm

26
The Relationship Between Design Flaws and
Software Vulnerabilities: A Technical Debt Perspective
March 20–23, 2017
© 2017 Carnegie Mellon University

26

Software Solutions Symposium 2017

[[DISTRIBUTION STATEMENT A]
This material has been approved for public release and
unlimited distribution.

The Relationship Between Design Flaws and
Software Vulnerabilities: A Technical Debt Perspective
© 2017 Carnegie Mellon University

[DISTRIBUTION STATEMENT Please copy and paste the
appropriate distribution statement into this space.]

Robert Nord rn@sei.cmu.edu

Ipek Ozkaya ozkaya@sei.cmu.edu

mailto:rn@sei.cmu.edu
mailto:ozkaya@sei.cmu.edu

	The Relationship Between Design Flaws and �Software Vulnerabilities: �A Technical Debt Perspective
	Slide Number 2
	Is technical debt real?
	Technical Debt Defined
	Technical Debt in Security Issues
	Misconception: Eliminating defects eliminates technical debt
	Correction: Defects are key symptoms of technical debt
	Question
	Design Root Cause
	Example Data Set
	Approach
	Indicator: Technical Debt Tag
	Technical Debt in Issue Trackers�
	Technical Debt Indicators: Design flaws
	Unstable Interface
	Modularity Violation
	Analysis: Design Flaws - 1
	Analysis: Design Flaws - 2
	Qualitative and Quantitative Analysis
	Design Flaws and Future Consequences
	Partial Evidence
	Supplement Static Analysis with Developer Knowledge
	Take-aways
	Take-aways
	Further Resources
	�����������������������������Robert Nord rn@sei.cmu.edu��Ipek Ozkaya ozkaya@sei.cmu.edu��

