
1
Property Directed Test Case Generation
© 2016 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved
for public release and unlimited distribution.

SEI Research Review 2016

Property Directed Test Case Generation
© 2016 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved
for public release and unlimited distribution.

Property Directed Test Case
Generation
Dr. Arie Gurfinkel
Dr. Edward Schwartz
Dr. William Klieber
Jeffrey Gennari

2
Property Directed Test Case Generation
© 2016 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved
for public release and unlimited distribution.

SEI Research Review 2016

Disclaimer
Copyright 2016 Carnegie Mellon University

This material is based upon work funded and supported by DoD/SEI LENS under Contract No. FA8721-05-C-0003 with Carnegie
Mellon University for the operation of the Software Engineering Institute, a federally funded research and development center
sponsored by the United States Department of Defense.

Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not
necessarily reflect the views of DoD/SEI LENS or the United States Department of Defense.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER
EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR
PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE
MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT,
TRADEMARK, OR COPYRIGHT INFRINGEMENT.

[Distribution Statement A] This material has been approved for public release and unlimited distribution. Please see Copyright
notice for non-US Government use and distribution.

This material may be reproduced in its entirety, without modification, and freely distributed in written or electronic form without
requesting formal permission. Permission is required for any other use. Requests for permission should be directed to the Software
Engineering Institute at permission@sei.cmu.edu.

DM-0004040

3
Property Directed Test Case Generation
© 2016 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved
for public release and unlimited distribution.

SEI Research Review 2016

Big Picture: Generating Test Case Input is Complex

Software evaluations often include creating test cases to trigger
interesting behaviors
•Finding bugs, ensuring critical functionality executes, determining if
unwanted functionality is present, etc.

Traditional test case generation requires testers to provide specific
inputs, run tests, and evaluate results
•Trial and error
•Complex and time consuming

What input is
needed to trigger

behavior …

Program Source Code
or Specification

Program input
needed to

trigger behavior

4
Property Directed Test Case Generation
© 2016 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved
for public release and unlimited distribution.

SEI Research Review 2016

Test Case Generation and Model Checking

Model checkers use program abstractions to exhaustively check a program
for specified properties
• For example, can the system get into a bad state; if so, how?

Model checkers produce traces to show how a property is, or is not
satisfied
• Required program models very abstract
• Specified properties often expressed in complex, mathematical terms
• Returned traces are abstract and hard to operationalize

Software Model
Checker

Trace

Abstract Program
Model

Property
Program input needed

to trigger behavior

5
Property Directed Test Case Generation
© 2016 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved
for public release and unlimited distribution.

SEI Research Review 2016

PDTG

Property Directed Test Case Generation (PDTG)

Goal: Instead of relying on human-driven trial and error or interpreting
abstract results from model checkers we will automatically generate
executables to trigger desired behavior
• Provide evaluators with concrete evidence demonstrating a property is
present

• Give evaluators an executable artifact showing how to trigger the
property

Executable

Program’s
source code

augmented to
flag areas of

interest

6
Property Directed Test Case Generation
© 2016 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved
for public release and unlimited distribution.

SEI Research Review 2016

Property Directed Test Case Generation (PDTG)

Model checker produces
counter example (trace)
showing how to reach
property
• Seahorn

- http://seahorn.github.io/

Software Model Checker

Directed Symbolic Execution

Executable Harness

Executable

Trace

PDTG
Program’s

source code
augmented to
flag areas of

interest

http://seahorn.github.io/

7
Property Directed Test Case Generation
© 2016 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved
for public release and unlimited distribution.

SEI Research Review 2016

Property Directed Test Case Generation (PDTG)

Executable harness
implements external methods
needed to execute path in trace
KLEE fuses together trace with
values from executable
harness to produce valid
executable

• Resulting executable
deterministically triggers
property

Software Model Checker

Directed Symbolic Execution

Executable Harness

Executable

Trace

PDTG
Program’s

source code
augmented to
flag areas of

interest

8
Property Directed Test Case Generation
© 2016 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved
for public release and unlimited distribution.

SEI Research Review 2016

Example Harness
if (get_input() == 0x1234 &&

get_input() == 0x8765) {
__VERIFIER_error();

} else {
return 0;

}

void get_input () {
static int x = 0;
switch (x++) {
case 0: return 0x1234;
case 1: return 0x8765;
default: assert(false); }

}

• get_input() is an external
function

• Program considered buggy if
and only if
__VERIFIER_error() is
reachable

• Implementation of external
functions linked to original
source code

• Causes program to execute
__VERIFIER_error()

9
Property Directed Test Case Generation
© 2016 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved
for public release and unlimited distribution.

SEI Research Review 2016

Generating Harnesses for Linux Device Drivers
void *ldv_undef_ptr(void)
{
void *tmp;
tmp = __c();
return tmp;

}
////////////////////////
void *is_got =
ldv_undef_ptr();
if (is_got <= (long)2012) {
... }

• Samples from Linux Driver
Verification (LDV) project

• Harness functions returning
pointers are tricky
- May not be reasonable addresses
- Might return “new” memory

• Original program instrumented
with memory read/store hooks
that control access to external
memory
- Still working on general solution

10
Property Directed Test Case Generation
© 2016 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved
for public release and unlimited distribution.

SEI Research Review 2016

Malware Case Study

PDTG useful for malware analysis
• Force execution of suspected malicious code

- For example, generate an executable to trigger malware’s information stealing
features

• Automatically construct program entry point to call function(s) needed to
trigger behavior of interest
- Set all conditions required to reach behavior

• Tested on Gh0st RAT malware

define i32 @main()
entry
%0 = call %class.CSystemManager @__sea_get_arg()
call void @_ZN14CSystemManager9OnReceiveEPhj(%class.CSystemManager* %0)
ret i32 0

Generate main
function to
trigger behavior

11
Property Directed Test Case Generation
© 2016 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved
for public release and unlimited distribution.

SEI Research Review 2016

Conclusions

We implemented the PDTG prototype to discover interesting behaviors,
generate harnesses, and produce working executables
• Completed malware case study demonstrating usefulness of approach
• Evaluated PDTG using Linux Driver Verification (LDV) Benchmarks

- http://forge.ispras.ru/projects/ldv

Results based on 27 files in ldv-validator-0.8

File Count Results

6 Successfully generated executable to demonstrate property of interest (i.e. trigger known bug)

7 Successfully proved buggy code was unreachable

6 Timeout

5 Memory exhausted

3 Bogged down in complex memory operations

http://forge.ispras.ru/projects/ldv

12
Property Directed Test Case Generation
© 2016 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved
for public release and unlimited distribution.

SEI Research Review 2016

Acknowledgements

We would like to thank our collaborators on this project
• Carnegie Mellon University

- Dr. Temegshen Kahsai
- Dr. Limin Jia
- Jiaqi Liu

• NASA
- Dr. Jorge Navas

	Slide Number 1
	Disclaimer
	Big Picture: Generating Test Case Input is Complex
	Test Case Generation and Model Checking
	Property Directed Test Case Generation (PDTG)
	Property Directed Test Case Generation (PDTG)
	Property Directed Test Case Generation (PDTG)
	Example Harness
	Generating Harnesses for Linux Device Drivers
	Malware Case Study
	Conclusions
	Acknowledgements

