
© 2015 Carnegie Mellon University

Software Solutions Conference 2015
November 16–18, 2015

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Managing Software and
System Complexity
Sarah Sheard, Ph.D.

2
Managing Software and System Complexity
November 17, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Copyright 2015 Carnegie Mellon University

This material is based upon work funded and supported by the Department of Defense under Contract No. FA8721-05-C-
0003 with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research
and development center.

Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do
not necessarily reflect the views of the United States Department of Defense.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND,
EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF
FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE
MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT
TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

[Distribution Statement A] This material has been approved for public release and unlimited distribution. Please see
Copyright notice for non-US Government use and distribution.

This material may be reproduced in its entirety, without modification, and freely distributed in written or electronic form
without requesting formal permission. Permission is required for any other use. Requests for permission should be directed
to the Software Engineering Institute at permission@sei.cmu.edu.

DM-0003038

3
Managing Software and System Complexity
November 17, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Managing Software and System Complexity

Growth of Complexity

What is Complexity?

Example: Systems of Systems
complexity

Contributing Factors

What Worsens Complexity?

Reducing Objective Complexity

Reducing Subjective Complexity

Conclusion

4
Managing Software and System Complexity
November 17, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Any sufficiently advanced technology is
indistinguishable from magic.

-Arthur C. Clarke

Motivation

Any technology distinguishable from
magic is insufficiently advanced.

- Gehm’s Corollary

5
Managing Software and System Complexity
November 17, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Growth of Complexity

Every year, systems are more
complex than last year

Capability grows…our systems
do more thinking

Number of systems to
interoperate with grows

Systems to be redundant,
resilient, adaptable, and secure
to a variety of digital threats

Results in growing complexity

6
Managing Software and System Complexity
November 17, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

What Is Complexity?

Complexity is a state or quality of being composed
of many intricately interconnected parts, in a
manner that makes it difficult for humans,
supplemented by tools, to understand, analyze, or
predict behavior

Objective Complexity
Characteristics of technical system

Subjective Complexity
Characteristics of human experience with the system

7
Managing Software and System Complexity
November 17, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Size (number of elements, requirements, users…)

Interconnectedness (number of links)

Heterogeneity (heterogeneity of elements, and of links;
multi-scale important elements)

Change (short term dynamics – butterfly effect, behavior –
and long term dynamics – evolution)

Sociopolitical complexity (Stakeholder conflict,
stakeholder changes)

Aspects of Objective Complexity

-Sheard 2012 Dissertation,
see http://seir.sei.cmu.edu/sheard/

8
Managing Software and System Complexity
November 17, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Difficulty understanding

Difficulty determining cause and effect

Confusion and frustration

Unpredictability

Inability to list all the major problems

Difficulty teasing a problem apart into
component sub-problems

Aspects of Subjective Complexity

9
Managing Software and System Complexity
November 17, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Concepts Related to Complexity

Lines of code
Unmaintainable
Difficult to verify
Nonlinear behavior
Strong coupling
Open system
Unclear system boundary
Not possible to understand
Can have cascading failures
System of systems
Heterogeneous elements
User cognitive load

O
S
S
O
O
O
S
S
O
O
O
S

Are These Objective or Subjective?

10
Managing Software and System Complexity
November 17, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Objective Causes Subjective

Many pieces

Tightly coupled pieces

Nonlinear behavior

SoS with many
stakeholders

Uncertain
Risky
Hard to understand
Unpredictable
Frustrating
Uncontrollable

Causes

11
Managing Software and System Complexity
November 17, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Systems
• Software, computer hardware, other

hardware
• Safety case

Projects
• Teams, process, constraints, laws,

deadlines, …

Environments
• Technical – interfacing systems
• Sociopolitical

What Can Be Complex?

12
Managing Software and System Complexity
November 17, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Complexity is in all cases difficult to deal with.
It may be necessary.

Is Complexity Bad?

Yes
In performance, schedule,
cost: a more complex
system is worse than a
simpler system

No
More complex systems can
have more intelligent
functionality

13
Managing Software and System Complexity
November 17, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Splitting Complexity

Split complexity between technical system and operator

• Technical system can handle complexity that could confuse an
operator (e.g. calculate position from sensor data)

Goals:

• System shouldn’t be so simple it leaves all complexity to the
operator

• System shouldn’t be so complex it hides issues and leaves the
operator completely out of the loop

14
Managing Software and System Complexity
November 17, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Complexity, however defined
objectively, relentlessly
increases

Complexity, defined
subjectively, relentlessly
decreases (for a given system)

Complexity Changes with Time

15
Managing Software and System Complexity
November 17, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Example: Complexity of a System of Systems

Purpose: to create a multi-purpose,
multi-user technology

Organization: One enterprise including
several ACAT 1 programs

• Each program has cost, schedule,
performance issues and makes
adjustments per own priorities

• Each program can hold up all
the others

Desire top-down control; best you can
get is agreements

16
Managing Software and System Complexity
November 17, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

 This system will be launched into orbit, and we can’t fix it after
that

 Dealing with legacy systems

 Conflict between cheapest now and most adaptable for the
future

 Stakeholders change

 New standards came out since we started designing this

 Example: Internet of Things

Example: Contributing Factors to Complexity

17
Managing Software and System Complexity
November 17, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Reasons for Today’s Complexity Increase
Environment evolves

• Distributed systems, distributed development
• Requirements

• Interoperability
• Safety
• Resilience, flexibility and adaptability

• Evolving nature of security threats and countermeasures
• Tools and environments allow it, e.g., optimizing

compilers, higher-order languages.

-- Sheard, Sarah and A. Mostashari, “Principles of complex systems for systems engineering.”
Systems Engineering 12(4), 2009: 295-311.

18
Managing Software and System Complexity
November 17, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

 Using more components

 Patching after-the-fact

 Requirement changes approved midway through the program

 Using components about which little is known (Legacy, COTS)

 Inadequate time for engineers to think (“Just do the process”)

 Multiple stakeholders, especially when they change their minds

 Changing relationships among stakeholders

 Lack of clarity in architecture

 Lack of clarity regarding which experts are the final authority

- Experience

What Makes Complexity Worse?

19
Managing Software and System Complexity
November 17, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Reduce objective complexity

Often: Architecture

Reduce subjective complexity

Many tools and techniques from
project management and systems
engineering

Treat remaining complexity as risks

Dealing With Complexity

20
Managing Software and System Complexity
November 17, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Project management and systems engineering activities
• Planning, tracking
• Identification and prioritization of requirements
• Allocation of tasks to people
• Allocation of requirements to components
• Trade studies
• Communication with customer representatives
• Risk management

Identify and address “system of systems” engineering concerns
Identify systems and software architectures that best address

needed qualities
Evolve the right design by adapting proven designs

Dealing With Complexity: 2

21
Managing Software and System Complexity
November 17, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Use fewer components/pieces

Use fewer *kinds of* components or pieces

Decouple (caution: this may reduce capability)

Reduce the frequency of change (defer to
“next version”)

Improve clarity of communication

Reducing Objective Complexity

22
Managing Software and System Complexity
November 17, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Establish capable modeling, configuration
management, and design environment

Probe, proof the new technology: Prototype

Learn from others who are using it

Improve clarity of communication

Train engineers and give them time to think

Reducing Subjective Complexity

23
Managing Software and System Complexity
November 17, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

• Identification
• Analysis

• What, how, when
• Any cascading effects
• How likely and how bad
• Evaluation

• Mitigation
• Monitoring

Treat Remaining Complexity as Risks

24
Managing Software and System Complexity
November 17, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Objective complexity relates to the system and can be measured
• Systems become more objectively complex over time

Subjective complexity varies with person and time
• A system becomes less subjectively complex with familiarity and

tools

Reduce complexity with standard tools and techniques
• Architecture; planning, tracking, communicating

Treat remaining complexity as a risk: identify, analyze, mitigate

Conclusion

25
Managing Software and System Complexity
November 17, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Presenter
Sarah A. Sheard
Senior Engineer
Telephone: +1 412.268.7612
Email: sheard@sei.cmu.edu

Contact Information

26
Managing Software and System Complexity
November 17, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

