Distributed Sensor Data Contextualization at Scale for Threat Intelligence Analysis

Jason Trost January 12, 2016

whoami

Jason Trost

- VP of Threat Research @ ThreatStream
- Previously at Sandia, DoD, Booz Allen, Endgame Inc.
- Background in Big Data Analytics, Security Research, and Machine Learning
- Big advocate and contributor to open source:
 - Modern Honey Network, BinaryPig, Honeynet Project
 - Apache Accumulo, Apache Storm, Elasticsearch

ThreatStream

- Cyber Security company founded in 2013 and venture backed by Google Ventures, Paladin Capital Group, Institutional Venture Partners, and General Catalyst Partners.
- SaaS based enterprise security software that provides actionable threat intelligence to large enterprises and government agencies.
- Our customers hail from the financial services, healthcare, retail, energy, and technology sectors.

Agenda

- Background
- Modern Honey Network
- Sensors
- Enrichment
- Contextualization
- Examples
- Gotchas
- Conclusion

Background

- Huge proliferation of new and old network sensors
 - IDS, Passive Inventory Systems, Malware Sandboxes
 - Honeypots, DNS Sinkholes, Endpoint agents
- Many useful data enrichment sources
 - Passive DNS (PDNS), Whois, IP Geolocation
 - Large Malware Metadata Repositories
 - Network Telescopes / Distributed Sensors / Honeypots
 - Portscan and Web crawl data repositories
 - Internal IT, Security, and IR Systems
- Data overload if not leveraged carefully
- Lots of opportunities for combining these data sets, interpreting them, and contextualizing events for threat researchers
- This research started with Honeypots, expanded to other events.

Honeypots

- Software systems designed to mimic vulnerable servers and desktops
- Used as bait to deceive, slow down, or detect hackers, malware, or misbehaving users
- Designed to capture data for research, forensics, and threat intelligence
- Also useful as sinkhole servers when paired with DNS RPZ

Why Honeypots

- Cheapest way to generate threat intelligence feeds around malicious IP addresses at scale
- Internal deployment
 - Behind the firewall
 - Low noise IDS sensors
 - Can be used in conjunction with DNS RPZ as sinkhole webserver
- Local External deployment
 - Who is attacking me?
 - Outside the firewall and on your IP space
- Global External deployment
 - Rented Servers, Cloud Servers, etc
 - Who is attacking everyone?
 - Global Trends

Modern Honey Network (MHN)

- Open source platform for managing honeypots, collecting and analyzing their data
 - https://github.com/threatstream/mhn
- Makes it very easy to deploy new honeypots and g data flowing
- Leverages some existing open source tools
 - hpfeeds
 - nmemosyne
 - honeymap
 - MongoDB
 - Dionaea, Amun, Conpot, Glastopf
 - Wordpot, Kippo, Elastichoney, Shockpot
 - Snort, Surricata, p0f

MHN Architecture

MHN Community

- MHN is also a community of MHN Servers that contribute honeypot events
- MHN Servers and their honeypots are operated by different individuals and organizations
- Sharing data back to the community is optional
- Anyone that does share can get access to aggregated data on attackers

MHN Community

Beyond Honeypot Sensors

- Intrusion Detection Systems
- Protocol Analyzers/Decoders
- Passive Device Inventory/Fingerprinting
- Sinkholes
- Malware Sandboxes
- Endpoint Security Products

Enrichment

- Data sets that are useful for joining with events
- Both local and external datasets can be useful
- Examples:
 - Whois
 - Passive DNS
 - Active probing data repositories (portscan, traceroute, web crawl)
 - Malware Metadata Repositories
 - Threat Intelligence Knowledgebase
 - Rollups, Analytics, Facts from your sensors
 - Internal IT, Security, and IR Systems

Contextualization

- Gather details and related information to make an event or an indicator more actionable
- Guide the analyst towards best practices
- Help analysts work faster/better
- Encode expert knowledge in the analytics and presentation
- Building blocks for more automation, decision support, and features for classifiers
- Remove the need for Level 1 SOC analyst?

Honeypot Attacker Profile?

- p0f events?
 - OS?
 - Linux or Windows or other?
 - Uptime?
 - short (less than 1 day)?
 - long (weeks or more)?
 - MTU?
 - Cable?
 - DSL?
 - VPN/tunneled?
- Query PDNS for the IP, filter for recent resolutions
 - Decent number of domains? → could be a web server
- Query Portscan repository
 - recent port 80/443 open?
- Query threat intelligence knowledge database
 - TOR?
 - 12P?
 - Commercial VPN?
 - Open or Commercial proxy?

Infected Windows Workstation?

home / work

Compromised Webserver?

- shared hosting?
- dedicated?

Ephemeral Exploitation/Scanning server?

Compromised System – How?

- Attacker using a compromised system?
- How did they get in?
 - SSH Brute force?
- Query portscan/webcrawl data repository

Campaign Scope?

- Is this IP attacking just me?
- Are they attacking my vertical?
- Are they attacking everyone?
- Distributed Honeypots or sensors are key here
 - Query external global deployment
 - Query external local deployment
 - Combine Events and summarize
 - first seen / last seen / number of sensors hit / ports involved
 - histogram of activity
 - Summary of exploits used, tools dropped & related C2s

Attacker Toolkit

- Deploying IDS with Honeypots can assist here
- Snort/Suricata are really useful for adding more context
 - CVE Tagging roughly 1/3 of the Emerging Threat Snort Rules have CVEs
 - Classify traffic
- Honeypots should collect exploit payloads and commands
- Linux Malware Sandbox
 - Execute these commands/scripts (often times wget + execute)
 - Save all payloads
 - Extract host and network IOCs
 - Maintain relationship to original attacker IP
- Query toolsets in VT

Malware Sandbox

- Deploy IDS on Malware Sandbox (Detonate files or URLs)
- Signatures Identify some types of C2 network traffic
- Identify Exploit Kit traffic (CVE tagger)
- Identify sinkhole IPs passively
- Extract indicators, CVEs, Context, make associations
- Any future event regarding these IOCs on your network should be enriched with this context

Sinkholes

- High interaction systems that mimic real services and C2 protocols where possible
- Deploy with IDS sensor
 - tag traffic where possible with C2 protocols
- Local Deployment
 - Use RPZ to sinkhole known malicious / suspicious domains
 - Malware C2
 - Dynamic DNS domains
 - Exploit kit domains
 - Identify internal compromised systems
- External Deployment
 - Register expired malicious domains or seize them
 - Identify infected systems across the globe

Automated Incident Response Collection

- Starting Point: Policy Violation, Network IDS Alert, Honeypot Sensor Event, DNS Sinkhole hit, Indicator Match in SIEM, etc.
- Automatically collect host based data
 - Logged in users
 - Running processes
 - DNS cache
 - Open network connections
 - Persistence checks
 - Prefetch files
- Diff the collected data against the previous collection or a "gold image"
- Prepare context for analyst

Enrichments: Whois

- Who registered this domain?
- Was this domain registered with a free email provider?
- Was this domain registered with a disposable email provider?
- Privacy protected?
- Is this domain likely sinkholed?

Enrichments: Internal IT, Security, and IR Systems

- Identity Information
- Asset Data
 - Specific Device
 - Owner
 - Device Characteristics
 - Software Inventory
- Related IR Tickets

Enrichments: Passive DNS (PDNS)

- What other domains resolved to this IP?
- What other IPs did this domain resolve to?
- Is this domain sinkholed?
- Is this a parking IP?
- Is this domain resolving to an IP using DHCP?
- Fast flux domain?
- Often useful to combine with Whois
 - Common registrant across most domains resolving to single IP? -> Sinkholed
 - Diverse registrants, common registrar? -> Parking IP

Enrichments: Active Probing Data

- Portscan, Web crawl, traceroute Repositories
- Build your own or leverage 3rd parties
- Host profile
 - Web server?
 - Embedded Device?
 - Router?
 - Endpoint?
- C2 Panel?
- Vulnerabilities?
 - Many can be determined unobtrusively
- Sinkhole?
 - X-Sinkhole header

Gotchas

- False positives
- Whitelists
- Lots of dead ends, pointing these out to analysts is important
- Rate limiting of enrichments

Conclusion

- Huge proliferation of network sensors and enrichment datasets
- Combining data is useful, let's do that
- Lots of opportunity to make security analysts better/faster

Contact

Jason Trost

- @jason_trost
- jason [dot] trost [AT] threatstream [dot] com