
1
Beyond errno: Error Handling in C
November 3-4, 2016
© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been approved for
public release and unlimited distribution.

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

REV-03.18.2016.0

Beyond errno
Error Handling in C
David Svoboda

2
Beyond errno: Error Handling in C
November 3-4, 2016
© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been approved for
public release and unlimited distribution.

Copyright 2016 Carnegie Mellon University and IEEE
This material is based upon work funded and supported by the Department of Defense under Contract No. FA8721-05-C-0003 with
Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research and development
center.

References herein to any specific commercial product, process, or service by trade name, trade mark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by Carnegie Mellon University or its
Software Engineering Institute.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER
EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR
PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE
MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT,
TRADEMARK, OR COPYRIGHT INFRINGEMENT.

[Distribution Statement A] This material has been approved for public release and unlimited distribution. Please see Copyright
notice for non-US Government use and distribution.

This material may be reproduced in its entirety, without modification, and freely distributed in written or electronic form without
requesting formal permission. Permission is required for any other use. Requests for permission should be directed to the Software
Engineering Institute at permission@sei.cmu.edu.

CERT® is a registered mark of Carnegie Mellon University.

DM-0004177

3
Beyond errno: Error Handling in C
November 3-4, 2016
© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been approved for
public release and unlimited distribution.

Beyond errno: Error Handling in C

Terms and Definitions
1. Prevention
2. Termination
3. Global Error Indicator
4. Local Error Indicator
5. Return Values
6. Assertions
7. Signals
8. Goto chains
9. Non-local Jumps
10. Error Callbacks
11. Exceptions

Summary

4
Beyond errno: Error Handling in C
November 3-4, 2016
© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been approved for
public release and unlimited distribution.

© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited
distribution.

Beyond errno: Error Handling in C

Terms and Definitions

5
Beyond errno: Error Handling in C
November 3-4, 2016
© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been approved for
public release and unlimited distribution.

Error Handling

Systems are invariably subject to stresses that are outside the bounds of
normal operation such as those caused by
• attack
• erroneous or malicious inputs
• hardware or software faults
• unanticipated user behavior
• unexpected environmental changes

These systems must continue to deliver essential services in a timely
manner, safely and securely.

6
Beyond errno: Error Handling in C
November 3-4, 2016
© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been approved for
public release and unlimited distribution.

Terminology

fail safe [IEEE Std 610.12 1990]
Pertaining to a system or component that automatically places itself in a safe operating mode in
the event of a failure

• A traffic light that reverts to blinking red in all directions when normal operation fails.

fail soft [IEEE Std 610.12 1990]
Pertaining to a system or component that continues to provide partial operational capability in the
event of certain failures

• A traffic light that continues to alternate between red and green if the yellow light fails.
• GCC: -fwrapv assume that signed overflow of addition, subtraction, multiplication wraps

fail hard, also known as fail fast or fail stop.

The reaction to a detected fault is to immediately halt the system.
• GCC: -ftrapv generates traps for signed overflow on addition, subtraction, multiplication

https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References

7
Beyond errno: Error Handling in C
November 3-4, 2016
© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been approved for
public release and unlimited distribution.

Error Detection & Recovery

Error handling is often separated into detection and recovery:
• Detection: discovering that an error has occurred.
• Recovery: determining how to handle the error.

C error-handling routines vary in whether they separate detection from
recovery.
Exceptions specifically allow detection and recovery to be handled by
different components of the program.

8
Beyond errno: Error Handling in C
November 3-4, 2016
© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been approved for
public release and unlimited distribution.

Resource Cleanup

All programs use resources that are limited by the operating system:
• Dynamic Memory
• Open files
• Thread locks

Exhausting these resources will cause the platform to refuse to provide
more resources

• This constitutes denial-of-service!
Many programs clean up resources properly upon normal behavior,
but fail to clean up resources if an error occurs!

9
Beyond errno: Error Handling in C
November 3-4, 2016
© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been approved for
public release and unlimited distribution.

SEI CERT Coding Standards

SEI CERT C Coding Standard
• Version 3.0 published in 2016
• ISO/IEC TS 17961 C Secure Coding
Rules Technical Specification

• Conformance Test Suite
• Version 2.0 (C11) published in 2014
• Version 1.0 (C99) published in 2009

SEI CERT C++ Coding Standard
• Version 1.0 under development

https://www.securecoding.cert.org/confluence/x/BgE

http://www.cert.org/secure-coding/products-services/secure-coding-download.cfm
https://www.securecoding.cert.org/confluence/x/BgE

10
Beyond errno: Error Handling in C
November 3-4, 2016
© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been approved for
public release and unlimited distribution.

© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited
distribution.

Beyond errno: Error Handling in C

Prevention

11
Beyond errno: Error Handling in C
November 3-4, 2016
© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been approved for
public release and unlimited distribution.

Prevention

When possible, preventing errors from occurring in the first place is the best
approach.

- even if an error handling mechanism already exists

• EXP34-C. Do not dereference null pointers
• INT33-C. Ensure that division and remainder operations do not result in

divide-by-zero errors

No support from the library is required.

Then again, some functions make prevention impractical:
• The tan(x) function can overflow for values of x near n*𝝅𝝅/2

- where n is any odd integer.

https://www.securecoding.cert.org/confluence/display/c/EXP34-C.+Do+not+dereference+null+pointers
https://www.securecoding.cert.org/confluence/display/c/INT33-C.+Ensure+that+division+and+remainder+operations+do+not+result+in+divide-by-zero+errors

12
Beyond errno: Error Handling in C
November 3-4, 2016
© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been approved for
public release and unlimited distribution.

© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited
distribution.

Beyond errno: Error Handling in C

Termination

13
Beyond errno: Error Handling in C
November 3-4, 2016
© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been approved for
public release and unlimited distribution.

C/C++ Termination Functions

Function Closes
Open
Streams

Flushes
Stream
Buffers

Removes
Temporary
Files

Destroys
Static Objects
(C++)

Calls Exit
Handlers

Program
Termination

abort() Implementation
-defined
Yes in Linux

Implementation
-defined
Yes in Linux

Implementation
-defined

No No Abnormal

_Exit() Implementation
-defined
Yes in Linux

Implementation
-defined
No in POSIX

Implementation
-defined

No No Normal

quick_exit() Implementation
-defined

Implementation
-defined

Implementation
-defined

No at_quick_
exit()

Normal

exit() Yes Yes Yes Yes atexit() Normal

Return
from main()

Yes Yes Yes Yes atexit() Normal

14
Beyond errno: Error Handling in C
November 3-4, 2016
© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been approved for
public release and unlimited distribution.

Application-independent Code

Each program has its own policy for recovering from errors
Termination is fail-hard.

• Useful when a function detects that the program must not continue.
• It detects a bug in itself.
• It detects a hacking attempt

When an application-independent (aka library) function can detect an error that
does not mandate termination, it cannot recover from the error because it doesn't
know how the application’s error recovery policy.
Rather than respond at the point where the error was detected, an application-
independent function can only indicate that the error has occurred and leave the
error recovery to some other function further up the call chain.

15
Beyond errno: Error Handling in C
November 3-4, 2016
© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been approved for
public release and unlimited distribution.

© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited
distribution.

Beyond errno: Error Handling in C

Global Error Indicator

16
Beyond errno: Error Handling in C
November 3-4, 2016
© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been approved for
public release and unlimited distribution.

Global Error Indicator

A static variable (or data structure) indicating the error status of a
function call or object.

• errno

• feraiseexcept() (floating-point error indicator)
• MSVC’s GetLastError()

These indicators are fail-soft, because the program can continue in
spite of these errors

• Which is both a blessing and a curse!

17
Beyond errno: Error Handling in C
November 3-4, 2016
© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been approved for
public release and unlimited distribution.

errno

errno is an example of a global error indicator.
• It used to be a static (global) variable, in C11 it is thread-local.

Set errno to zero before calling a function, and use it only after the function returns a
value indicating failure
The value of errno is zero at program startup, but is never set to zero by any library
function.
The value of errno may be set to nonzero by a library function call whether or not there
is an error, provided the use of errno is not documented in the description of the function
in the C standard.
It is only meaningful for a program to inspect the contents of errno after an error has
been reported.
More precisely, errno is only meaningful after a library function that sets errno on error
has returned an error code.

18
Beyond errno: Error Handling in C
November 3-4, 2016
© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been approved for
public release and unlimited distribution.

Incorrect Use of errno

unsigned long number;
char *string = /* initialized */;
char *endptr;
/* ... */
number = strtoul(string, &endptr, 0);
if ((endptr == string) ||

(errno == ERANGE)) {
/* handle the error */

} else {
/* computation succeeded */

}

This code fails to zero errno
before invoking strtoul().

Any error detected in this
manner may have occurred
earlier in the program, or may
not represent an actual error.

errno.c in the exercises

19
Beyond errno: Error Handling in C
November 3-4, 2016
© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been approved for
public release and unlimited distribution.

Disadvantages of using errno

Before C11, errno was a global variable, with all the inherent disadvantages:
• Later system calls overwrote earlier system calls
• Global map of values to error conditions (ENOMEM, ERANGE, etc)
• Behavior is underspecified in ISO C and POSIX
• Technically errno is a “modifiable lvalue” rather than a global variable, so

expressions like &errno may not be well-defined.
• Thread-unsafe

In C11, errno is thread-local, so it is thread-safe.

20
Beyond errno: Error Handling in C
November 3-4, 2016
© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been approved for
public release and unlimited distribution.

© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited
distribution.

Beyond errno: Error Handling in C

Local Error Status

21
Beyond errno: Error Handling in C
November 3-4, 2016
© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been approved for
public release and unlimited distribution.

Non-global Error Indicators

These are (non-global) variables that indicate an error state.

C11, section 7.21.1, paragraph 2 describes the FILE type:
which is an object type capable of recording all the information needed to control a stream,
including ... An error indicator that records whether a read/write error has occurred, and an
end-of-file indicator that records whether the end of the file has been reached.

and provides several functions for manipulating these indicators:
• feof()
• ferror()
• clearerr()

22
Beyond errno: Error Handling in C
November 3-4, 2016
© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been approved for
public release and unlimited distribution.

© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited
distribution.

Beyond errno: Error Handling in C

Function Return Values

23
Beyond errno: Error Handling in C
November 3-4, 2016
© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been approved for
public release and unlimited distribution.

Function Return Values

A function can indicate an error by its return value. Many standard
functions do this:

• getc() returns an int, which is either a valid unsigned char or EOF
• malloc() returns a pointer to newly allocated memory or NULL
• atexit() returns 0 if successful, nonzero otherwise

Caller functions are responsible for checking for error conditions.
• ERR33-C. Detect and handle standard library errors

https://www.securecoding.cert.org/confluence/display/c/ERR33-C.+Detect+and+handle+standard+library+errors

24
Beyond errno: Error Handling in C
November 3-4, 2016
© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been approved for
public release and unlimited distribution.

errno_t

C11 Annex K introduced the new type errno_t

The errno_t type (an integer) should be used as the type of an
object that may contain only values that might be found in errno.
If your platform does not support Annex K, you can define it yourself
with the following:

#ifndef __STDC_LIB_EXT1__
typedef int errno_t;

#endif

25
Beyond errno: Error Handling in C
November 3-4, 2016
© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been approved for
public release and unlimited distribution.

In-Band Error Indicators

A result value that either:
• Indicates an error, or
• Conveys information beyond indicating a lack of error.

Typically returned by functions.
• but could be offered by function argument, or static variable

• getc() returns an int, which is either a valid unsigned char or EOF
• malloc() returns a pointer to allocated memory or NULL
• atexit() returns 0 if successful; nonzero if it fails

Which of these functions return in-band error indicators?

26
Beyond errno: Error Handling in C
November 3-4, 2016
© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been approved for
public release and unlimited distribution.

In-Band Error Indicators

A result value that either:
• Indicates an error, or
• Conveys information beyond indicating a lack of error.

Typically returned by functions.
• But could be offered by function argument, or static variable

• getc() returns an int, which is either a valid unsigned char or EOF
• malloc() returns a pointer to allocated memory or NULL
• atexit() returns 0 if successful; nonzero if it fails

27
Beyond errno: Error Handling in C
November 3-4, 2016
© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been approved for
public release and unlimited distribution.

Disadvantages of Function Return Values

Functions that return error indicators cannot use return value for other uses.
Checking every function call for an error condition increases code by 30-
40% [Tratt 2009]
But function return values are too easy to ignore or discard.

• Impossible for library function to enforce that callers check for error
condition.

Once ignored, a value in an in-band error indicator can create havoc,
including malicious code execution.

• CERT Vulnerability VU#159523 describes a vulnerability in Adobe
Flash Player that arose partially because it ignored the return value of
calloc().

http://tratt.net/laurie/blog/entries/a_proposal_for_error_handling.html
http://www.kb.cert.org/vuls/id/159523

28
Beyond errno: Error Handling in C
November 3-4, 2016
© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been approved for
public release and unlimited distribution.

Ignoring Function
Return Values
#define SIG_DESC_SIZE 32
typedef struct {
char sig_desc[SIG_DESC_SIZE];

} signal_info;

void create_sigs(size_t sig_num, size_t temp, const char *desc) {
signal_info *sigs = calloc(sig_num, sizeof(signal_info));

/* ... */

signal_info *point = sigs + temp - 1;
memcpy(point->sig_desc, desc, SIG_DESC_SIZE);
point->sig_desc[SIG_DESC_SIZE - 1] = '\0';

/* ... */

free(sigs);
}

Return value of calloc() unchecked!

Attacker can
control all inputs

Program lets attacker write
string of their choosing to
memory of their choosing!

ignore_return.c in the exercises

29
Beyond errno: Error Handling in C
November 3-4, 2016
© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been approved for
public release and unlimited distribution.

In-Band Error Indicator Wrap-up

Do not create new data types with in-band error indicators.
• ERR02-C. Avoid in-band error indicators

Use pre-existing data types carefully:
• NULL pointers
• Infinity, -Infinity, NaN in floating-point arithmetic

https://www.securecoding.cert.org/confluence/display/c/ERR02-C.+Avoid+in-band+error+indicators

30
Beyond errno: Error Handling in C
November 3-4, 2016
© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been approved for
public release and unlimited distribution.

© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited
distribution.

Beyond errno: Error Handling in C

Assertions

31
Beyond errno: Error Handling in C
November 3-4, 2016
© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been approved for
public release and unlimited distribution.

What assert() does

The C Standard, subclause 7.2.1.1, defines assert() to:
• Take a single integer expression argument, and evaluate it
• If it is 0:

• Prints a message to standard error, containing:
- File name of source code containing assertion
- Line number of assertion
- Function containing assertion

• Then calls abort()

32
Beyond errno: Error Handling in C
November 3-4, 2016
© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been approved for
public release and unlimited distribution.

When to use assert()

Assertions are primarily intended for use during debugging and are
generally turned off before code is deployed by defining the NDEBUG
macro (typically as a flag passed to the compiler).

• MSC11-C. Incorporate diagnostic tests using assertions
• ERR06-C. Understand the termination behavior of assert() and

abort()

Use assertions to protect against incorrect programmer assumptions
at run time.

https://www.securecoding.cert.org/confluence/display/c/MSC11-C.+Incorporate+diagnostic+tests+using+assertions
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=16450219

33
Beyond errno: Error Handling in C
November 3-4, 2016
© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been approved for
public release and unlimited distribution.

When not to use assert()

The following code verifies that there are no padding bits in the structure:
#include <assert.h>

struct timer {
unsigned char MODE;
unsigned int DATA;
unsigned int COUNT;

};

int func(void) {
assert(sizeof(struct timer)
== sizeof(unsigned char)
+ sizeof(unsigned int)
+ sizeof(unsigned int));

}

If func() is never executed,
assertion never tested

If func() is executed
many times, assertion runs
many times, which is slow

Is there a better way?

If compiled without debugging,
assertion never checked

34
Beyond errno: Error Handling in C
November 3-4, 2016
© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been approved for
public release and unlimited distribution.

Use static_assert()

#include <assert.h>

struct timer {
unsigned char MODE;
unsigned int DATA;
unsigned int COUNT;

};

static_assert(sizeof(struct timer)
== sizeof(unsigned char)
+ sizeof(unsigned int)
+ sizeof(unsigned int),
"Structure must not have any padding");

New to C11

Always runs exactly
once, at compile time

If fails, warning
output by compiler

35
Beyond errno: Error Handling in C
November 3-4, 2016
© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been approved for
public release and unlimited distribution.

Other limitations of assert()

Assertions should never be used to verify the absence of runtime (as
opposed to logic) errors, such as
• Invalid user input (including command-line arguments and environment

variables)
• File errors (for example, errors opening, reading or writing files)
• Network errors (including network protocol errors)
• Out-of-memory conditions (for example, malloc() or similar failures)
• System resource exhaustion (for example, out-of-file descriptors,

processes, threads)
• System call errors (for example, errors executing files, locking or

unlocking mutexes)
• Invalid permissions (for example, file, memory, user)

36
Beyond errno: Error Handling in C
November 3-4, 2016
© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been approved for
public release and unlimited distribution.

© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited
distribution.

Beyond errno: Error Handling in C

Signals

37
Beyond errno: Error Handling in C
November 3-4, 2016
© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been approved for
public release and unlimited distribution.

Signals

A signal is an interrupt that is used to notify a process that an event has occurred
so that the process can then respond to that event accordingly.
Signals are handled by a process by registering a signal handler using the
signal() function, which is specified as:

void (*signal(int sig, void (*func)(int)))(int);

The raise() function invokes the signal handler for the signal sig.
int raise(int sig);

If a signal handler is called, the raise function does not return until after the signal
handler returns (if it returns).
The raise() function returns zero if successful, nonzero if unsuccessful.

38
Beyond errno: Error Handling in C
November 3-4, 2016
© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been approved for
public release and unlimited distribution.

Recommendations for Signals

Don’t use signals to implement normal functionality. Signal handlers
are severely limited in the actions they can perform in a portable and
secure manner.
Ideally, signal handlers should do no more than read or write a flag (of
type volatile sig_atomic_t and return.

• Programs must then poll static sig_atomic_t values to
discover if a signal was called, and act accordingly.

Don’t use signal handlers at all if the platform resets signals after
invoking each signal handler. (eg Windows)

39
Beyond errno: Error Handling in C
November 3-4, 2016
© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been approved for
public release and unlimited distribution.

© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited
distribution.

Beyond errno: Error Handling in C

Goto Chains

40
Beyond errno: Error Handling in C
November 3-4, 2016
© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been approved for
public release and unlimited distribution.

Managing Resources

Consider the following function, which must open two files and allocate space:
1 void do_something(void) {
2 FILE *fin1, *fin2;
3 object_t *obj;
4
5 fin1 = fopen("file1.txt", "r");;
6 fin2 = fopen("file2.txt", "r");
7 obj = malloc(sizeof(object_t));
8
9 /* ... Work with resources ... */
10
11 fclose(fin1);
12 fclose(fin2);
13 free(obj);
14 }

These functions return
NULL on failure.

No error checking…will
probably dereference
NULL here.

fclose() doesn’t
accept NULL gracefully.

cleanup1.c in the exercises

41
Beyond errno: Error Handling in C
November 3-4, 2016
© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been approved for
public release and unlimited distribution.

Sufficient Error Checking? 1

1 errno_t do_something(void) {
2 FILE *fin1, *fin2;
3 object_t *obj;
4 errno = 0 ;
5 fin1 = fopen("file1.txt", "r");
6 if (fin1 == NULL) {
7 return errno;
8 }
9
10 fin2 = fopen("file2.txt", "r");
11 if (fin2 == NULL) {
12 return errno;
13 }
14

15 obj = malloc(sizeof(object_t));
16 if (obj == NULL) {
17 return errno;
18 }
19
20 /* ... Work with resources ... */
21
22 fclose(fin1);
23 fclose(fin2);
24 free(obj);
25 return NOERR;
26 }

file1 not closed
if this call fails

file1 and file2 not
closed if this call fails

cleanup2.c in the exercises

42
Beyond errno: Error Handling in C
November 3-4, 2016
© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been approved for
public release and unlimited distribution.

Sufficient Error Checking? 2

1 errno_t do_something(void) {
2 FILE *fin1, *fin2;
3 object_t *obj;
4 errno = 0;
5 fin1 = fopen("file1.txt", "r");
6 if (fin1 == NULL) {
7 return errno;
8 }
9
10 fin2 = fopen("file2.txt", "r");
11 if (fin2 == NULL) {
12 fclose(fin1);
13 return errno;
14 }
15

16 obj = malloc(sizeof(object_t));
17 if (obj == NULL) {
18 fclose(fin1);
19 fclose(fin2);
20 return errno;
21 }
22
23 /* ... Work with resources ... */
24
25 fclose(fin1);
26 fclose(fin2);
27 free(obj);
28 return NOERR;
29 }

Sufficient, but cleanup
distributed throughout code!

Does not scale!
(Imagine if there were
three more files to open!)

cleanup3.c in the exercises

43
Beyond errno: Error Handling in C
November 3-4, 2016
© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been approved for
public release and unlimited distribution.

Resource Acquisition Is Initialization (RAII)

Design principle from C++
Any important resource should be controlled by an object that links the
resource’s lifetime to the object’s lifetime.

- Every resource allocation should occur in its own statement (to avoid sub-
expression evaluation order and sequence point issues).

- The object’s constructor immediately puts the resource in the charge of a resource
handle.

- The object’s destructor frees the resource.
- Copying and heap allocation of the resource handle object are carefully controlled or

outright denied.

No inherent support in C, nor does C provide any automatic cleanup.
So is there a way to properly indicate errors in this code while properly
cleaning up resources?

44
Beyond errno: Error Handling in C
November 3-4, 2016
© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been approved for
public release and unlimited distribution.

Goto Chain

1 errno_t do_something(void) {
2 FILE *fin1, *fin2;
3 object_t *obj;
4 errno_t ret_val = NOERR;
5 errno = 0;
6 fin1 = fopen("file1.txt", "r");
7 if (fin1 == NULL) {
8 ret_val = errno;
9 goto FAIL_FIN1;

10 }
11
12 fin2 = fopen("file2.txt", "r");
13 if (fin2 == NULL) {
14 ret_val = errno;
15 goto FAIL_FIN2;
16 }
17

18 obj = malloc(sizeof(object_t));
19 if (obj == NULL) {
20 ret_val = errno;
21 goto FAIL_OBJ;
22 }
23
24 /* ... Work with resources ... */
25
26 SUCCESS:
27 free(obj);
28 FAIL_OBJ:
29 fclose(fin2);
30 FAIL_FIN2:
31 fclose(fin1);
32 FAIL_FIN1:
33 return ret_val;
34 }

Cleanup relegated
to end of function.

All resources
cleaned properly
under any failure.

cleanup4.c in the exercises

45
Beyond errno: Error Handling in C
November 3-4, 2016
© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been approved for
public release and unlimited distribution.

Goto Chain Pattern
if (op1_failure(…))
goto OP1_CLEANUP;

if (op2_failure(…))
goto OP2_CLEANUP;

if (op3_failure(…))
goto OP3_CLEANUP;

/* ... Work with resources ... */

op3_clean(…);
OP3_CLEANUP:

op2_clean(…);
OP2_CLEANUP:

op1_clean(…);
OP1_CLEANUP:

/* end */

Every operation that could fail
is tested.
If error occurs, transfers to
appropriate cleanup handler.

46
Beyond errno: Error Handling in C
November 3-4, 2016
© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been approved for
public release and unlimited distribution.

Goto still considered harmful!

Use structured loops over goto when possible!
C11, subclause 6.8.6.1 dictates:

A goto statement shall not jump from outside the scope of an identifier having
a variably modified type to inside the scope of that identifier.

Do not use goto to transfer across functions.
• Use return or longjmp() instead.

• MEM12-C. Consider using a goto chain when leaving a function
on error when using and releasing resources

https://www.securecoding.cert.org/confluence/display/c/MEM12-C.+Consider+using+a+goto+chain+when+leaving+a+function+on+error+when+using+and+releasing+resources

47
Beyond errno: Error Handling in C
November 3-4, 2016
© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been approved for
public release and unlimited distribution.

© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited
distribution.

Beyond errno: Error Handling in C

Non-local Jumps

48
Beyond errno: Error Handling in C
November 3-4, 2016
© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been approved for
public release and unlimited distribution.

setjmp() and longjmp()

C99 defines the setjmp() macro, longjmp() function, and jmp_buf
type, which can be used to bypass the normal function call and return
discipline.

The setjmp() macro saves its calling environment for later use by the
longjmp() function.

The longjmp() function restores the environment saved by the most
recent invocation of the setjmp() macro.

49
Beyond errno: Error Handling in C
November 3-4, 2016
© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been approved for
public release and unlimited distribution.

longjmp() Example

#include <stdio.h>
#include <setjmp.h>

jmp_buf place;

void func(void){
longjmp(place, 2);
printf("unreachable code\n");

}

int main(void) {
if (setjmp(place) != 0) {
printf("Returned using longjmp\n");
return 1;

}
func();
printf("unreachable code\n");

}

Transfers control back
to setjmp()
invocation in main().

1st call returns 0, 2nd transfer
from longjmp() returns 2

This call does not return

setjmp.c in the exercises

50
Beyond errno: Error Handling in C
November 3-4, 2016
© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been approved for
public release and unlimited distribution.

setjmp()/longjmp() Recommendations

Do not invoke longjmp():
• From a signal handler
• From an exit handler
• After the function with setjmp() has completed.

Even when used properly, setjmp() / longjmp() provides an additional
arbitrary write target.

CERT provides these guidelines:
• MSC22-C. Use the setjmp(), longjmp() facility securely
• ERR52-CPP. Do not use setjmp() or longjmp()

MISRA Guidelines for the Use of the C Language in Critical Systems contains the
following rule:

• Rule 20.7 (required) The setjmp macro and the longjmp function shall not
be used.

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=1834

51
Beyond errno: Error Handling in C
November 3-4, 2016
© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been approved for
public release and unlimited distribution.

© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited
distribution.

Beyond errno: Error Handling in C

Error Callbacks

52
Beyond errno: Error Handling in C
November 3-4, 2016
© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been approved for
public release and unlimited distribution.

Error Callbacks

This is simply a function pointer that is associated with code that
promises to invoke the function whenever it encounters a type of error.
Typically this function pointer is a static variable, although it could be
passed as a function argument.
Such code must consider the case where the callback is set to NULL.
Some code can accept a special callback value (such as NULL) that
indicates that they should ignore the error.
Other code expects the callback to “fix” the error so that the code can
try their operation again.
Can be fail-hard or fail-soft depending on callback function.

53
Beyond errno: Error Handling in C
November 3-4, 2016
© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been approved for
public release and unlimited distribution.

Example: C++ new_handler 1

C++ allows an error callback which is set with
std::set_new_handler()

This callback is expected to
• Free up some memory,
• abort()
• exit()
or
• Throw an exception of type std::bad_alloc.

This callback must be of the standard type new_handler:
typedef void (*new_handler)();

54
Beyond errno: Error Handling in C
November 3-4, 2016
© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been approved for
public release and unlimited distribution.

Example: C++ new_handlers 2

operator new will call the new handler if it is unable to allocate memory.
If the new handler returns, operator new will re-attempt the allocation.

extern void myNewHandler();

void someFunc() {
new_handler oldHandler

= set_new_handler(myNewHandler);
// allocate some memory…
// restore previous new handler
set_new_handler(oldHandler);

}

55
Beyond errno: Error Handling in C
November 3-4, 2016
© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been approved for
public release and unlimited distribution.

Example: C11 Annex K “Bounds-checking interfaces”

The C11 Annex K functions were originally created by Microsoft to
help retrofit its existing, legacy code base in response to numerous,
well-publicized security incidents over the past decade.
These functions were subsequently proposed to the ISO/IEC
JTC1/SC22/WG14 for standardization.
These functions were published as ISO/IEC TR 24731-1 and then
later incorporated in C11 in the form of a set of optional extensions
specified in a conditionally-normative annex (Annex K).

http://www.iso.ch/
http://www.iec.ch/
http://www.iso.ch/meme/JTC1.html
http://www.open-std.org/JTC1/SC22/
http://www.open-std.org/jtc1/sc22/WG14/

56
Beyond errno: Error Handling in C
November 3-4, 2016
© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been approved for
public release and unlimited distribution.

Annex K Runtime Constraints

Most Annex K functions, upon detecting an error such as invalid arguments or not
enough room in an output buffer, call a special runtime-constraint handler
function.
This function might print an error message and/or abort the program.
The programmer can control which callback function is called via the
set_constraint_handler_s() function, and can make the callback simply
return if desired.

• If the callback simply returns, the function that invoked the callback indicates a failure to its
caller using its return value.

• Programs that install a callback that returns must check the return value of each call to any of
the bounds checking functions and handle errors appropriately.

• ERR03-C. Use runtime-constraint handlers when calling the bounds-
checking interfaces

https://www.securecoding.cert.org/confluence/x/5wD3

57
Beyond errno: Error Handling in C
November 3-4, 2016
© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been approved for
public release and unlimited distribution.

Reading input with Annex K gets_s() 1

#include <stdio.h>
#include <stdlib.h>

void get_y_or_n(void) {
char response[8];
size_t len = sizeof(response);
printf("Continue? [y] n: ");
gets_s(response, len);
if (response[0] == ’n’)

exit(0);
}

int main(void) {
constraint_handler_t oconstraint =

set_constraint_handler_s(ignore_handler_s);
get_y_or_n();

}

Without a custom constraint
handler, if 8 characters or
more are input, the behavior
is implementation defined
(typically abort())

This causes gets_s() to
truncate the input and
return normally.

58
Beyond errno: Error Handling in C
November 3-4, 2016
© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been approved for
public release and unlimited distribution.

© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited
distribution.

Beyond errno: Error Handling in C

Exceptions

59
Beyond errno: Error Handling in C
November 3-4, 2016
© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been approved for
public release and unlimited distribution.

Exceptions

Feature of C++, not in standard C.
Separates error discovery from error handling.
Can be disabled in modern C++ compilers

• GCC/G++ & Clang: -fno-exceptions
• GCC: Code will break if any exception passes through a stack frame of a function compiled

without exceptions.

C++ exceptions support RAII:

try {
std::unique_ptr<object_t> obj(new object_t);
/* work with obj */

} catch (std::bad_alloc x) {
// handle error

}

obj automatically freed
when try block exits.

https://gcc.gnu.org/onlinedocs/libstdc++/manual/using_exceptions.html#intro.using.exception.no

60
Beyond errno: Error Handling in C
November 3-4, 2016
© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been approved for
public release and unlimited distribution.

Dynamic Exception Declarations

ISO C++ supported the dynamic throw function declaration, which indicates the types of
exceptions a function can throw.

• This incurred a runtime overhead when entering functions, was never fully
supported, has been deprecated, and removed from upcoming C++17 standard.

C++11 supports the noexcept keyword, which indicates that a function throws no
exceptions.
If a noexcept function throws an exception, the program terminates.

void do_something(void) noexcept {
try {

std::unique_ptr<object_t> obj(new object_t);
/* ... Work with obj ... */

} catch (std::bad_alloc x) {
// handle error

}
}

61
Beyond errno: Error Handling in C
November 3-4, 2016
© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been approved for
public release and unlimited distribution.

© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited
distribution.

Beyond errno: Error Handling in C

Conclusion

62
Beyond errno: Error Handling in C
November 3-4, 2016
© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been approved for
public release and unlimited distribution.

Multiple Approaches

Many systems use multiple approaches to error handling.
C’s floating point operations use several mechanisms to indicate errors:

• Global Error Indicator: feraiseexcept()
• Return Value: Infinity –Infinity NaN
• Signals: SIGFPE

The degree of support for each approach is platform-dependent, and C provides
several flags indicating what is supported.

63
Beyond errno: Error Handling in C
November 3-4, 2016
© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been approved for
public release and unlimited distribution.

Error Handling Strategy Reference
Technique Code Construct C11 CERT

Prevention

Termination abort() exit() _Exit() 7.22.4.1 ERR04-C

Global Error Indicator errno 7.5 ERR30-C ERR32-C

Local Error Indicator ferror() 7.21.10 ERR01-C

Return Value return 6.8.6.4 ERR02-C ERR33-C

Assertions assert() 7.2 ERR06-C MSC11-C

Signals signal() raise() 7.14.1 SIG chapter

Goto Chains goto 6.8.6.1 MEM12-C

Non-local Jumps setjmp() longjmp() 7.13 MSC22-C

Error Callbacks K.3.6 ERR03-C
Exceptions try catch throw C++ ERR chapter

https://www.securecoding.cert.org/confluence/display/c/ERR04-C.+Choose+an+appropriate+termination+strategy
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=6619179
https://www.securecoding.cert.org/confluence/display/c/ERR32-C.+Do+not+rely+on+indeterminate+values+of+errno
https://www.securecoding.cert.org/confluence/x/PABl
https://www.securecoding.cert.org/confluence/display/c/ERR02-C.+Avoid+in-band+error+indicators
https://www.securecoding.cert.org/confluence/display/c/ERR33-C.+Detect+and+handle+standard+library+errors
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=16450219
https://www.securecoding.cert.org/confluence/display/c/MSC11-C.+Incorporate+diagnostic+tests+using+assertions
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=3903
https://www.securecoding.cert.org/confluence/display/c/MEM12-C.+Consider+using+a+goto+chain+when+leaving+a+function+on+error+when+using+and+releasing+resources
https://www.securecoding.cert.org/confluence/display/c/MSC22-C.+Use+the+setjmp(),+longjmp()+facility+securely
https://www.securecoding.cert.org/confluence/display/c/ERR03-C.+Use+runtime-constraint+handlers+when+calling+the+bounds-checking+interfaces

64
Beyond errno: Error Handling in C
November 3-4, 2016
© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been approved for
public release and unlimited distribution.

Error Handling Gotchas

Technique
Not
Ignorable? Recoverable? Other Problems Error-Handling

Prevention Yes Yes Occasionally Infeasible Yes

Termination Yes No No Cleanup Not for Libraries

Global Error Indicator No Yes Underspecified / Global map No

Local Error Indicator No Yes Yes

Return Value No Yes Precludes real return value Yes

Assertions Yes No No Cleanup / Disabled in Production No

Signals Yes No No Cleanup / Thread-Unsafe No

Goto Chains N/A N/A Single-Use / goto Yes in functions

Non-local Jumps Yes No No Cleanup / Brittle / Vul pointer Not for Libraries

Error Callbacks Yes Yes Cumbersome Yes

Exceptions Yes Yes Global Error Hierarchy / Not in C Yes

65
Beyond errno: Error Handling in C
November 3-4, 2016
© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been approved for
public release and unlimited distribution.

Error Handling Decision Tree

PreventableYesPrevention

No

C or C++?C++Exceptions C Testing or
Production?

Testing

Assertions

Production

Single-
Function?

Yes

Goto Chain

No Application
or Library?

Application

Termination or Non-local
Jumps

Library Error Callbacks

or

Object?

or

YesLocal Error
Indicator

No

Return Value

and

RAII

START

66
Beyond errno: Error Handling in C
November 3-4, 2016
© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been approved for
public release and unlimited distribution.

For More Information

Visit CERT® websites:
https://www.cert.org/secure-coding
https://www.securecoding.cert.org

Contact Presenter
David Svoboda
svoboda@cert.org
(412) 268-3965

Contact CERT:
Software Engineering Institute
Carnegie Mellon University
4500 Fifth Avenue
Pittsburgh PA 15213-3890
USA

https://www.cert.org/secure-coding
https://www.securecoding.cert.org/
mailto:svoboda@cert.org

67
Beyond errno: Error Handling in C
November 3-4, 2016
© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been approved for
public release and unlimited distribution.

© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited
distribution.

Questions?

68
Beyond errno: Error Handling in C
November 3-4, 2016
© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been approved for
public release and unlimited distribution.

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

REV-03.18.2016.0

Backup
Slides
Backup Slides

69
Beyond errno: Error Handling in C
November 3-4, 2016
© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been approved for
public release and unlimited distribution.

Error Handling 2

To accomplish this, a system must exhibit the following system qualities
• availability
• reliability
• error tolerance
• fault tolerance
• performance
• robustness
• security

All of these system quality attributes depend upon a consistent and
comprehensive error-handling policy that supports the goals of the overall system.

70
Beyond errno: Error Handling in C
November 3-4, 2016
© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been approved for
public release and unlimited distribution.

Terminology 1

availability [IEEE Std 610.12 1990]
The degree to which a system or component is operational and accessible when required for use.
Often expressed as a probability.

reliability [IEEE Std 610.12 1990]
The ability of a system or component to perform its required functions under stated conditions for a
specified period of time.

error tolerance [IEEE Std 610.12 1990]
The ability of a system or component to continue normal operation despite the presence of
erroneous inputs.

fault tolerance [IEEE Std 610.12 1990]
The ability of a system or component to continue normal operation despite the presence of
hardware or software faults.

https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References

71
Beyond errno: Error Handling in C
November 3-4, 2016
© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been approved for
public release and unlimited distribution.

The exit() function

Calling the Standard C exit() function is the “polite” way of terminating a
program:

if (something_really_bad_happened)
exit(EXIT_FAILURE);

Calling exit()
• flushes unwritten buffered data and closes all open files
• removes temporary files
• returns an integer exit status to the operating system.

The standard header <stdlib.h> defines the macro EXIT_FAILURE as
the value indicating unsuccessful termination.
C++ programs also destroy statically-declared objects.

72
Beyond errno: Error Handling in C
November 3-4, 2016
© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been approved for
public release and unlimited distribution.

The atexit() Function

You can use atexit() to customize exit() to perform additional actions
at program termination.
For example, calling:

atexit(turn_gizmo_off);

registers the turn_gizmo_off() function so that a subsequent call to
exit() will invoke:
turn_gizmo_off();

as it terminates the program.
The C standard says that atexit() should let you register up to 32
functions.

73
Beyond errno: Error Handling in C
November 3-4, 2016
© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been approved for
public release and unlimited distribution.

Returning from main()

The C Standard, subclause 5.1.2.2.3 [ISO/IEC 9899:2011] says:
If the return type of the main function is a type compatible with int, a return
from the initial call to the main function is equivalent to calling the exit function
with the value returned by the main function as its argument; reaching
the } that terminates the main function returns a value of 0. If the return type is
not compatible with int, the termination status returned to the host environment
is unspecified.

Some platforms implement this behavior as:
void _start(void) {

/* ... */
exit(main(argc, argv));

}

https://www.securecoding.cert.org/confluence/display/c/AA.+Bibliography#AA.Bibliography-ISO-IEC9899-2011

74
Beyond errno: Error Handling in C
November 3-4, 2016
© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been approved for
public release and unlimited distribution.

The abort() Function

The most abrupt way to halt a program is by calling the Standard C
abort() function.
The abort() function causes abnormal program termination to occur,
unless the signal SIGABRT is being caught and the signal handler
does not return.
Whether open streams with unwritten buffered data are flushed, open
streams are closed, or temporary files are removed is implementation-
defined.
An implementation-defined form of the status unsuccessful
termination is returned to the host environment by means of the
function call raise(SIGABRT).

75
Beyond errno: Error Handling in C
November 3-4, 2016
© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been approved for
public release and unlimited distribution.

The _Exit() function

Calling the Standard C _Exit() function is ruder than exit() but less rude than
abort().

Calling _Exit()
• Does not invoke functions registered with atexit()
• Returns an integer exit status to the operating system.

C99 leaves these behaviors implementation-defined:
• Unwritten buffered data is flushed
• Open files are closed.
• Temporary files are removed

In C++11 adds the following about _Exit()
• The program is terminated without executing destructors for objects of automatic,

thread, or static storage duration and without calling functions passed to atexit()
(3.6.3).

76
Beyond errno: Error Handling in C
November 3-4, 2016
© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been approved for
public release and unlimited distribution.

The quick_exit() function

A hybrid of exit() and _Exit(), quick_exit()

• Calls handlers registered with at_quick_exit()
• but not handlers registered with atexit()

• Then calls _Exit()
In C++:
• exit() calls destructors of static or thread-local objects

• but quick_exit() does not.
• Neither does _Exit()

77
Beyond errno: Error Handling in C
November 3-4, 2016
© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been approved for
public release and unlimited distribution.

False Errors 1

Some functions behave differently regarding errno in various standards.
When fopen() encounters an error:

• It returns NULL, according to the C standard.
• The C Standard makes no mention of errno when describing fopen()
• errno is set to a value indicating the error, according to POSIX.1 [IEEE Std

1003.1-2013].
• MSVC sets errno to EINVAL if the invalid parameter handler allows
fopen() to proceed.

The implication is that a program conforming to C but not POSIX or Windows
should not check errno after calling fopen(), but a POSIX / Windows program
may check errno if fopen() returns a null pointer.

https://www.securecoding.cert.org/confluence/display/c/AA.+Bibliography#AA.Bibliography-IEEEStd1003.1-2013
https://msdn.microsoft.com/en-us/library/yeby3zcb.aspx

78
Beyond errno: Error Handling in C
November 3-4, 2016
© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been approved for
public release and unlimited distribution.

False Errors 2

FILE *fileptr;
/* ... */
errno = 0;
fileptr = fopen(...);
if (errno != 0) {

/* handle error */
}

Checking errno immediately after
a call to fopen() may be incorrect
on some platforms, because
fopen() may set errno , even if
no error occurred.

79
Beyond errno: Error Handling in C
November 3-4, 2016
© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been approved for
public release and unlimited distribution.

Compliant Solution ?

FILE *fileptr;
/* ... */
errno = 0;
fileptr = fopen(...);
if (fileptr == NULL) {

/* handle error */
if (errno != 0) {

/* errno useful for
handling error */

}
}

Only inspect errno after
an error has already been
detected by another means:

80
Beyond errno: Error Handling in C
November 3-4, 2016
© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been approved for
public release and unlimited distribution.

History of Signals

Different APIs for different systems
• signal (System V)
• sigvec (4BSD)

1990 POSIX 1003.1, aka “POSIX.1”, standardizes things somewhat
• sigaction (POSIX.1)

Windows POSIX subsystem capable of dealing with signals as well, but still
primarily a UNIX feature.
Michal “lcamtuf” Zalewski publishes “Delivering Signals for Fun and Profit” (2001).

• First public discussion of the relevant vulnerabilities
• Credits OpenBSD’s Theo de Raadt with bringing them to his attention

- OpenBSD does subsequent signal handling audit

Dowd, et. al “The Art of Software Security Assessment” (2006).
• Probably the most thorough treatment of the topic to date

81
Beyond errno: Error Handling in C
November 3-4, 2016
© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been approved for
public release and unlimited distribution.

Liabilities of Signals

Some APIs use signals for error handling.
Because one process can send signals to another process, signals
are a form of IPC (Inter-Process Communication).
Because a signal handler can operate in the middle of another task,
they are also a form of concurrency.
Finally, the different implementation details of signal handling means
that signals also introduce portability concerns.

Therefore, signals have all of the security liabilities of error handling,
IPC, concurrency, and portability.

82
Beyond errno: Error Handling in C
November 3-4, 2016
© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been approved for
public release and unlimited distribution.

Signal Handler Persistence

Many POSIX systems automatically reinstall signal handlers upon handler execution,
meaning that the signal handler defined by the user is left in place until it is explicitly
removed.
However, when a signal handler is installed with the signal() function in Windows and
some POSIX systems, the default action is restored for that signal after the signal is
triggered.
What happens if two SIGQUIT signals are sent to a Windows program?

• The first signal invokes the handler (if set)
• The second signal triggers the default behavior (termination), overriding a program’s

desire to handle the signal.
Many such programs attempt to prevent this by having the handler re-assert itself by
calling signal().

• But this produces a classic race condition…will the handler manage to re-assert
itself before it is interrupted by the second signal?

• SIG01-C. Understand implementation-specific details regarding signal handler persistence

https://www.securecoding.cert.org/confluence/display/c/SIG01-C.+Understand+implementation-specific+details+regarding+signal+handler+persistence

83
Beyond errno: Error Handling in C
November 3-4, 2016
© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been approved for
public release and unlimited distribution.

Function Calls in Signal Handlers

The C Standard, 7.14.1.1, paragraph 5, states that if the signal occurs other than as the
result of calling the abort() or raise() function, the behavior is undefined if

...the signal handler calls any function in the standard library other than the abort function,
the _Exit function, the quick_exit function, or the signal function with the first argument equal to the signal
number corresponding to the signal that caused the invocation of the handler.

According to Section 7.14.1.1 of the C Rationale [ISO/IEC 03]:
When a signal occurs, the normal flow of control of a program is interrupted. If a signal occurs that is
being trapped by a signal handler, that handler is invoked. When it is finished, execution continues at the
point at which the signal occurred. This arrangement can cause problems if the signal handler invokes a
library function that was being executed at the time of the signal.

Many systems define an implementation-specific list of asynchronous-safe functions.
Check your system's asynchronous-safe functions before using them in signal handlers.

• SIG30-C. Call only asynchronous-safe functions within signal handlers

Finally, C++ disallows any C++ features in signal handlers, except for plain lock-free
atomic operations.

https://www.securecoding.cert.org/confluence/display/c/BB.+Definitions#BB.Definitions-undefinedbehavior
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References
https://www.securecoding.cert.org/confluence/display/c/SIG30-C.+Call+only+asynchronous-safe+functions+within+signal+handlers

84
Beyond errno: Error Handling in C
November 3-4, 2016
© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been approved for
public release and unlimited distribution.

Accessing Objects in Signal Handlers

According to the “Signals and Interrupts” section of the C99 Rationale, other than calling
a limited, prescribed set of library functions,

The C89 Committee concluded that about the only thing a strictly conforming program can do in a
signal handler is to assign a value to a volatile static variable which can be written uninterruptedly
and promptly return.

At the April 2008 meeting of ISO/IEC WG14, it was agreed that
• there are no known implementations in which it would be an error to read a value from a
volatile static variable

• the original intent of the committee was that both reading and writing variables of volatile
sig_atomic_t would be strictly conforming.

The type of sig_atomic_t is implementation-defined, although there are
bounding constraints.

• only integer values from 0 through 127 can be assigned to a variable of type
sig_atomic_t to be fully portable.

• the volatile qualifier is needed for data that cannot be cached.

85
Beyond errno: Error Handling in C
November 3-4, 2016
© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been approved for
public release and unlimited distribution.

Vulnerable Code

char *err_msg;
void handler(int signum) {
strcpy(err_msg, "SIGINT encountered.");

}

int main(void) {
signal(SIGINT, handler);
err_msg = (char *) malloc(MAX_MSG_SIZE);
if (err_msg == NULL) {
/* Handle error condition */

}
strcpy(err_msg, "No errors yet.");
/* Main code loop */
return 0;

}

err_msg is updated to indicate that the
SIGINT signal was delivered.

Undefined behavior
occurs if a SIGINT is
generated before the
allocation completes.

86
Beyond errno: Error Handling in C
November 3-4, 2016
© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been approved for
public release and unlimited distribution.

Portably Secure Solution

volatile sig_atomic_t e_flag = 0;

void handler(int signum) { e_flag = 1; }

int main(void) {
char *err_msg = (char *)malloc(MAX_MSG_SIZE);
if (err_msg == NULL) { /* Handle error */ }
signal(SIGINT, handler);
err_msg strcpy(err_msg, "No errors yet.");
while (true) {
/* . . . */
if (e_flag) strcpy(err_msg, "SIGINT received.");
/* . . . */

}
}

Portably, signal
handlers can only
unconditionally
get or set a flag of
type volatile
sig_atomic_t
and return.

87
Beyond errno: Error Handling in C
November 3-4, 2016
© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been approved for
public release and unlimited distribution.

setjmp() Undefined Behavior

Any implementation of setjmp() as a conventional called function cannot know enough
about the calling environment to save any temporary registers or dynamic stack locations
used part way through an expression evaluation.
C11, subclause 7.13.1.1 dictates that setjmp() cannot appear in a context other than

• the entire controlling expression of a selection or iteration statement
• one operand of a relational or equality operator with the other operand an integer
• constant expression, with the resulting expression being the entire controlling

expression of a selection or iteration statement
• the operand of a unary ! operator with the resulting expression being the entire

controlling expression of a selection or iteration statement
• the entire expression of an expression statement (possibly cast to void).

jmp_buf env;
int i;

i = setjmp(env);
Undefined
behavior

88
Beyond errno: Error Handling in C
November 3-4, 2016
© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been approved for
public release and unlimited distribution.

State Following longjmp()

All accessible objects have values, and all other components of the abstract
machine (for example, the floating-point status flags and the state of open
files) have state as of the time the longjmp() function was called.

Objects of automatic storage duration have indeterminate values if they
• are local to the function containing the invocation of the corresponding
setjmp() macro

• do not have volatile-qualified type
• have been changed between the setjmp() invocation and longjmp() call

Accessing an indeterminate value has undefined behavior

89
Beyond errno: Error Handling in C
November 3-4, 2016
© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been approved for
public release and unlimited distribution.

Other Limitations of longjmp()

Some implementations leave a process in a special state while a signal is
being handled.

• Explicit reassurance must be given to the environment when the signal handler
returns.

• To keep this job manageable, the C89 Committee agreed to restrict
longjmp() to only one level of signal handling.

• Best not to call longjmp() from a signal handler at all

The longjmp() function should not be called in an exit handler either., that
is, a function registered with the atexit() or at_quick_exit()
functions because it might jump to code that is no longer in scope.

90
Beyond errno: Error Handling in C
November 3-4, 2016
© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been approved for
public release and unlimited distribution.

Exploiting longjmp()

The jmp_buf buffer must preserve the state between the setjmp() call
and longjmp() call.
On IA-32/Linux, this buffer contains the saved values of the SP (stack
pointer), BP (base pointer), and PC (program counter) registers.
To exploit a program, an attacker need merely overwrite the PC value with a
pointer to their attack code.
A subsequent call to longjmp() transfers control to the attack code.

91
Beyond errno: Error Handling in C
November 3-4, 2016
© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been approved for
public release and unlimited distribution.

Application-independent Code

The announcement might appear as
• a return value
• an argument passed by address
• a global object (e.g., errno)
• some combination of the above

This is what most Standard C library functions do.

92
Beyond errno: Error Handling in C
November 3-4, 2016
© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been approved for
public release and unlimited distribution.

Application-independent Code

Although conceptually simple, returning error indicators can quickly become
cumbersome.
For example, suppose your application contains a chain of calls in which
main() calls f(), which calls g(), which calls h().
Now, suppose reality intrudes and function h() has to check for a condition
it can't handle.

93
Beyond errno: Error Handling in C
November 3-4, 2016
© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been approved for
public release and unlimited distribution.

Application-independent Code

In that case, you might rewrite h() so that it has a non-void return type, such as
errno_t, and appropriate return statements for error and normal returns.

The function might look like:
errno_t h(void) {
if (something_bad_happened) return -1;
// do h
return 0;

}

The function h() also needs to free any locally allocated resources.

94
Beyond errno: Error Handling in C
November 3-4, 2016
© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been approved for
public release and unlimited distribution.

Application-independent Code

Now g() is responsible to heed the return value of h() and act accordingly.
However, more often than not, functions in the middle of a call chain, such as g()
and f(), aren't in the position to handle the error.

In that case, all they can do is look for error values coming from the functions they
call and return them up the call chain.
This means you must rewrite both f() and g() to have non-void return types
along with appropriate return statements.
These functions must also free locally allocated resources as they pass up the call
chain.

95
Beyond errno: Error Handling in C
November 3-4, 2016
© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been approved for
public release and unlimited distribution.

Application-independent Code

errno_t g(void) {

errno_t status;

if ((status = h()) != 0)

return status;

// do the rest of g

return 0;

}

errno_t f(void) {

errno_t status;

if ((status = g()) != 0)

return status;

// do the rest of f

return 0;

}

Finally, the buck stops with main:

int main(void) {

if (f() != 0)

// handle the error

// do the rest of main

return 0;

}

Don’t forget to
free resources!

96
Beyond errno: Error Handling in C
November 3-4, 2016
© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been approved for
public release and unlimited distribution.

Application-independent Code

Returning error codes via return values or arguments--effectively decouples
error detection from error handling, but the costs can be high.
Passing the error codes back up the call chain increases the size of both
the source code and object code and slows execution time.
• can increase the size of source/object code 30 to 40%.
• increases coding effort and reduces readability.

97
Beyond errno: Error Handling in C
November 3-4, 2016
© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been approved for
public release and unlimited distribution.

Application-independent Code

It's usually difficult to be sure that your code checks for all possible errors.
Static analyzers (such as Lint):
• can tell you when you've ignored a function's return value
• can't tell you when you've ignored the value of an argument passed by
address.

Attributes can also be used to require that a return value be checked.

98
Beyond errno: Error Handling in C
November 3-4, 2016
© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been approved for
public release and unlimited distribution.

Problematic In-band Error Indicators

One example from the C standard of a troublesome in-band error
indicator is EOF. See:

• FIO34-C. Use int to capture the return value of character IO functions
• FIO35-C. Use feof() and ferror() to detect end-of-file and file errors when
sizeof(int) == sizeof(char)

Another problematic use of in-band error indicators from the C
standard involving the size_t and time_t types is described by:

• MSC31-C. Ensure that return values are compared against the proper type.

https://www.securecoding.cert.org/confluence/display/seccode/FIO34-C.+Use+int+to+capture+the+return+value+of+character+IO+functions
https://www.securecoding.cert.org/confluence/display/seccode/FIO35-C.+Use+feof()+and+ferror()+to+detect+end-of-file+and+file+errors+when+sizeof(int)+==+sizeof(char)
https://www.securecoding.cert.org/confluence/display/seccode/MSC31-C.+Ensure+that+return+values+are+compared+against+the+proper+type

99
Beyond errno: Error Handling in C
November 3-4, 2016
© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been approved for
public release and unlimited distribution.

The sprintf() Function

int i;

ssize_t count = 0;

for (i = 0; i < 9; ++i)

count += sprintf(buf + count, "%02x ", slr);

count += sprintf(buf + count, "\n");

The sprintf() function returns the number of characters written in the
array, not counting the terminating null character.

However, calls to sprintf() can (and
will) return -1 on error conditions such as
an encoding error.

If this happens on the first call (which is likely), the count variable, already at
zero, is decremented. If this index is subsequently used, it will result in an out-
of-bounds read or write.

100
Beyond errno: Error Handling in C
November 3-4, 2016
© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been approved for
public release and unlimited distribution.

Exceptions: ERR02-EX1

Null pointers are another example of an in-band error indicator.
Use of the null pointers is not quite as bad because it is supported for by
the language.
According to C99 Section 6.3.2.3, "Pointers":
If a null pointer constant is converted to a pointer type, the resulting pointer,
called a null pointer, is guaranteed to compare unequal to a pointer to any
object or function.

101
Beyond errno: Error Handling in C
November 3-4, 2016
© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been approved for
public release and unlimited distribution.

Mitigation Strategies

A strategy for fault handling should be decided.
Consistency in fault handling should be the same with respect to critically
similar parts.
A multi-tiered approach of fault prevention, fault detection, and fault reaction
should be used.

102
Beyond errno: Error Handling in C
November 3-4, 2016
© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been approved for
public release and unlimited distribution.

Mitigation Strategies

System-defined components that assist in uniformity of fault handling
should be used when available.
For one example, designing a “runtime constraint handler” (as described in
ISO/IEC TR 24731-1) permits the application to intercept various erroneous
situations and perform one consistent response, such as flushing a
previous transaction and re-starting at the next one.

103
Beyond errno: Error Handling in C
November 3-4, 2016
© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been approved for
public release and unlimited distribution.

Error Handling in C

errno is a poor practice to emulate.
Returning integer error codes requires some registry of codes and their
meanings (typically as message strings), but has the advantage that a
common error printer can be conveniently used.
Another approach is to use nested exception handling, which allows
procedures to recover at convenient places in the computation.
Unfortunately, there is no standard specification for this in C, but there are
several implementations available, generally using setjmp/longjmp.

	Beyond errno�Error Handling in C
	Copyright 2016 Carnegie Mellon University and IEEE
	Beyond errno: Error Handling in C
	Beyond errno: Error Handling in C
	Error Handling
	Terminology
	Error Detection & Recovery
	Resource Cleanup
	SEI CERT Coding Standards
	Beyond errno: Error Handling in C
	Prevention
	Beyond errno: Error Handling in C
	C/C++ Termination Functions
	Application-independent Code
	Beyond errno: Error Handling in C
	Global Error Indicator
	errno
	Incorrect Use of errno
	Disadvantages of using errno
	Beyond errno: Error Handling in C
	Non-global Error Indicators
	Beyond errno: Error Handling in C
	Function Return Values
	errno_t
	In-Band Error Indicators
	In-Band Error Indicators
	Disadvantages of Function Return Values
	Ignoring Function�Return Values
	In-Band Error Indicator Wrap-up
	Beyond errno: Error Handling in C
	What assert() does
	When to use assert()
	When not to use assert()
	Use static_assert()
	Other limitations of assert()
	Beyond errno: Error Handling in C
	Signals
	Recommendations for Signals
	Beyond errno: Error Handling in C
	Managing Resources
	Sufficient Error Checking? 1
	Sufficient Error Checking? 2
	Resource Acquisition Is Initialization (RAII)
	Goto Chain
	Goto Chain Pattern
	Goto still considered harmful!
	Beyond errno: Error Handling in C
	setjmp() and longjmp()
	longjmp() Example
	setjmp()/longjmp() Recommendations
	Beyond errno: Error Handling in C
	Error Callbacks
	Example: C++ new_handler 1
	Example: C++ new_handlers 2
	Example: C11 Annex K “Bounds-checking interfaces”
	Annex K Runtime Constraints
	Reading input with Annex K gets_s() 1
	Beyond errno: Error Handling in C
	Exceptions
	Dynamic Exception Declarations
	Beyond errno: Error Handling in C
	Multiple Approaches
	Error Handling Strategy Reference
	Error Handling Gotchas
	Error Handling Decision Tree
	For More Information
	Questions?
	Backup �Slides
	Error Handling 2
	Terminology 1
	The exit() function
	The atexit() Function
	Returning from main()
	The abort() Function
	The _Exit() function
	The quick_exit() function
	False Errors 1
	False Errors 2
	Compliant Solution ?
	History of Signals
	Liabilities of Signals
	Signal Handler Persistence
	Function Calls in Signal Handlers
	Accessing Objects in Signal Handlers
	Vulnerable Code
	Portably Secure Solution
	setjmp() Undefined Behavior
	State Following longjmp()
	Other Limitations of longjmp()
	Exploiting longjmp()
	Application-independent Code
	Application-independent Code
	Application-independent Code
	Application-independent Code
	Application-independent Code
	Application-independent Code
	Application-independent Code
	Problematic In-band Error Indicators
	The sprintf() Function
	Exceptions: ERR02-EX1
	Mitigation Strategies
	Mitigation Strategies
	Error Handling in C

