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Software vulnerabilities constitute a major threat
• A majority arise from common coding errors
• Shown by experience from source code analysis labs at 

CERT and DoD

Static analysis tools help, but:
• Typically are used late in the development process
• Produce an enormous number of warnings
• The volume of true positives often overwhelms the 

ability of the development team to fix the code

Huge amount of code in use by DoD
• Billions of lines of C code
• Unknown number of security vulnerabilities

Automated Code Repair – Motivation
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Integer Overflow
This past year (FY16), we developed techniques for automated repair of 
integer overflows that lead to memory corruption

Integers in C are represented by a fixed number of bits N (e.g., 32 or 64).
• Overflow occurs when the result cannot fit in N bits
• Modular arithmetic: Only the least significant N bits are kept

How does integer overflow lead to memory corruption?
1. Memory allocation: malloc(∙).
2. Bounds checks for an array

Example: Android Stagefright bugs (July 2015)
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Benefits to DoD

Eliminate security vulnerabilities at a much lower cost than manual repair

Integer overflows are a very common type of bug
• In CERT SCALe audits, about 80% of findings were related to fixed-width integers

Our technique:
• Will not break working code, provided inferred specification is correct (Next slide)
• Typically total slowdown < 5%  (Based on theoretical model)
• False positives: Flagged operations that cannot actually overflow

- Then our ‘repair’ just adds a little unnecessary overhead
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Premises for Automated Repair

1. Many security bugs follow common patterns
- E.g., “p = malloc(n * sizeof(T))” where n is attacker-controlled
- Integer overflow ⟹		too little memory gets allocated

2. By recognizing such a pattern, it is possible to make a reasonable 
guess of the developer's intention (the inferred specification)

- E.g., “Try to allocate enough memory to hold n objects of type T”

3. It is possible to repair the code to satisfy this inferred specification
- Check if overflow occurs; if so, simulate malloc failing with ENOMEM
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Experimental Results

Overflows 
(as reported 
by Kint)

Overflows 
that are 
sensitive

Overflows 
fully repaired Semi‐repair Unrepaired 

OpenSSL
(1.0.2g)

969 233 180 28 25

Jasper 481 101 53 32 16

An overflow is sensitive if it involves variables that are associated with array indices or bounds

Note: Some of the above “repairs” are actually false positives (i.e., operation never overflows).  
Others are known vulnerabilities with CVEs and patches.
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Repair Strategy

Inferred specification: inequality comparisons involving array indices or bounds 
should behave as if normal arithmetic (not modular arithmetic) were used

• Includes malloc
• Excludes crypto and hashing functions

Repair: General case is intractable (with bounded memory)

Special case that we handle: non-negative integers with only addition or multiplication 
(no subtraction or division)

• The value is monotonically non-decreasing (except for multiplication by zero)

• Normal arithmetic can be emulated using saturation arithmetic:
- Replace an overflowed value with the greatest representable value (SIZE_MAX)

• If the declared types of variables are smaller than size_t, they are promoted up
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Arithmetic for Checking Bounds of an Array
Example: copy n bytes from src to dest, 
starting at index start of dest.

if (start + n <= dest_size) {
memcpy(&dest[start], src, n);

} else {
return ‐EINVAL;

}

Repair: UADD(start, n) /* defined on next slide */
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wrappers.h
1. inline static size_t UADD(size_t lop, size_t rop) {
2. size_t result;
3. bool flag = __builtin_add_overflow(lop, rop, &result);
4. if (flag) {result = SIZE_MAX;}
5. return result;
6. }

if (start + n <= dest_size) {
memcpy(&dest[start], src, n);

} else {
return ‐EINVAL;

}

Repair: UADD(start, n)

• What if dest_size is SIZE_MAX?
• What if both sides of inequality overflow?
• What if overflow reaches a non-comparison sink?
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Semi-Repair
If a potentially overflowed value 
is used to index into an array, 
do a semi-repair.

Example adapted from CVE‐2015‐8370:
1. unsigned cur_len = 0;
2. while (1) {
3. key = grub_getkey();
4. if (key == ‘\b’) {
5. if (cur_len == 0) {
6. /* FIXME: Insert error‐

handling code here. */
7. }
8. cur_len‐‐;
9. grub_printf(“\b”);
10. continue;
11. }
12. if (cur_len + 2 < buf_size) {
13. buf[cur_len++] = key;
14. grub_printf(“%c”, key);
15. }
16. }

semi‐repair Tool inserts check for overflow. 
User writes error-handling code.
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Future Directions

In FY17, we have two Automated Repair projects:
1. Inference of memory bounds

- Buffer overflow (WRITEs) and leakage of sensitive information (READs)

2. Incorrect usage of crypto/security APIs
- E.g., incorrect validation of certificate chain using OpenSSL API, leading to MITM

A difficulty we encountered was the Source↔IR mapping problem:
• Code is most readily analyzed and repaired on an intermediate representation (IR)
• Transformations on the IR aren’t unambiguously mappable to the source
• Macros and #ifdefs are a further difficulty

- Prof. Christian Kästner (CMU SCS) has done work on #ifdefs as part of this project

• We are further investigating these issues this year (FY17)
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Conclusion

Automated code repair (ACR) reduces a system’s attack surface and 
improves its ability to withstand cyber-attacks.
ACR is suitable for problems where many bugs follow a common pattern 
and have a corresponding pattern for repair.
In FY16, we focused on integer overflows involving memory 
bounds/indices.
We are continuing work on ACR in FY17.
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