Presented by: Aaron Bossert, Cray Inc.

COMPUTE | STORE | ANALYZE

Network Security Analytics, HPC Platforms, Hadoop, and Graphs... Oh, My

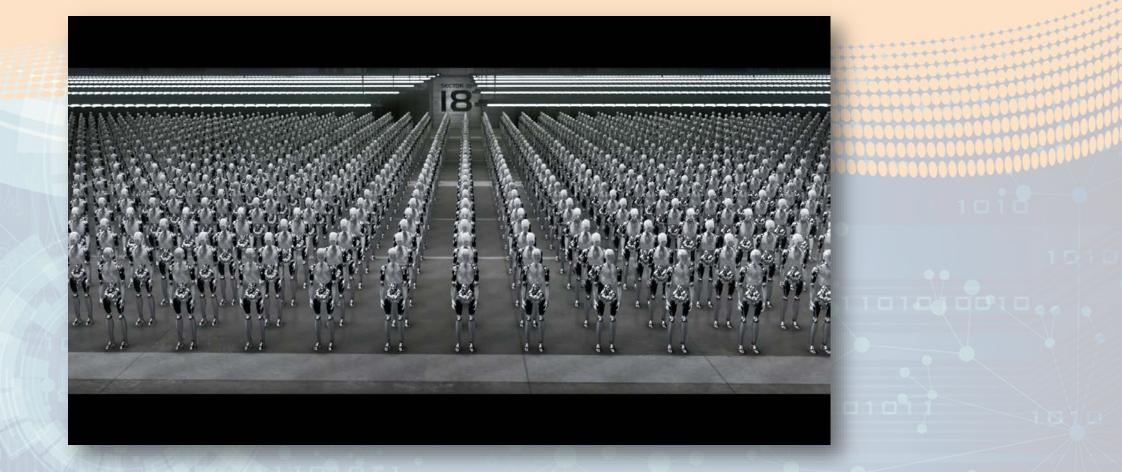
01110101

10001

The Proverbial Needle In A Haystack Problem

The Nuclear Option

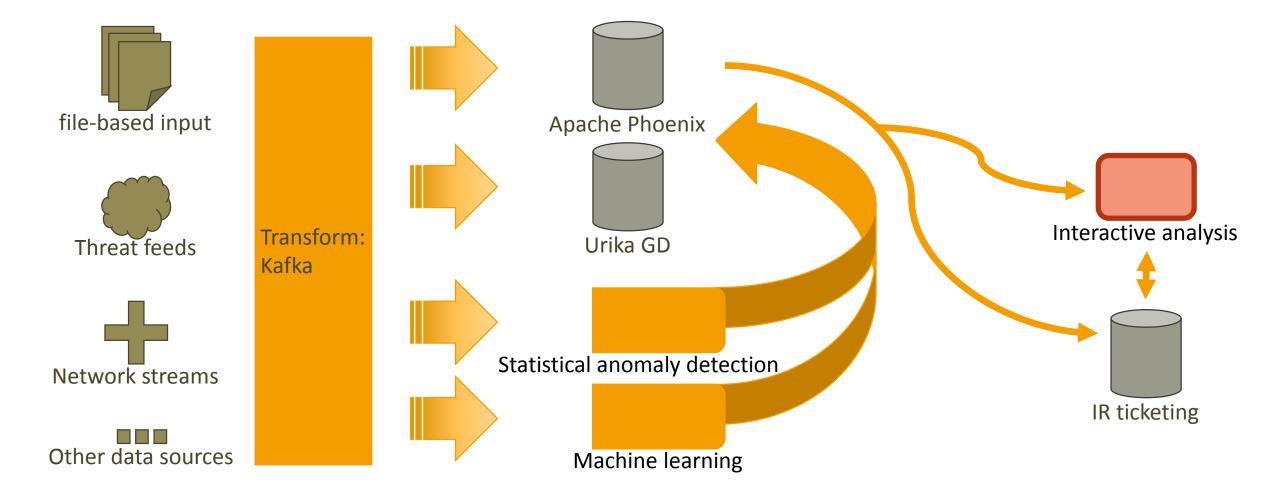
The "Spock" Option


GC

The "how we've been doing it" Option

jolyon.co.uk

We would like to humbly suggest bringing more workers to the party


Prefer a less recent pop-culture reference?

Background

- Technologies
 - Urika GD RDF triple store proprietary architecture (XMT, XMT2)
 - Urika XA Hadoop appliance x86 based architecture
 - Next?
- Customer needs
 - Massive scale
 - Flexibility to develop different use cases on one platform
 - Prevent cluster sprawl (e.g. dense racks)
- Example Use Case: Network security
 - Near-real-time ingest
 - Machine learning applied to streaming and static data (e.g. IR and Forensic investigations)
 - Flexible framework easy to extend and modify
 - "bag of tools, not a bag of hammers" (e.g. complementary technology stack to address different workloads)
 - Support novice to expert users (e.g. "easy button", if you want it; spin all the knobs if you don't)

High-Level Architecture

Architecture Highlights

- Credit where credit is due
 - Architecture is heavily based off of and influenced by Cisco OpenSOC
 - Changes made to take advantage of newer technologies (e.g. Apache Phoenix)
- Ingest
 - Apache Kafka selected for high throughput
 - Kafka development is relatively language agnostic (i.e. lower learning curve)
 - Kafka handles streaming and file-based input well (assuming sufficient IO to/from disk)
- Processing and machine learning
 - Still evaluating Kafka and Apache Storm, bulk of processing is done with Kafka for now
 - Existing algorithms are leveraged, new ones implemented trivially
 - Queries can be directed to the most appropriate tool, taking advantage of both traditional row/column and graph store strengths to answer questions
- The end result
 - Nearly raw data stored in Phoenix for maximum flexibility
 - Automated and manual analytic results aggregated and used for confidence scoring
 - Automated alerts used to create tickets past a certain threshold
 - Near-real-time and forensic use cases can be supported on a single platform seamlessly
 - Most of the pipeline can be extended in any programming language and potentially re-use existing code bases, lowering the bar to entry in a new environment

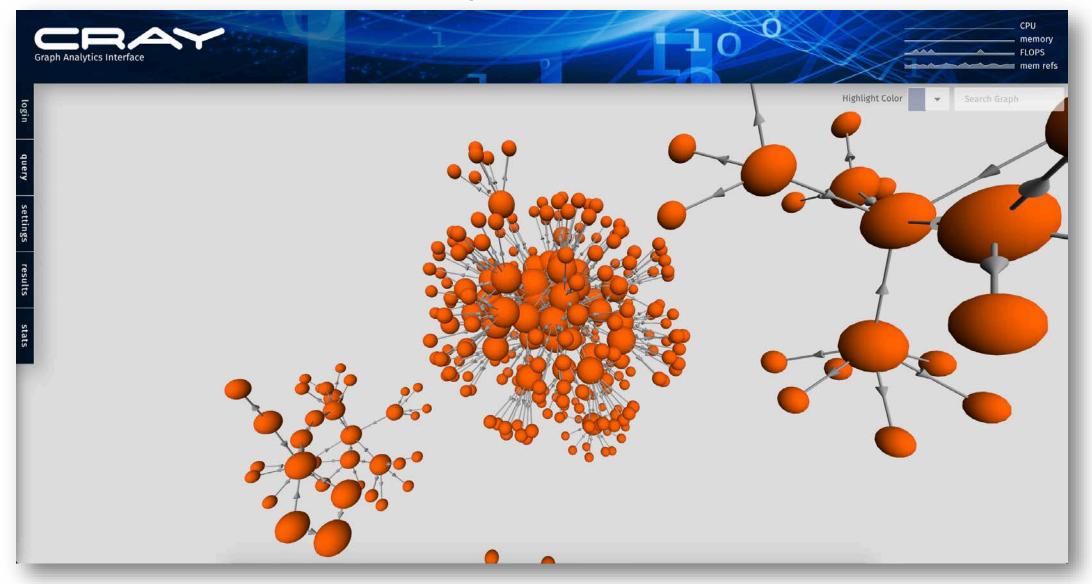
Input Data

- Off the wire, from files, or both
 - Kafka Producers used to efficiently manage and add new data sources
 - Currently have parsers for the following:
 - Netflow
 - Cisco ASA
 - Passive DNS (collected from internal DNS servers)
 - Publicly available black/white lists (fetched at regular intervals based on the data source)

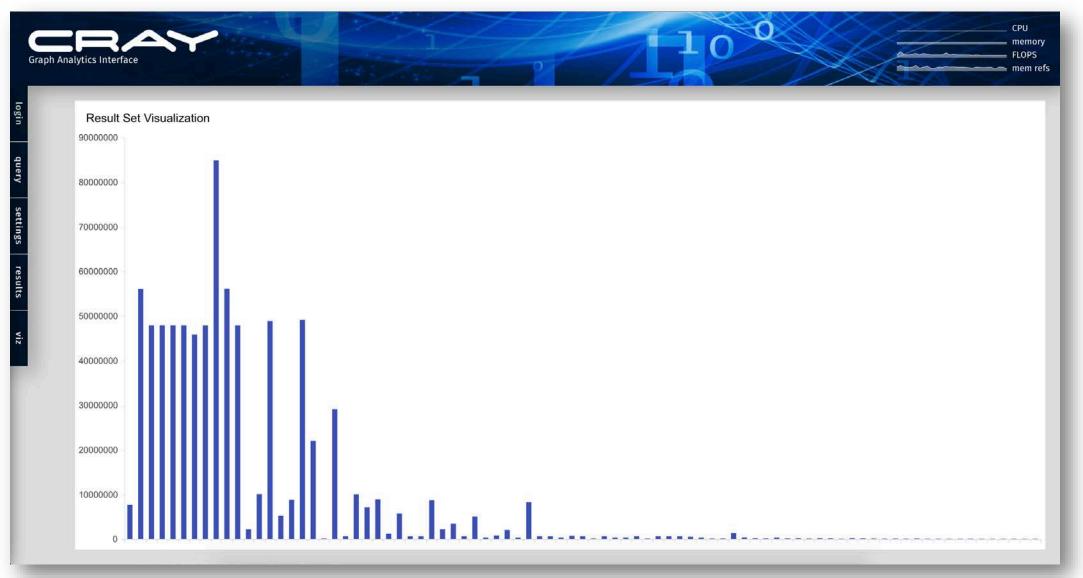
- WHOIS
- Active directory
- GeolP
- DHCP
- PCAP
- Many more supported by Cisco OpenSOC

Scoring Suspicious behavior

- Anomaly detection
 - Track both internal and external entities on a per-entity basis
 - Examples of dimensions tracked
 - Temporal patterns (e.g. time of day, day of week, etc.)
 - Traffic volume
 - TCP/UDP port usage
 - Protocol usage
- Existing threat data
 - Black/white lists
 - Firewall/IDS/IPS/SIEM logs
- Pulling it all together
 - Scores are transient in the sense that they apply for a given window of time (e.g. arbitrarily by hour or by day)
 - Calculated across all alerting mechanisms; use weighting
 - Weighted entity or traffic (depending on context) score crossing a threshold is flagged for analysis/verification
 - Automated analytics can run side by side with ad-hoc queries
 - Ad-hoc analysis can be integrated into the automated workflow including replay of past traffic
- Difference from standard IDS/IPS/SIEM
 - More complex pattern and behavior-based risk scoring based on multiple dimensions
 - Risk score's temporal aspect can be used to potentially block traffic dynamically and in a more fine-grained fashion


Scoring Example

Time	Anomaly	Weight	Score	
2016-01-02 13:10:02.223657	Abnormal SSH activity	2	0.2	
2016-01-02 13:14:33.114538	Abnormal UDP port usage	2	0.3	
2016-01-02 13:36:21.685934	Blocked traffic to blacklisted IP/domain	4	0.7	
Weighted score for 2016-01-02 13 :00:00.000000			0.6	
2016-01-03 08:44:55.300978	Unusual temporal activity (compared to baseline)	1	0.3	
Weighted score for 2016-01-03 08 :00:00.000000			0.3	
2016-01-03 10:02:31.000494	IDS alert	5	0.8	
2016-01-03 10:03:01.756002	Allowed transfer to domain closely associated with blacklisted IP (badRank)	4	0.6	
Weighted score for 2016-01-03 10 :00:00.000000			0.7	


Graphs

- BadRank
 - Essentially a seeded PageRank score
 - Allows for determining guilt by association; Specifically, uses passive DNS and/or WHOIS
- Centrality
 - Identifies bridge nodes between clusters/groups
 - Enables Identification of chokepoints for blocking traffic
 - Can be used to analyze botnet C² structure
- Community detection
 - Flexible multi-dimensional similarity
 - Can be used to classify traffic patterns and/or hosts
 - Can be used to identify additional compromised/malicious entities
- Summary
 - Graph algorithms provide a distinct class of tools not able to be easily implemented with relational data
 - Compliments statistical anomaly detection by providing additional dimensions
 - Handles joining disparate and complex datasets for enrichment

User Interface – Graphs ...

User Interface – Or tabular data in one UI

Questions, Contact, and Further Details

M. Aaron Bossert bossert@cray.com Cray Inc.

