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Any sufficiently advanced technology is 
indistinguishable from magic.

-Arthur C. Clarke

Motivation

Any technology distinguishable from 
magic is insufficiently advanced.

- Gehm’s Corollary
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Growth of Complexity

Every year, systems are more 
complex than last year

Capability grows…our systems 
do more thinking

Number of systems to 
interoperate with grows

Systems to be redundant, 
resilient, adaptable, and secure 
to a variety of digital threats 

Results in growing complexity
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What Is Complexity?

Complexity is a state or quality of being composed 
of many intricately interconnected parts, in a 
manner that makes it difficult for humans, 
supplemented by tools, to understand, analyze, or 
predict behavior

Objective Complexity
Characteristics of technical system

Subjective Complexity 
Characteristics of human experience with the system
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Size (number of elements, requirements, users…)

Interconnectedness (number of links)

Heterogeneity (heterogeneity of elements, and of links; 
multi-scale important elements)

Change (short term dynamics – butterfly effect, behavior –
and long term dynamics – evolution)

Sociopolitical complexity (Stakeholder conflict, 
stakeholder changes)

Aspects of Objective Complexity

-Sheard 2012 Dissertation, 
see http://seir.sei.cmu.edu/sheard/
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Difficulty understanding

Difficulty determining cause and effect

Confusion and frustration

Unpredictability

Inability to list all the major problems

Difficulty teasing a problem apart into 
component sub-problems

Aspects of Subjective Complexity
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Concepts Related to Complexity

Lines of code
Unmaintainable
Difficult to verify
Nonlinear behavior
Strong coupling
Open system 
Unclear system boundary
Not possible to understand
Can have cascading failures
System of systems
Heterogeneous elements
User cognitive load

O
S
S
O
O
O
S
S
O
O
O
S

Are These Objective or Subjective?
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Objective  Causes Subjective

Many pieces

Tightly coupled pieces

Nonlinear behavior

SoS with many 
stakeholders

Uncertain
Risky
Hard to understand
Unpredictable
Frustrating
Uncontrollable

Causes
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Systems 
• Software, computer hardware, other 

hardware 
• Safety case

Projects 
• Teams, process, constraints, laws, 

deadlines, …

Environments 
• Technical – interfacing systems 
• Sociopolitical

What Can Be Complex?
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Complexity is in all cases difficult to deal with.
It may be necessary.

Is Complexity Bad?

Yes
In performance, schedule, 
cost: a more complex 
system is worse than a 
simpler system

No
More complex systems can 
have more intelligent 
functionality
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Splitting Complexity

Split complexity between technical system and operator

• Technical system can handle complexity that could confuse an 
operator (e.g. calculate position from sensor data)

Goals:

• System shouldn’t be so simple it leaves all complexity to the 
operator

• System shouldn’t be so complex it hides issues and leaves the 
operator completely out of the loop
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Complexity, however defined 
objectively, relentlessly 
increases

Complexity, defined 
subjectively, relentlessly 
decreases (for a given system)

Complexity Changes with Time
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Example: Complexity of a System of Systems

Purpose: to create a multi-purpose, 
multi-user technology

Organization: One enterprise including  
several ACAT 1 programs 

• Each program has cost, schedule, 
performance issues and makes 
adjustments per own priorities

• Each program can hold up all 
the others

Desire top-down control; best you can 
get is agreements
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 This system will be launched into orbit, and we can’t fix it after 
that

 Dealing with legacy systems

 Conflict between cheapest now and most adaptable for the 
future

 Stakeholders change 

 New standards came out since we started designing this

 Example: Internet of Things 

Example: Contributing Factors to Complexity 
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Reasons for Today’s Complexity Increase
Environment evolves

• Distributed systems, distributed development
• Requirements

• Interoperability 
• Safety
• Resilience, flexibility and adaptability

• Evolving nature of security threats and countermeasures
• Tools and environments allow it, e.g., optimizing 

compilers, higher-order languages.

-- Sheard, Sarah and A. Mostashari, “Principles of complex systems for systems engineering.”  
Systems Engineering 12(4), 2009: 295-311.
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 Using more components

 Patching after-the-fact

 Requirement changes approved midway through the program

 Using components about which little is known (Legacy, COTS)

 Inadequate time for engineers to think (“Just do the process”)

 Multiple stakeholders, especially when they change their minds

 Changing relationships among stakeholders

 Lack of clarity in architecture 

 Lack of clarity regarding which experts are the final authority

- Experience

What Makes Complexity Worse?
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Reduce objective complexity

Often: Architecture

Reduce subjective complexity

Many tools and techniques from 
project management and systems 
engineering 

Treat remaining complexity as risks

Dealing With Complexity
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Project management and systems engineering activities 
• Planning, tracking
• Identification and prioritization of requirements
• Allocation of tasks to people
• Allocation of requirements to components
• Trade studies 
• Communication with customer representatives
• Risk management

Identify and address “system of systems” engineering concerns
Identify systems and software architectures that best address 

needed qualities 
Evolve the right design by adapting proven designs

Dealing With Complexity: 2
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Use fewer components/pieces

Use fewer *kinds of* components or pieces

Decouple (caution: this may reduce capability)

Reduce the frequency of change (defer to 
“next version”)

Improve clarity of communication

Reducing Objective Complexity
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Establish capable modeling, configuration 
management, and design environment

Probe, proof the new technology: Prototype

Learn from others who are using it

Improve clarity of communication

Train engineers and give them time to think

Reducing Subjective Complexity
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• Identification
• Analysis

• What, how, when
• Any cascading effects 
• How likely and how bad 
• Evaluation

• Mitigation
• Monitoring

Treat Remaining Complexity as Risks
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Objective complexity relates to the system and can be measured 
• Systems become more objectively complex over time

Subjective complexity varies with person and time
• A system becomes less subjectively complex with familiarity and 

tools

Reduce complexity with standard tools and techniques
• Architecture; planning, tracking, communicating

Treat remaining complexity as a risk: identify, analyze, mitigate

Conclusion
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