

Software Engineering Institute
Carnegie Mellon University
4500 Fifth Avenue
Pittsburgh, PA 15213-2612

Phone: 412-268-5800
Toll-free: 1-888-201-4479

www.sei.cmu.edu

Getting Secure Software Assurance
Knowledge into Conventional
Practice

ABSTRACT: This paper describes three educational initiatives in support of
software assurance education. The first project attempted to identify and docu-
ment any knowledge, from any source, that could be related to the assurance of
software. The second initiative focuses on the development of a master of soft-
ware assurance reference curriculum. The third initiative implements the refer-
ence curriculum as two tracks within a Master of Science in Software Engineer-
ing program.

EDUCATIONAL INITIATIVES TO SUPPORT SOFTWARE
ASSURANCE PRIORITIES
Cybersecurity is an area of international concern. Yet it is well documented that
“commonly used software engineering practices [continue to] permit dangerous
defects, which let attackers compromise millions of computers every year” [2].
This is the case because “software engineering lacks the rigorous controls needed
to [ensure defect-free] products at acceptable cost” [1]. As a result, participants
of the Knowledge Transfer Network Workshop in Paris in March 2009 recog-
nized cybersecurity education as part of the information security, privacy, and
assurance roadmap vision. They also identified cybersecurity education as one of
the workshop’s lines of development [3].

Another example can be found in the U.S. National Strategy to Secure Cyber-
space, which includes a specific priority to create a nationwide national cyber-
space awareness and training program [4]. That priority recognizes that two of
the barriers to the improvement of cybersecurity are “a lack of familiarity,
knowledge, and understanding of the issues” and “an inability to find sufficient
numbers of adequately trained ... personnel to create and manage secure sys-
tems” [2]. One of the priority’s major initiatives is to “foster adequate training
and education programs to support the Nation’s cybersecurity needs” [2].

Although we have sufficient knowledge of the practices needed to assure the
secure development, sustainment, and acquisition of code, that knowledge is not
entering into the profession in any organized way. Dr. Nasir Memon, a professor

Dan Shoemaker

Linda Laird

Nancy Mead

August 2011

at the Polytechnic Institute of New York University, reinforced the need for cy-
bersecurity education: “There is a huge demand, and a lot more schools have
created programs, but to be honest, we’re still not producing enough students”
[6].

The aim of the three initiatives described in this paper is to take the first substan-
tive steps to disseminating the knowledge for secure software assurance into
common use. Together these three programs begin the process of ensuring that
conventional higher education contributes in a practical way to the worthwhile
goal of a more secure software infrastructure.

GETTING THE MESSAGE OUT
The traditional means of disseminating knowledge into any society is through
formally constituted education, training, and awareness programs [5]. In the se-
cure software domain, however, there is no single, commonly accepted point of
reference to “guide the development and integration of education and training
content relevant to software assurance” [7]. The U.S. National Strategy recog-
nizes this necessity in both Priority II (A National Cybersecurity Threat and
Vulnerability Reduction Program) and Priority III (a National Cyberspace Secu-
rity Awareness and Training Program). Item five in Priority II identifies the need
to reduce and remediate software vulnerabilities and Item two in Priority Three
identifies the need to foster adequate training and education programs to support
the Nation’s cybersecurity needs [4].

However, the dilemma with software assurance is that its knowledge elements
cut across many disciplines, rather than being focused in a few. In essence, the
knowledge base for software assurance spans a range of traditional studies [9].
These include such dissimilar areas as “software engineering, systems engineer-
ing, information systems security engineering, safety, security, testing, infor-
mation assurance, law and project management” [9]. As a result, potentially
meaningful software assurance content appears in many different places, and
educators in conventional settings teach it in many different ways.

It is clearly unacceptable to approach the teaching and learning process in such a
disjointed way. For this reason, it is important to formulate a consolidated view
of the body of knowledge for secure software assurance. In particular, a formal
effort is needed to integrate “software assurance content ... into the body of
knowledge of each contributing discipline” [7, 9]. There are two practical barri-
ers to achieving this level of integration. First, it is not clear what specific
knowledge and skills should be taught in each area. Second, there are no validat-

1 | GETTING SECURE SOFTWARE ASSURANCE KNOWLEDGE INTO CONVENTIONAL
PRACTICE

ed methods for delivering that knowledge once it has been identified. This paper
describes three initiatives that work together to address these two problems.

INITIATIVE ONE: FORMULATING AND DISSEMINATING
SOFTWARE ASSURANCE KNOWLEDGE
Logically, the first step in integrating new knowledge into a conventional learn-
ing setting is to identify, relate, and catalogue what is presently available. That
was the purpose of a two-year project funded by the U.S. Department of Defense
(DoD) and conducted at the University of Detroit Mercy (UDM). This project
attempted to identify and document any knowledge, from any source, that could
be related to the assurance of software. That knowledge was culled from all of
the usual computing disciplines, such as computer science, software engineering,
and information systems. The project also incorporated softer knowledge from
beyond the strictly technical areas, such as information security, as well as rele-
vant knowledge from the behavioral and social sciences. The knowledge came
from many accessible public and private-sector sources.

The product of this study was a knowledge base that documented and catego-
rized all commonly accepted practices, principles, methodologies, and tools for
software assurance. The mind map that underlies the categorization is roughly
based on the Department of Homeland Security’s (DHS) “Software Assurance:
A Guide to the Common Body of Knowledge to Produce, Sustain, and Acquire
Secure Software” [7]. However, to ensure the validity of the common body of
knowledge (CBK) framework, the mind map was fine tuned and subsequently
validated by means of a classic Delphi study, as part of the project. To make it as
authoritative as possible, the study used a panel of eleven nationally known ex-
perts in secure software assurance.

The knowledge base incorporates as many life cycle methodologies and tools for
assuring software as could be identified. It also itemizes all related supporting
principles and concepts to ensure the security of internally developed and sus-
tained software. The knowledge base also includes any products and services
purchased from outside vendors. The knowledge base is evolutionary and inclu-
sive. Thus, as the literature of the field expands or new sources of knowledge are
identified, that material will be catalogued and added.

The purpose of the UDM and DoD initiative was not simply to gather
knowledge. The goal was to ensure the teaching of secure software topics in all
suitable education, training, and awareness settings. In support of that goal, the
project packaged the contents of the knowledge base into discrete learning mod-

2 | GETTING SECURE SOFTWARE ASSURANCE KNOWLEDGE INTO CONVENTIONAL
PRACTICE

ules. These modules are meant to facilitate the efficient transfer of software as-
surance knowledge into all relevant teaching and learning settings. As a result,
these modules can be incorporated into a wide range of teaching and learning
environments. They are appropriate for traditional graduate, undergraduate,
community college, and even high school education, as well as for training and
awareness applications.

The modules are intended to be stand-alone learning artifacts capable of convey-
ing all of the requisite knowledge for a discrete topic. At a minimum, each mod-
ule can be delivered in a conventional classroom. However, the modules include
supporting material that also allows them to be delivered in a range of asynchro-
nous and other web-enabled learning environments. The flexibility of the deliv-
ery approach facilitates the efficient transfer of new workforce skills and practic-
es to all types of education, training, and awareness applications.

Each module conveys a logical element of software assurance practice. The en-
tire collection of these modules maps to the body of knowledge contained in the
knowledge base. Because that knowledge base is structured on the most com-
monly accepted model for secure software assurance practice, the DHS Common
Body of Knowledge [7], this mapping provides precise guidance about where the
newly developed instructional content fits within the commonly accepted under-
standing of the correct elements of practical software assurance work.

These modules were divided into three topic areas based on the CBK: (1) devel-
opment of secure code, (2) secure sustainment of code, and (3) acquisition of
secure code. The results of the Delphi supported the rationale for this partition-
ing. To ensure that these modules would be free standing and usable in any ap-
plication, the development of secure code was further decomposed into risk un-
derstanding, as represented by various modules devoted to threat modeling, and
a series of modules devoted to secure coding methods and techniques. The sus-
tainment process was further decomposed into ethical hacking (as operational
testing for vulnerability identification), environmental monitoring and reporting,
risk analysis, authorization, change control, and patch management. Finally, se-
cure acquisition was decomposed into acquisition initiation, secure specification,
and contract formulation and delivery management.

Each of the teaching modules incorporates a set of conventional learning arti-
facts, which are easily recognizable to traditional educators. Every module in-
cludes (1) a table of learning specifications, (2) presentation slides for each con-
cept contained in the module, (3) an evaluation process, (4) any relevant web-
enabled supporting material such as videos, and (5) a model delivery system.
Every module also incorporates a validated set of teaching tools. These tools are

3 | GETTING SECURE SOFTWARE ASSURANCE KNOWLEDGE INTO CONVENTIONAL
PRACTICE

optimized to ensure the maximum knowledge transfer for all potential teaching
settings.

Following development, the project packaged all of this content onto an innova-
tive knowledge transfer device based on the iPad. It allows the project to dissem-
inate the targeted courseware artifacts to classroom teachers in K-12 to higher
education settings. The device is called the Software Assurance Mobile Instruc-
tional device, or SAMI. SAMI bundles all of the knowledge developed by this
project into a single portable platform, which, in addition to providing all re-
quired instructional materials, also allows internet access to the contents of the
software assurance repository. The advantage of SAMI is that it provides class-
room teachers with all of the knowledge and courseware needed to immediately
teach topics that might not have been part of their own background or prepara-
tion.

Finally, the project performed extensive field trials to validate the courseware
and delivery systems. The beta tests examined the appropriateness of the
courseware, software tools, and teaching methodologies, and they were conduct-
ed at cooperating institutions of the International Cyber Security Education Coa-
lition (ICSEC) as well as sample universities from around the country. The tests
evaluated format, concept clarity, usability, comprehension, accuracy, applicabil-
ity to job competencies, and effectiveness of delivery. The validation included
all types of learning environments as well as a range of delivery options. Each
content module was installed on site at the cooperating institution and was ad-
ministered as required by the delivery protocol. As might be imagined, a large
amount of data was gathered. The findings were generally favorable and will be
reported in later studies.

INITIATIVE TWO: A MASTER OF SOFTWARE ASSURANCE
REFERENCE CURRICULUM
The second initiative focuses on the development of a master of software assur-
ance reference curriculum [11]. This effort was conducted under the leadership
of the Software Engineering Institute (SEI) at Carnegie Mellon University, in
support of the Department of Homeland Security’s National Cyber Security Di-
vision. The involvement of SEI is particularly noteworthy because much of the
body of knowledge in secure software assurance is derived from software engi-
neering principles and practices. This project specifies a set of topics and the
knowledge and requirements necessary to ensure a properly educated software
assurance professional. This project differs from the prior initiative in that it is a
comprehensive approach to the definition of the practical body of knowledge

4 | GETTING SECURE SOFTWARE ASSURANCE KNOWLEDGE INTO CONVENTIONAL
PRACTICE

whereas the first initiative focused on the content level. This initiative identifies
the topics that effective software assurance professionals must be proficient in
and structures that set of topics into a comprehensive curriculum. That curricu-
lum contains just those key knowledge elements required to produce a well-
educated practitioner.

The curriculum development team included technical staff from the SEI and fac-
ulty from a number of universities, both domestic and international. The final
report contains the reference curriculum, a glossary of terms, and the guidelines
the team used to develop the curriculum, prerequisites, proposed outcomes when
a student graduates, curriculum architecture, proposed curricular body of
knowledge, and implementation guidelines for the curriculum. A number of ex-
isting artifacts, including the software assurance guide to the body of knowledge
[7] and the recent Graduate Software Engineering curriculum guidelines [12] as
well as the older SEI Reports on Graduate Software Engineering Education [13,
14] were inputs to the project.

The project team also referenced the Guide to the Software Engineering Body of
Knowledge (SWEBOK) [15] as needed to cross-reference their recommenda-
tions with the software engineering knowledge that is fundamental to software
assurance. Furthermore, to ensure that the reference curriculum was properly
reviewed and validated, invited reviewers and the DHS Workforce Education
and Training Working Group performed a broad review of the final product. Ad-
ditionally, some key industry managers and practitioners generously agreed to be
surveyed to further enhance the project team’s understanding of the necessary
outcomes. To ensure a sufficient level of understanding for implementation pur-
poses, the curriculum also includes a detailed list of knowledge units and the
corresponding Bloom’s taxonomy levels [16]. A sample of the curriculum body
of knowledge appears in Table I. IEEE and ACM have recognized this curricu-
lum as being appropriate for a master’s program in software assurance.

Table I. Sample of MSwA 2010 Core Body of Knowledge

Knowledge Area Bloom
Level

1. Assurance Across
Life Cycles

1.1. Software Life Cycle Processes --

1.1.2. New development C

1.1.3. Integration, assembly, and deployment C

5 | GETTING SECURE SOFTWARE ASSURANCE KNOWLEDGE INTO CONVENTIONAL
PRACTICE

1.1.4. Operation and evolution C

1.1.5. Acquisition, supply, and service C

1.2. Software Assurance Processes and Practices --

1.2.1. Process and practice assessment AP

1.2.2. Software assurance integration into software de-
velopment life cycle (SDLC) phases

AP

2. Risk Management 2.1. Risk Management Concepts --

2.1.1. Types and classification C

2.1.2. Probability, impact, severity C

2.1.3. Models, processes, metrics C

2.2. Risk Management Process --

2.2.1. Identification AP

2.2.2. Analysis AP

2.2.3. Planning AP

2.2.4. Monitoring and management AP

2.3. Software Assurance Risk Management --

2.3.1. Vulnerability and threat identification AP

2.3.2. Analysis of software assurance risks AP

2.3.3. Software assurance risk mitigation AP

2.3.4. Assessment of software assurance processes and
practices

AP

6 | GETTING SECURE SOFTWARE ASSURANCE KNOWLEDGE INTO CONVENTIONAL
PRACTICE

Establishment of a new degree program is a very ambitious undertaking. As a
consequence, the project team anticipated that some universities would elect to
establish tracks or specializations in software assurance within existing master’s
degree programs, such as in Master of Software Engineering degrees, rather than
establish a separate, new degree program. Accordingly, the final report on the
curriculum provides guidance on how to implement a track or specialization. The
project team developed sample course syllabi, a master bibliography, a workshop
available in a virtual training environment, and a podcast. The project team has
begun to identify available course material. All project materials are available at
http://www.cert.org/mswa/. Current activities focus on transition and adoption of
the curriculum recommendations. A software assurance education discussion
group has been established on LinkedIn, and focused mentoring is available to
universities that wish to establish a software assurance degree program or track.
In addition to the Master of Software Assurance reference curriculum, this pro-
ject produced a set of sample software assurance course outlines for the under-
graduate level [17]. These courses might form an area of concentration within a
computer science or software engineering undergraduate degree program. The
project is now working on a set of sample software assurance course outlines at
the community college level.

INITIATIVE THREE: IMPLEMENTING A PRACTICAL SOFTWARE
ASSURANCE CURRICULUM
As a proof of concept, Stevens Institute of Technology is implementing the
software assurance reference curriculum, described above, as two tracks within
their Master of Science in Software Engineering program. In addition, they are
offering two graduate certificates based on the courses in that curriculum. As
previously mentioned, it is easier for universities to establish tracks within exist-
ing programs than to create entire new programs. In this case, Stevens has three
relevant graduate programs: software engineering, systems security engineering,
and computer science, each of which contained some of the material from the
reference curriculum for software assurance. In addition, the architecture of their
Software Engineering Program is extremely flexible, which facilitates adding
new certificates and concentrations.

The Stevens software engineering faculty believes that every Stevens software
engineering student should know how to engineer and build trusted systems,
which includes software assurance. Consequently, they are integrating the soft-
ware assurance curriculum into the existing software engineering curriculum to
the maximum extent possible.

7 | GETTING SECURE SOFTWARE ASSURANCE KNOWLEDGE INTO CONVENTIONAL
PRACTICE

The faculty has encountered several issues with utilizing this curriculum imple-
mentation strategy. First, the majority of the software engineering faculty are not
particularly strong in security, so even though they are motivated and experi-
enced, they must put forth considerable effort to learn, fully understand, and pri-
oritize the content, as well as to create and remove significant amounts of mate-
rial. Second, the recommendations of the reference curriculum do not simply
map onto the existing Stevens courses. Third, although there are excellent securi-
ty courses in the computer science department, the required material is spread
throughout multiple courses that have multiple prerequisites. Finally, portions of
the software assurance curriculum overlap significantly with two courses in the
systems security engineering program.

These issues are being resolved by:

• taking a phased implementation approach to the curriculum. The material is
being rolled into the curriculum over a one-year period and is targeted to be
completed by the fall of 2011. The new material will be made available
online, on an as-needed basis, to students who take the courses before fall
2011.

• condensing the required secure development material from the multiple
computer science courses into one course specifically designed and offered
for the software assurance curriculum.

• having one of the original reference curriculum authors (a Stevens faculty
member) lead the mapping of the reference curriculum to Stevens curricu-
lum. A sample of the mapping appears in Table II.

• adding more material to two systems security engineering courses and in-
cluding them in the software assurance tracks.

8 | GETTING SECURE SOFTWARE ASSURANCE KNOWLEDGE INTO CONVENTIONAL
PRACTICE

Table II. Sample Mapping of the Reference Curriculum to Stevens Curriculum

 Stevens Courses

Core Topics 53
3

54
0

55
6

56
4

...

1.1 Software Life Cycle Processes •

1.2 Software Assurance Processes and Practices •
+

...

6.2 Assured Software Development * •
+

...

One example of the type and extent of curriculum changes that are occurring is
SSW 689: Software Reliability and Safety Engineering. It has expanded to be-
come SSW 689: Engineering of Trusted Systems. This change is a natural evolu-
tion and expansion of the original course and course objectives, although it
would not have occurred so quickly without the MSwA implementation. Content
changes include adding and extending material on trusted systems properties,
trusted system architectures and patterns, trust cases, assurance maturity models,
threat modeling, misuse and abuse cases, and risk mitigation frameworks. De-
creased attention is now given to the variety and detail of reliability models and
advanced topics in reliability testing.

The resulting software assurance program at Stevens consists of two new, multi-
disciplinary, graduate software assurance tracks within software engineering: one
intended for students interested in careers in software development of trusted
systems, and one for students interested in careers in acquisition and manage-
ment of trusted systems. Both tracks share the same six core courses in software
engineering, but each has four different, additional required courses. This course
requirement differs from the software engineering master’s program (without a
software assurance track), which consists of the same six core courses and four
additional electives.

At Stevens, the program is architected so that students who already have a grad-
uate degree, or who are not yet ready to enroll in a full master’s-level program,

9 | GETTING SECURE SOFTWARE ASSURANCE KNOWLEDGE INTO CONVENTIONAL
PRACTICE

may take courses to earn a graduate certificate. There are two software assurance
certificates, one for students interested in software development of trusted sys-
tems, and one for students interested in acquisition and management of trusted
systems. All of these courses may be applied toward a graduate degree.

Of course, students in the software engineering master’s program may choose
instead to pursue other certificates, such a systems architecture or financial sys-
tems concentration. Nevertheless, due to the program’s architecture, they will
have a stronger foundation in software assurance and trusted systems engineer-
ing.

Many of the graduate students at Stevens are practicing software development
professionals. To accommodate their schedules, Stevens offers all of these
courses in three different formats: (1) traditional classroom, (2) asynchronous
online and (3) intensive on site. The last format consists of five full days of
classroom instruction at a corporate or government site followed by ten weeks of
individual and team assignments conducted online. Additional details of the
software assurance and software engineering programs at Stevens can be found
at www.stevens.edu/software.

Results of this first implementation of the software assurance curriculum will be
shared with other schools through traditional dissemination and special mentor-
ing arrangements.

SUMMARY AND CONCLUSIONS
Our understanding of the knowledge needed to ensure capable software assur-
ance professionals is growing as we work through this process of defining and
implementing a curriculum and knowledge base. What is needed now is the
ability to popularize that knowledge. Because of the nature of the emerging
threats in cyberspace, the profession as a whole is being asked to change in ways
that have never been required in the past. To ensure our security, software pro-
fessionals will have to learn how to develop, sustain, and acquire code in a way
that will essentially guarantee freedom from exploitable defects. Moreover, to be
of any value, this adjustment will have to take place in an outrageously short
period of time. Given the critical importance of secure software to the national
interest, the three initiatives described in this paper are designed to work together
to advance the process. Each project is beginning to establish the foundation for
moving software assurance, which has heretofore been poorly understood and
poorly recognized, into the mainstream of education, training, and awareness.

10 | GETTING SECURE SOFTWARE ASSURANCE KNOWLEDGE INTO CONVENTIONAL
PRACTICE

The intent of the reference curriculum project at Carnegie Mellon University is
to foster software assurance master’s programs and tracks that will teach an ex-
plicit curriculum of knowledge and skills necessary for producing well-educated
software assurance professionals. The initiative at Stevens is putting the recom-
mendations of the reference curriculum into everyday practice. And every in-
structor of a computer-related discipline in the project at Detroit Mercy will have
access to validated content and instructional materials that can be easily incorpo-
rated into currently existing courses. This is particularly important because tradi-
tional educators in the target disciplines are not knowledgeable about the requi-
site practices.

All of these initiatives clarify the boundaries and elements of the teaching and
learning process for software assurance education. These three projects are initial
steps in the long road to assuring the correctness and integrity of developed
software with total confidence. Their contents create a direction and foundation
that can be built on for the future of the profession.

REFERENCES
[1] K. M. Goertzel, T. Winograd, H. L. McKinley, L. Oh, M. Colon, T. McGib-

bon, E. Fedchak, and R. Vienneau, Software Security Assurance: State-of-the-
Art Report (SOAR). U.S. Information Assurance Technology Analysis Center
(IATAC) and Data and Analysis Center for Software (DACS), July 2007.
Electronic Publication: http://iac.dtic.mil/iatac/download/security.pdf

[2] President’s Information Technology Advisory Committee, Cybersecurity: A
Crisis of Prioritization. Arlington, VA: Executive Office of the President, Na-
tional Coordination Office for Information Technology Research and Devel-
opment, 2005.

[3] Leaders in Security, “Building In ... Information Security, Privacy And Assur-
ance,” Paper presented at the Knowledge Transfer Network Paris Information
Security Workshop, Paris, France, March 2009.

[4] U.S. Department of Homeland Security, The National Strategy to Secure Cy-
berspace. Washington, DC: U.S. Department of Homeland Security,2003.
http://www.dhs.gov/xlibrary/assets/National_Cyberspace_Strategy.pdf

[5] D. Cogburn, Globalization, Knowledge, Education and Training in the Infor-
mation Age, United Nations Educational, Scientific and Cultural Organiza-
tion. Paper presented at the Second International Congress on Ethical, Legal
and Societal Challenges of Cyberspace, Monte-Carlo, October 1998. Electron-

11 | GETTING SECURE SOFTWARE ASSURANCE KNOWLEDGE INTO CONVENTIONAL
PRACTICE

http://iac.dtic.mil/iatac/download/security.pdf
http://www.dhs.gov/xlibrary/assets/National_Cyberspace_Strategy.pdf

ic Publication:
http://www.unesco.org/webworld/infoethics_2/eng/papers/paper_23.htm

[6] C. Drew, “Wanted: ‘Cyber ninjas,’” New York Times, December 29, 2009.
Electronic Publication:
http://www.nytimes.com/2010/01/03/education/edlife/03cybersecurity.html?e
mc=eta1

[7] S. T. Redwine, Jr., ed. Software Assurance: A Guide to the Common Body of
Knowledge to Produce, Acquire, and Sustain Secure Software, Version 1.1.
Washington: U.S. DHS, 2006.

[8] Coverity, Quality problems cost software companies up to $22 million annual-
ly according to new report, August 2008. Electronic Publication:
http://www.coverity.com/html/press_story65_08_04_08.html

[9] D. Shoemaker, A. Drommi, J. Ingalsbe, and N. R. Mead. “A Comparison of
the Software Assurance Common Body of Knowledge to Common Curricular
Standards,” 20th Conference on Software Engineering Education and Train-
ing, Dublin, 2007.

[10] M. Newman, Software Errors Cost U.S. Economy $59.5 Billion Annually.
Gaithersburg, MD: National Institute of Standards and Technology (NIST),
2002.

[11] N. R. Mead et al., Software Assurance Curriculum Project Volume I: Master
of Software Assurance Reference Curriculum (CMU/SEI-2010-TR-005/ESD-
TR-2010-005). Pittsburgh, PA: Software Engineering Institute, Carnegie
Mellon University, 2010.

[12] Stevens Institute of Technology, Graduate Software Engineering 2009
(GSWe2009) Curriculum Guidelines for Graduate Degree Programs in Soft-
ware Engineering, 2009. Electronic Publication: http://www.gswe2009.org/

[13] G. Ford, 1991 SEI Report on Graduate Software Engineering Education
(CMU/SEI-91-TR-002). Pittsburgh, PA: Software Engineering Institute, Car-
negie Mellon University, 1991. Electronic Publication:
http://www.sei.cmu.edu/reports/91tr002.pdf

[14] M. Ardis and G. Ford. 1989 SEI Report on Graduate Software Engineering
Education (CMU/SEI-89-TR-21). Pittsburgh, PA: Software Engineering Insti-
tute, Carnegie Mellon University, 1989. Electronic Publicatin:
http://www.sei.cmu.edu/reports/89tr021.pdf

12 | GETTING SECURE SOFTWARE ASSURANCE KNOWLEDGE INTO CONVENTIONAL
PRACTICE

http://www.unesco.org/webworld/infoethics_2/eng/papers/paper_23.htm
https://buildsecurityin.us-cert.gov/redirect?url=http%3A%2F%2Fwww.nytimes.com%2F2010%2F01%2F03%2Feducation%2Fedlife%2F03cybersecurity.html%3Femc%3Deta1
https://buildsecurityin.us-cert.gov/redirect?url=http%3A%2F%2Fwww.nytimes.com%2F2010%2F01%2F03%2Feducation%2Fedlife%2F03cybersecurity.html%3Femc%3Deta1
https://buildsecurityin.us-cert.gov/redirect?url=http%3A%2F%2Fwww.coverity.com%2Fhtml%2Fpress_story65_08_04_08.html
http://www.gswe2009.org/
https://buildsecurityin.us-cert.gov/redirect?url=http%3A%2F%2Fwww.sei.cmu.edu%2Freports%2F91tr002.pdf
https://buildsecurityin.us-cert.gov/redirect?url=http%3A%2F%2Fwww.sei.cmu.edu%2Freports%2F89tr021.pdf

[15] A. Abran and J. W. Moore, exec. eds., Guide to the Software Engineering
Body of Knowledge, 2004 Version. IEEE Computer Society. Electronic Pub-
lication: http://www.computer.org/portal/web/swebok

[16] B. S. Bloom, ed., Taxonomy of Educational Objectives: The Classification of
Educational Goals: Handbook I: Cognitive Domain. New York: Longmans,
1956.

[17] N. R. Mead, T. B. Hilburn, and R. C. Linger, Software Assurance Curriculum
Project Volume II: Undergraduate Course Outlines (CMU/SEI-2010-TR-019,
ESC-TR-2010-019). Pittsburgh, PA: Software Engineering Institute, Carnegie
Mellon University, 2010.

13 | GETTING SECURE SOFTWARE ASSURANCE KNOWLEDGE INTO CONVENTIONAL
PRACTICE

http://www.computer.org/portal/web/swebok

Copyright © Carnegie Mellon University and IEEE 2005-2013.

This material is based upon work funded and supported by Department of Homeland
Security under Contract No. FA8721-05-C-0003 with Carnegie Mellon University
for the operation of the Software Engineering Institute, a federally funded research
and development center sponsored by the United States Department of Defense.

Any opinions, findings and conclusions or recommendations expressed in this mate-
rial are those of the author(s) and do not necessarily reflect the views of Department
of Homeland Security or the United States Department of Defense.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND
SOFTWARE ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON AN
“AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO
WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO
ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF
FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR
RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON
UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH
RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT
INFRINGEMENT.

This material has been approved for public release and unlimited distribution except
as restricted below.

Internal use:* Permission to reproduce this material and to prepare derivative works
from this material for internal use is granted, provided the copyright and “No War-
ranty” statements are included with all reproductions and derivative works.

External use:* This material may be reproduced in its entirety, without modification,
and freely distributed in written or electronic form without requesting formal permis-
sion. Permission is required for any other external and/or commercial use. Requests
for permission should be directed to the Software Engineering Institute at permis-
sion@sei.cmu.edu.

* These restrictions do not apply to U.S. government entities.

DM-0001120

14 | GETTING SECURE SOFTWARE ASSURANCE KNOWLEDGE INTO CONVENTIONAL
PRACTICE

	Getting Secure Software Assurance Knowledge into Conventional Practice
	Educational Initiatives to Support Software Assurance Priorities
	Getting the Message Out
	Initiative One: Formulating and Disseminating Software Assurance Knowledge
	Initiative Two: A Master of Software Assurance Reference Curriculum
	Initiative Three: Implementing a Practical Software Assurance Curriculum
	Summary and Conclusions
	References

