
© 2015 Carnegie Mellon University

TSP Secure

Date: December 14, 2016
William Nichols

2© 2015 Carnegie Mellon University

President's Information Technology Advisory
Committee (PITAC), 2005
Commonly used software engineering practices permit
dangerous errors, such as improper handling of buffer
overflows, which enable hundreds of attack programs to
compromise millions of computers every year.”
This happens mainly because “commercial software
engineering today lacks the scientific underpinnings and
rigorous controls needed to produce high-quality, secure
products at acceptable cost.”

3© 2015 Carnegie Mellon University

U.S. Department of Homeland Security 2006

The most critical difference between secure software and
insecure software lies in the nature of the processes and
practices used to specify, design, and develop the software . . .
correcting potential vulnerabilities as early as possible in the
software development lifecycle, mainly through the adoption of
security-enhanced process and practices, is far more cost-
effective than the currently pervasive approach of developing
and releasing frequent patches to operational software.

4© 2015 Carnegie Mellon University

Heartbleed

Introduced January 2012 removed April 2014
OpenSSL Open Secure Socket Layer

Unchecked buffer exposed data including passwords

“Heartbleed created a significant challenge for current
software assurance tools, and we are not aware of any such
tools that were able to discover the Heartbleed vulnerability at
the time of announcement” [Kupsch 2014]

At the time, the error was not yet detectable by static
analysis tools.

5© 2015 Carnegie Mellon University

“goto fail” enabled “man in the middle”
attack

Another SSL defect, present from September 2012 to February 2014
A duplicated line of code allowed skipping the final step of the SSL/TLS
handshake algorithm

if ((err = SSLHashSHA1.update(&hashCtx, &serverRandom)) != 0)
goto fail;

if ((err = SSLHashSHA1.update(&hashCtx, &signedParams)) != 0)
goto fail;
goto fail; /* MISTAKE! THIS LINE SHOULD NOT BE HERE */

if ((err = SSLHashSHA1.final(&hashCtx, &hashOut)) != 0)
goto fail;

err = sslRawVerify(...);

6© 2015 Carnegie Mellon University

OpenSSL Vul History

0

5

10

15

20

25

30

35

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

C
ou

nt
 o

f C
VE

 It
em

s
R

ep
or

te
d

OpenSSL CVE Entries

CVEs

Mean

+1 Std. Dev.

-1 Std. Dev.

Injected

Reported

7© 2015 Carnegie Mellon University

What to do?

DoD mandate to secure software from attack. (section 933
of NDAA and DoD 5000.2)
• DoD Instruction 8500.01 applies Risk Management

Framework to the full acquisition life cycle and
• 8510.01 replaces DIACAP with RMF
• This has been implemented by requiring the use of

software security assurance (SwA) tools on “all covered
systems”.

Why is this hard?

8© 2015 Carnegie Mellon University

Security tools and techniques (examples)

Secure Development
Practices

Binary/bytecode simple
extractor

Host application interface
scanner

Warning flags Focused manual spot check
Web application vulnerabilty
scanner

Source code quality analyzer Manual code review Web services scanner

Source code weakness
analyzer Inspections Database scanner

Quality analyzer Generated code inspection Fuzz tester

Bytecode weakness analyzer Configuration checker Negative testing

Binary weakness analyzer
Permission manifest
analyzer Test coverage analyzer

Inter-application flow
analyzer

Host-based vulnerability
scanner Hardening tools/scripts

Take some of these and apply them

9© 2015 Carnegie Mellon University

Somewhere in the Software Assurance System
Lifecycle

10© 2015 Carnegie Mellon University

Provide actionable guidance on how to improve software
security assurance throughout the development lifecycle
using empirically grounded evidence.

Improves means that the software security assurance must be
• Effective
• Affordable
• Timely

Objectives

11© 2015 Carnegie Mellon University

Composing Software Assurance

However, there “is inadequate ground truth information to help [DoD] make
decisions”, for example the true cost, schedule impact, and effectives of
integrating these tools into an SDLC.

Problem:
DoD faces an unfunded Congressional mandate to secure software from
attack. This has been implemented by requiring the use of software security
assurance (SwA) tools on “all covered systems”.

Without empirically validated “ground truth” about cost and effectiveness.

12© 2015 Carnegie Mellon University

Solution

• Apply experience and toolkit from quality assurance to security assurance
• Develop a model that predicts the effectiveness and cost of selected SwA

tools.
• Use the model and data to help DoD integrate SwA tools into SDLC

processes

Tool kit includes
1. A metric framework
2. Quality planning
3. Design
4. Inspections
5. Process composition for additional techniques

13© 2015 Carnegie Mellon University

Conjecture that Quality α Security

Quality Assurance:
The planned and systematic
activities implemented in a
quality system so that
quality requirements for a
product or service will be
fulfilled.

Quality Control:
The observation techniques
and activities used to fulfill
requirements for quality

Security Assurance:
The planned and systematic
activities implemented in a
security system so that
security requirements for a
product or service will be
fulfilled.

Security Control:
The observation techniques
and activities used to fulfill
requirements for security

We have a lot experience modeling the left column

14© 2015 Carnegie Mellon University

Evidence that Quality is a Security issue,
and Vice Versa

Rigorous reduction of defects enhances security.

Defective software is NOT
secure

1-5% of defects should be
considered to be potential
security risks.

(Woody et al, 2014)

We found high quality
software was generally safe

and secure

How many more? Estimate from defect density.

15© 2015 Carnegie Mellon University

Defect Injection-Filter Model

Requirements
Injects
defects

Design
Injects

defects

%

Development
Injects
defects

%

%

Removal
yield

Removal
yield

Removal
yield

Process
yield

Defect
injection

phase

%
Defect

removal
activity

Injections=Rate*Time

Removals=Defects*Yield

Similar to C. Jones “Tank and filter.” Simplifies assumptions found in Boehm/Chulani
COQUALMO.

% %

calibrate directly with real data.

16© 2015 Carnegie Mellon University

Add security specific activities to the
defect model

Requirements
Injects
defects

Design
Injects

defects

%

Development
Injects
defects

%

%

Removal
yield

Removal
yield

Removal
yield

Process
yield

Defect
injection

phase

%
Defect

removal
activity

Injections=Rate*Time

Removals=Defects*Yield

Similar to C. Jones “Tank and filter.” Simplifies assumptions found in Boehm/Chulani
COQUALMO.

Inspections

Test coverage analyzer,
Source code weakness analyzer
Binary weakness analyzer
Fuzz tester

Secure Development Practices

% %

calibrate directly with real data.

17© 2015 Carnegie Mellon University

Quality Process Measures

The TSP uses quality measures for planning and tracking.
1. Defect injection rates [Def/hr/ and removal yields [% removed]
2. Defect density (defects found and present at various stages and

size)
3. Review/inspection rates [LOC/hr]

18© 2015 Carnegie Mellon University

Metrics

Defect Density (throughout lifetime)
Vulnerability Density (found at each stage)
Phase Injection Rate [defects/hr] (derived)
Phase Effort Distribution (effort-hr)
Phase Removal Yield [% removed] (effectiveness)
Defect “Find and Fix” time [hr/defect] (what was found)
Defect Type (categorize what was wrong)
Defect Injection/Removal Phases
Zero Defect Test time [hr] (cost if no defects present)
Product Size [LOC] [FP] (for normalization and comparisons)
Development Rate (construction phase) [LOC/hr]
Review/Inspection Rate [LOC/hr] (cost of human appraisal)

19© 2015 Carnegie Mellon University

Parameters

Phase Injection Rate [defects/hr]
Phase Effort Distribution [%] total time
Size [LOC]
Production Rate (construction phase) [LOC/hr]
Phase Removal Yield [% removed]
Zero Defect Test time [hr]
Phase “Find and Fix” time [hr/defect]
Review/Inspection Rate [LOC/hr]

20© 2015 Carnegie Mellon University

Source: Xerox

Defect Find and Fix Effort

1

10

100

1000

10000

Ti
m

e
in

 M
in

ut
es

Design
Review

Design
Inspect.

Code
Review

Code
Inspect.

Unit
Test

System
Test

Defect-removal Phase

5

22

2

25 32

1405

1

10

100

1000

10000

Ti
m

e
in

 M
in

ut
es

Design
Review

Design
Inspect.

Code
Review

Code
Inspect.

Unit
Test

System
Test

Defect-removal Phase

5

22

2

25 32

1405

21© 2015 Carnegie Mellon University

Make the Theoretical Concrete

Do you achieve your goals?
• How much functionality do you want to deliver?
• What are the non-functional targets? (performance, security…)
• What is your desired schedule?
• How many defects do you expect the user to find?

Build the model.
Use real data.
Visualize the result.

22© 2015 Carnegie Mellon University

0.0 50.0 100.0 150.0 200.0 250.0 300.0

Revised

Baseline

Total Development and Test Time
Dev
UT
IT
ST

0.00
10.00
20.00
30.00
40.00
50.00
60.00
70.00
80.00
90.00

D
ef

ec
t D

en
si

ty
 [D

ef
/K

LO
C

]

Defect Density Phase Profile

Baseline
[Def/Kloc]

Revised
[Def/Kloc]

Density Goal [Def/KLOC]

Control Panel Rate Yield Yield # Insp Effort
[LOC/hr

] (per insp) (total) [hr]
Design Review 200 50.0% 0.0% 0 0.0

Design Inspection 200 50.0% 0.0% 0 0.0
Code Review 200 50.0% 0.0% 0 0.0

Code Inspection 200 50.0% 0.0% 0 0.0

Compare your performance to a baseline.

23© 2015 Carnegie Mellon University

0.0 50.0 100.0 150.0 200.0 250.0 300.0

Revised

Baseline

Total Development and Test Time
Dev
UT
IT
ST

0.00
10.00
20.00
30.00
40.00
50.00
60.00
70.00
80.00
90.00

D
ef

ec
t D

en
si

ty
 [D

ef
/K

LO
C

]

Defect Density Phase Profile

Baseline
[Def/Kloc]

Revised
[Def/Kloc]

Density Goal [Def/KLOC]

Control Panel Rate Yield Yield # Insp Effort
[LOC/hr

] (per insp) (total) [hr]
Design Review 200 50.0% 0.0% 1 0.0

Design Inspection 200 50.0% 0.0% 0 0.0
Code Review 200 50.0% 0.0% 0 0.0

Code Inspection 200 50.0% 0.0% 0 0.0

Perform a personal design review.

24© 2015 Carnegie Mellon University

0.0 50.0 100.0 150.0 200.0 250.0 300.0

Revised

Baseline

Total Development and Test Time
Dev
UT
IT
ST

0.00
10.00
20.00
30.00
40.00
50.00
60.00
70.00
80.00
90.00

D
ef

ec
t D

en
si

ty
 [D

ef
/K

LO
C

]

Defect Density Phase Profile

Baseline
[Def/Kloc]

Revised
[Def/Kloc]

Density Goal [Def/KLOC]

Control Panel Rate Yield Yield # Insp Effort
[LOC/hr

] (per insp) (total) [hr]
Design Review 200 50.0% 0.0% 1 0.0

Design Inspection 200 50.0% 0.0% 0 0.0
Code Review 200 50.0% 0.0% 1 0.0

Code Inspection 200 50.0% 0.0% 0 0.0

Include a peer design review.

25© 2015 Carnegie Mellon University

0.0 50.0 100.0 150.0 200.0 250.0 300.0

Revised

Baseline

Total Development and Test Time
Dev
UT
IT
ST

0.00
10.00
20.00
30.00
40.00
50.00
60.00
70.00
80.00
90.00

D
ef

ec
t D

en
si

ty
 [D

ef
/K

LO
C

]

Defect Density Phase Profile

Baseline
[Def/Kloc]

Revised
[Def/Kloc]

Density Goal [Def/KLOC]

Control Panel Rate Yield Yield # Insp Effort
[LOC/hr

] (per insp) (total) [hr]
Design Review 200 50.0% 0.0% 1 0.0

Design Inspection 200 50.0% 0.0% 1 0.0
Code Review 200 50.0% 0.0% 1 0.0

Code Inspection 200 50.0% 0.0% 0 0.0

Have a peer inspect the code.

26© 2015 Carnegie Mellon University

0.0 50.0 100.0 150.0 200.0 250.0 300.0

Revised

Baseline

Total Development and Test Time
Dev
UT
IT
ST

0.00
10.00
20.00
30.00
40.00
50.00
60.00
70.00
80.00
90.00

D
ef

ec
t D

en
si

ty
 [D

ef
/K

LO
C

]

Defect Density Phase Profile

Baseline
[Def/Kloc]

Revised
[Def/Kloc]

Density Goal [Def/KLOC]

Control Panel Rate Yield Yield # Insp Effort
[LOC/hr

] (per insp) (total) [hr]
Design Review 200 50.0% 0.0% 1 0.0

Design Inspection 200 50.0% 0.0% 1 0.0
Code Review 200 50.0% 0.0% 1 0.0

Code Inspection 200 50.0% 0.0% 1 0.0

At some point we cross the “quality is free” point.

27© 2015 Carnegie Mellon University

0.0 50.0 100.0 150.0 200.0 250.0 300.0

Revised

Baseline

Total Development and Test Time
Dev
UT
IT
ST

0.00
10.00
20.00
30.00
40.00
50.00
60.00
70.00
80.00
90.00

D
ef

ec
t D

en
si

ty
 [D

ef
/K

LO
C

]

Defect Density Phase Profile

Baseline
[Def/Kloc]

Revised
[Def/Kloc]

Density Goal [Def/KLOC]

Control Panel Rate Yield Yield # Insp Effort
[LOC/hr

] (per insp) (total) [hr]
Design Review 200 50.0% 0.0% 1 0.0

Design Inspection 200 50.0% 0.0% 1 0.0
Code Review 200 50.0% 0.0% 1 0.0

Code Inspection 200 50.0% 0.0% 2 0.0

Here’s where you reach the “quality is free” point!

28© 2015 Carnegie Mellon University

0.0 50.0 100.0 150.0 200.0 250.0 300.0

Revised

Baseline

Total Development and Test Time
Dev
UT
IT
ST

0.00
10.00
20.00
30.00
40.00
50.00
60.00
70.00
80.00
90.00

D
ef

ec
t D

en
si

ty
 [D

ef
/K

LO
C

]

Defect Density Phase Profile

Baseline
[Def/Kloc]

Revised
[Def/Kloc]

Density Goal [Def/KLOC]

Control Panel Rate Yield Yield # Insp Effort
[LOC/hr

] (per insp) (total) [hr]
Design Review 200 50.0% 0.0% 1 0.0

Design Inspection 200 50.0% 0.0% 1 0.0
Code Review 200 70.0% 0.0% 1 0.0

Code Inspection 200 70.0% 0.0% 2 0.0

The “quality is free” point depends on your personal parameters.

29© 2015 Carnegie Mellon University

Questions

If we know that these techniques work, why don’t more people
use them?

Who do you know that has issues with developing secure
software

How can you help others adopt

	Slide Number 1
	President's Information Technology Advisory Committee (PITAC), 2005
	U.S. Department of Homeland Security 2006
	Heartbleed
	“goto fail” enabled “man in the middle” attack
	OpenSSL Vul History
	What to do?
	Security tools and techniques (examples)
	Somewhere in the Software Assurance System Lifecycle
	Objectives	
	Composing Software Assurance
	Solution	
	Conjecture that Quality Security
	Evidence that Quality is a Security issue, and Vice Versa
	Defect Injection-Filter Model
	Add security specific activities to the defect model
	Quality Process Measures
	Metrics
	Parameters
	Defect Find and Fix Effort
	Make the Theoretical Concrete
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Questions

