
1
Using Technical Debt to Improve Software Sustainability
and Find Software Vulnerabilities
October 25, 2016
© 2016 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved
for public release and unlimited distribution.

SEI Research Review 2016

Using Technical Debt to Improve Software
Sustainability and Find Software Vulnerabilities

© 2016 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved
for public release and unlimited distribution.

Using Technical Debt to
Improve Software
Sustainability and Find
Software Vulnerabilities
Ipek Ozkaya

2
Using Technical Debt to Improve Software Sustainability
and Find Software Vulnerabilities
October 25, 2016
© 2016 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved
for public release and unlimited distribution.

SEI Research Review 2016

Distribution Statements
Copyright 2016 Carnegie Mellon University

This material is based upon work funded and supported by the Department of Defense under Contract No.
FA8721-05-C-0003 with Carnegie Mellon University for the operation of the Software Engineering Institute, a
federally funded research and development center.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE
MATERIAL IS FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO
WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT
NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR
RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT
MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR
COPYRIGHT INFRINGEMENT.

[Distribution Statement A] This material has been approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government use and distribution.

This material may be reproduced in its entirety, without modification, and freely distributed in written or
electronic form without requesting formal permission. Permission is required for any other use. Requests for
permission should be directed to the Software Engineering Institute at permission@sei.cmu.edu.

DM-0004041

3
Using Technical Debt to Improve Software Sustainability
and Find Software Vulnerabilities
October 25, 2016
© 2016 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved
for public release and unlimited distribution.

SEI Research Review 2016

What is Technical Debt?

A decade ago processors were not as powerful. To optimize for performance we would

not insert code for exception handling when we knew we would not divide by zero or hit

an out of bounds memory condition. These areas are now hard to track and have become

security nightmares.

Technical debt is a software design issue that:
Exists in an executable system artifact, such as code, build scripts, data

model, automated test suites;
Is traced to several locations in the system, implying issues are not

isolated but propagate throughout the system artifacts.
Has a quantifiable effect on system attributes of interest to developers

(e.g., increasing defects, negative change in maintainability and code
quality indicators).

4
Using Technical Debt to Improve Software Sustainability
and Find Software Vulnerabilities
October 25, 2016
© 2016 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved
for public release and unlimited distribution.

SEI Research Review 2016

DoD Perspective of the Problem

4321

5

1. time technical debt is incurred

2. time technical debt is recognized

3. time to plan and re-architect

4. time until debt is actually paid-off

5. continuous monitoring

Developers
intentionally
or unintentionally
incur debt

Developers
recognize, but
do not declare
or fix the debt

An optimal time
to rearchitect or
refactor the
system passes

By the time the
government owns the
system the
accumulation of
detection and redo is
very expensive

Ideal where
technical debt is
used strategically
and declare at
acquisition time

A decade ago processors were not as powerful. To optimize for
performance we would not insert code for exception handling when we
knew we would not divide by zero or hit an out of bounds memory
condition. These areas are now hard to track and have become security
nightmares.

Our goal is to enable better sustainment decision making through
technical debt analytics
• What indicators signify major contributors to technical debt?
• Are software components with accrued technical debt more likely to

be vulnerability-prone?
• Can we build correlations between these indicators and project

measures, such as defects, vulnerabilities and change proneness?

5
Using Technical Debt to Improve Software Sustainability
and Find Software Vulnerabilities
October 25, 2016
© 2016 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved
for public release and unlimited distribution.

SEI Research Review 2016

Why do we need a new term?

Defects

Technical
Debt

Vulnerabilities

Defect proneness implies increased
vulnerability risks.

Technical debt increases vulnerability
risks.

Technical debt as it lingers in the system
increases defect proneness.

Some issues just overlap, making it hard
to tease apart!

defect – error in coding or logic that
causes a program to malfunction or to
produce incorrect/ unexpected results

vulnerability – system
weakness in the intersection
of three elements:
• system flaw,
• attacker access to the flaw,
• attacker capability to

exploit the flaw

technical debt – design
or implementation construct
traced to several locations
in the system, that make
future changes more costly

6
Using Technical Debt to Improve Software Sustainability
and Find Software Vulnerabilities
October 25, 2016
© 2016 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved
for public release and unlimited distribution.

SEI Research Review 2016

Towards Technical Debt Analytics

• Extracting evidence from the issue trackers

• Extracting evidence from code and commit history

• Holistic analysis

Issue
trackers

Source
code

Commit
history

Plug-in Analyzers
(e.g., Findbugs,

Classifiers,
Project Trends)

Clustering
the files

with evidence
Ranking

TD
Dashboard

Visualization

Datasets

7
Using Technical Debt to Improve Software Sustainability
and Find Software Vulnerabilities
October 25, 2016
© 2016 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved
for public release and unlimited distribution.

SEI Research Review 2016

Using Technical Debt to Improve Software
Sustainability and Find Software Vulnerabilities

© 2016 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved
for public release and unlimited distribution.

Extracting Evidence from the
Issue Trackers

8
Using Technical Debt to Improve Software Sustainability
and Find Software Vulnerabilities
October 25, 2016
© 2016 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved
for public release and unlimited distribution.

SEI Research Review 2016

Do Issue Trackers Reveal Technical Debt?

• Do developers use the term technical debt explicitly when discussing
issues and tasks in their issue trackers?

• Can technical debt items be discovered systematically within issue trackers?
• What are the distinguishing characteristics of technical debt items

discovered in issue trackers?

Data set Source Filter criteria # Records analyzed

Technical debt
classification, analysis,
and evaluation
Total: 727 issues

Connect Jira March 2012 286

Project A Jira
Defects/CRs
Sep. 2010 to Dec.
2014

86

Project B FogBugz All year 2013 193

Chromium Google issue
tracker

M(ilestone): 48
Stars (watchers) > 3 163

9
Using Technical Debt to Improve Software Sustainability
and Find Software Vulnerabilities
October 25, 2016
© 2016 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved
for public release and unlimited distribution.

SEI Research Review 2016

Indicator: Technical Debt Tag

Enough
Info? Y

N

Executable?
Y

N

Not
Technical

Debt

Not
Technical

Debt

Type?

Improvement
Type?

Defect
Type?

Accumulation?

Not
Technical

Debt

Technical
Debt

Not
Technical

Debt

Not
Technical

Debt

Crash due to large
negative number.

There have been 28 reports from 7
clients… 18 reports from 6 clients

My sense is that if we patch it here, it
will pop-up somewhere else later.

hmm ... reopening. the test case
crashes a debug build, but not the
production build.

Time permitting, I'm inclined to want to
know the root cause.

I have confirmed that the original source
code does crash the production build,
so there must be multiple things
going on here.

21 of 79 issues labeled security
are classified as technical debt.Bellomo, S., Nord, R.L., Ozkaya, I., Popeck, M. Got technical debt? Surfacing elusive

technical debt in issue trackers. Proceedings of the 13th International Conference
on Mining Software Repositories, 327–338. ACM, 2016.

10
Using Technical Debt to Improve Software Sustainability
and Find Software Vulnerabilities
October 25, 2016
© 2016 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved
for public release and unlimited distribution.

SEI Research Review 2016

Technical Debt in Issue Trackers

Defects
(377)

Technical
Debt
(51)

Vulnerabilities
(not classified
for this study)

Deployment & Build Out-of-sync build dependencies 3 CN
Version conflict 1 CN

Dead code in build scripts 1 CN

Code Structure Event handling 5 2CH, 3PB
API/Interfaces 5 2CH, 1CN, 2PB

Unreliable output or behavior 5 4CH, 1PA
Type conformance issue 3 CN

UI design 3 PB
Throttling 2 1CH, 1PB

Dead code 2 CN
Large file processing or rendering 2 CH

Memory limitation 2 CH
Poor error handling 1 PA

Performance appending nodes 1 CH
Encapsulation 1 PB

Caching issues 1 CN

Data Model Data integrity 6 PA
Data persistence 3 PB

Duplicate data 2 PA

Regression Tests Test execution 1 CH
Overly complex tests 1 CH

Stephany Bellomo, Robert L. Nord, Ipek Ozkaya, Mary Popeck: Got technical debt?: surfacing elusive
technical debt in issue trackers. MSR 2016: 327-338

11
Using Technical Debt to Improve Software Sustainability
and Find Software Vulnerabilities
October 25, 2016
© 2016 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved
for public release and unlimited distribution.

SEI Research Review 2016

Using Technical Debt to Improve Software
Sustainability and Find Software Vulnerabilities

© 2016 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved
for public release and unlimited distribution.

Extracting Evidence from Code
and Commit History

12
Using Technical Debt to Improve Software Sustainability
and Find Software Vulnerabilities
October 25, 2016
© 2016 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved
for public release and unlimited distribution.

SEI Research Review 2016

Combined Rules for Detecting Technical Debt

Code rules:
Duplicate code
Out of sync versions
Out of sync build dependencies
Dead code

Architectural rules (design flaws):
Dependency propagation
Test coverage
Cross-module cycles
Cross-package cycles
Unstable interface

Detecting Technical Debt = We are making the implicit statement that “As
these TD issues stay in the system they are more likely to cause more bugs
and will cost more to fix later. Not all issues will cost more to fix later.”

13
Using Technical Debt to Improve Software Sustainability
and Find Software Vulnerabilities
October 25, 2016
© 2016 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved
for public release and unlimited distribution.

SEI Research Review 2016

Analysis: Design Flaws

Co-existence of different types of design flaws correlates with the presence of
vulnerabilities.

Types of
Design Flaws

Non-vuln
files

Vuln
files

% have vulns.

0 8544 47 0.5%
1 7357 141 2%
2 2345 91 4%
3 194 10 5%

R. L. Nord, I. Ozkaya, E. J. Schwartz, F. Shull, R. Kazman: Can Knowledge of Technical
Debt Help Identify Software Vulnerabilities? CSET @ USENIX Security Symposium 2016

14
Using Technical Debt to Improve Software Sustainability
and Find Software Vulnerabilities
October 25, 2016
© 2016 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved
for public release and unlimited distribution.

SEI Research Review 2016

Using Technical Debt to Improve Software
Sustainability and Find Software Vulnerabilities

© 2016 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved
for public release and unlimited distribution.

Holistic Analysis

15
Using Technical Debt to Improve Software Sustainability
and Find Software Vulnerabilities
October 25, 2016
© 2016 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved
for public release and unlimited distribution.

SEI Research Review 2016

Qualitative and Quantitative Analysis

Chromium security issues

50 15

8 6

Not TD TD

Detecting
Design
Flaws in
Code

Classifying TD from Issues labeled Security

No Design
Flaws

Design
Flaws

79 issues are
labeled security

• 21 are classified as technical
debt

• 65 trace to files containing
design flaws

16
Using Technical Debt to Improve Software Sustainability
and Find Software Vulnerabilities
October 25, 2016
© 2016 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved
for public release and unlimited distribution.

SEI Research Review 2016

Partial Evidence

50
Defect: 26
Feature: 1

Design Problem: 23

15

8 6

Not TD TD

Detecting
Design
Flaws in
Code

Classifying TD from Issues labeled Security

No Design
Flaws

Design
Flaws

67577: "This is a 2-liner.
I'll take it, if only to get our
rampant security bug list
down by one.”
Flaw: modularity violation

64108: “feature was never
fully implemented, we may
not have put in proper
checks to prevent this.”
Flaws: modularity violation,
cycle

17
Using Technical Debt to Improve Software Sustainability
and Find Software Vulnerabilities
October 25, 2016
© 2016 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved
for public release and unlimited distribution.

SEI Research Review 2016

Supplement Static Analysis with Developer Knowledge

50 15

8 6

Not TD TD

Detecting
Design
Flaws in
Code

Classifying TD from Issues labeled Security

No Design
Flaws

Design
Flaws

10977: “we could just fend
off … or we can dig deeper”
“if we patch it here, it will
pop-up somewhere else
later”

18
Using Technical Debt to Improve Software Sustainability
and Find Software Vulnerabilities
October 25, 2016
© 2016 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved
for public release and unlimited distribution.

SEI Research Review 2016

Are there any quantifiable characteristics?

Developer discussion

Issue priority
Time to close

19
Using Technical Debt to Improve Software Sustainability
and Find Software Vulnerabilities
October 25, 2016
© 2016 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved
for public release and unlimited distribution.

SEI Research Review 2016

Summary Findings

• Design areas with greater density of technical debt provide
significant opportunities for improvement.

• The issues we find are mostly the result of unintentional design
choices.

• Correlations between vulnerabilities and technical debt indicators
warrant further research that combines multiple artifacts in analysis.

• Technical debt can be made visible earlier when tracked similarly
to defects, consequently managed more effectively and strategically.

20
Using Technical Debt to Improve Software Sustainability
and Find Software Vulnerabilities
October 25, 2016
© 2016 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved
for public release and unlimited distribution.

SEI Research Review 2016

Towards Technical Debt Analytics

Create a technical debt classifier
•Apply topic modeling algorithms to issue tracker
data sets to extract topics related to
accumulating rework

•Extract categories of TD related design

Correlate analysis rules with TD topics
•Identify recurring design concepts, their mappings to
code analysis rules and their interrelationships

•Run code analyzers to detect quality violations to identify
candidate TD items

Rank TD items
• Identify relative number of defects,
change and bug churn and locations
in the code base that require changes.

• Create an initial ranking.

Consolidate TD items
•Run criteria for consolidations and extract impacted
additional files with related violations.

Issue
trackers

Source
code

Commit
history

Plug-in Analyzers
(e.g., Findbugs,

Classifiers,
Project Trends)

Clustering
the files

with evidence
Ranking

TD
Dashboard

Visualization

Datasets

21
Using Technical Debt to Improve Software Sustainability
and Find Software Vulnerabilities
October 25, 2016
© 2016 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved
for public release and unlimited distribution.

SEI Research Review 2016

The Technical Debt Community
Role Impact our research by

contributing
Impact your organizational
practices

DoD PM,
sustainment
professionals

Challenge problems, project
measures

Ask targeted questions earlier, ask
for evidence based on our approach

Defense
contractors

Data, feedback, validation of
techniques

Invest in secure and maintainable
practices, use our approach

Industry Data, feedback, validation of
techniques

Incentivize teams to identify sources
of technical debt

Tool vendors Transition partner Extend tools to label and analyze
technical debt items

Researchers,
students, PIs

Technical validity Extend/challenge our approach,
extend, use, and challenge our data
sets

22
Using Technical Debt to Improve Software Sustainability
and Find Software Vulnerabilities
October 25, 2016
© 2016 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved
for public release and unlimited distribution.

SEI Research Review 2016

Relevant SEI Published Work
R. L. Nord, I. Ozkaya, E. J. Schwartz, F. Shull, R. Kazman: Can Knowledge of Technical Debt Help Identify Software
Vulnerabilities? CSET @ USENIX Security Symposium 2016

S. Bellomo, R. L. Nord, I. Ozkaya, M. Popeck: Got Technical Debt? Surfacing Elusive Technical Debt in Issue
Trackers, to appear in proceedings of Mining Software Repositories 2016, collocated @ICSE 2016.

R. L. Nord, R. Sangwan, J. Delange, P. Feiler, L, Thomas, I. Ozkaya: Missed Architectural Dependencies: The
Elephant in the Room, WICSA 2016.

P. Avgeriou, P. Kruchten, R. L. Nord, I. Ozkaya, C. B. Seaman: Reducing Friction in Software Development. IEEE
Software Future of Software Engineering Special Issue 33(1): 66-73 (2016)

L. Xiao, Y. Cai, R. Kazman, R. Mo, Q. Feng: Identifying and Quantifying Architectural Debts, ICSE 2016.

N. A. Ernst, S. Bellomo, I. Ozkaya, R. L. Nord, I. Gorton: Measure it? Manage it? Ignore it? software practitioners
and technical debt. ESEC/SIGSOFT FSE 2015: 50-60

Managing Technical Debt Research Workshop Series 2010-2016
https://www.sei.cmu.edu/community/td2016/series/

https://www.sei.cmu.edu/community/td2016/series/

23
Using Technical Debt to Improve Software Sustainability
and Find Software Vulnerabilities
October 25, 2016
© 2016 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved
for public release and unlimited distribution.

SEI Research Review 2016

Team

SEI team members
• Ipek Ozkaya, PhD, SSD (PI)
• Rod Nord, PhD, SSD (PI)
• Stephany Bellomo, MSc., SSD
• Neil Ernst, PhD, SSD
• Rick Kazman, PhD, SSD
• Ed Schwartz, PhD, CERT
• Forrest Shull, PhD, SSD/ERO
• Robert Stoddard, SSD

Research Collaborators
• Philippe Kruchten, PhD, Univ. of

British Columbia, funded
• Raghu Sangwan, PhD, Penn State,

funded
• Managing Technical Debt research

community
• Industry, DoD, and tool vendor

partners

24
Using Technical Debt to Improve Software Sustainability
and Find Software Vulnerabilities
October 25, 2016
© 2016 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved
for public release and unlimited distribution.

SEI Research Review 2016

Contact Information

Ipek Ozkaya
Principal Researcher
SSD/SEAP
Telephone: +1 412 268 3551
Email: ozkaya@sei.cmu.edu

Managing Technical Debt Project
http://www.sei.cmu.edu/architecture/research/arch_tech_debt/

mailto:ozkaya@sei.cmu.edu
http://www.sei.cmu.edu/architecture/research/arch_tech_debt/

