
© 2015 Carnegie Mellon University

Software Solutions Conference 2015
November 16–18, 2015

Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Technical Debt:
Why Should You Care?
Ipek Ozkaya and Robert L. Nord

2
Technical Debt: Why You Should Care?
November 17, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Copyright 2015 Carnegie Mellon University

This material is based upon work funded and supported by the Department of Defense under Contract
No. FA8721-05-C-0003 with Carnegie Mellon University for the operation of the Software Engineering
Institute, a federally funded research and development center.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING
INSTITUTE MATERIAL IS FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY
MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER
INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR
MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL.
CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH
RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

[Distribution Statement A] This material has been approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government use and distribution.

This material may be reproduced in its entirety, without modification, and freely distributed in written or
electronic form without requesting formal permission. Permission is required for any other use. Requests
for permission should be directed to the Software Engineering Institute at permission@sei.cmu.edu.

DM-0003050

3
Technical Debt: Why You Should Care?
November 17, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Popular media is recognizing major software failures as technical
debt

• United Airlines failure (July 8, 2015 “network connectivity”)

• New York Stock Exchange glitch (July 8, 2015 “configuration issue)

• Healthcare.gov (February 2015,”users cannot access functionality”)

Researchers conservatively estimate US$361,000 of technical
debt/100 KLOC, the cost to eliminate the structural-quality
problems that seriously threatened the application’s business
viability.

Are we being fooled by scare tactics?
How do we understand the real problem and why should we care?

Is Technical Debt Real?

4
Technical Debt: Why You Should Care?
November 17, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

What is technical debt anyways?

What is the technical debt timeline?

Common misconceptions about
managing technical debt

Agenda

5
Technical Debt: Why You Should Care?
November 17, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

We define technical debt as a software design issue that:
• Exists in a system artifact, such as code, build scripts,

automated test suites, data;

• Is traced to several locations in the system, implying ripple
effects of impact of change;

• Has a quantifiable effect on system attributes of interest to
developers, such as increasing number of defects, negative
change in maintainability and code quality indicators.

What is Technical Debt?

6
Technical Debt: Why You Should Care?
November 17, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Types of Debt

Fowler, M. 2009. Technical debt quadrant, Blog post at:
http://martinfowler.com/bliki/TechnicalDebtQuadrant.html.

Deliberate
Inadvertent

“We don’t have
time for design”

Reckless Prudent

“We must ship
now and deal

with
consequences”

“What’s
Layering?”

“Now we know
how we should
have done it”

7
Technical Debt: Why You Should Care?
November 17, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

“We have a model-view controller framework. Over time we
violated the simple rules of this framework and had to retrofit later
many functionality”

Modifiability violation, pattern conformance

“There were two modules highly coupled that should have been
designed for from the beginning”

Modifiability violation, pattern conformance

“A simple API call turned into a nightmare <due to not following
guidelines>”

Framework, pattern conformance

What is Technical Debt: Examples

8
Technical Debt: Why You Should Care?
November 17, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Timeline Perspective of Technical Debt

4321

5

1. debt is incurred

2. debt is recognized

3. plan and re-architect

4. debt is paid-off

5. continuous monitoring

Contractor
intentionally
or unintentionally
incurs debt

Contractor
recognizes, but
does not declare
or fix the debt

An optimal time
to rearchitect or
refactor the
system passes

By the time the
government owns the
system the
accumulation of debt
(detection and rework)
is very expensive

Ideal where
technical debt is
used strategically
and declared at
acquisition time

“Contractor developed our software tool and delivered the
code to the government for maintenance. The code was

poorly designed and documented therefore there was a very
long learning curve to make quality changes. We continue

to band aide over 1 million lines of code under the
maintenance contract. As time goes by, the tool becomes

more bloated and harder to repair.”

9
Technical Debt: Why You Should Care?
November 17, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Technical Debt Analogy

• What is the debt?
• How does debt accumulate?
• When should you pay back debt?

10
Technical Debt: Why You Should Care?
November 17, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Is this a symptom of your debt?

• Teams spend almost all of their time
fixing defects, and new capability
development is continuously slipping.

• Integration of products built by
different teams reveals that
incompatibilities cause many failure
conditions and lead to significant out-
of-cycle rework.

• Progress toward meeting milestones is
unsatisfactory because unexpected
rework causes cost overruns and
project-completion delays.

11
Technical Debt: Why You Should Care?
November 17, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Technical Debt: Why You Should Care?

Avoid these common
misconceptions

12
Technical Debt: Why You Should Care?
November 17, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Misconception: Software quality management
practices will help avoid technical debt

This view suffers from the following
short-comings:
- Overlooks the impact of system

complexity of long-lived, large-scale
systems on technical debt
management

- Underestimates the impact of
technology change and evolution on
the system

- Assumes technical debt can be and
should be avoided, and potentially will
fail to take advantage of it when
needed

13
Technical Debt: Why You Should Care?
November 17, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Correction: Software quality management
practices will help manage technical debt

Technical debt management is about
managing the short-term and long-term
design trade offs.

Technical debt can be used as a value-
added design strategy.

Practices such as explicitly denoting
technical debt and creating buffer-time to
pay-off and analyze for technical debt
will help manage it in the long term.

14
Technical Debt: Why You Should Care?
November 17, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Misconception: Eliminating defects will
eliminate technical debt

This view suffers from the following
short-comings:
- Focuses only on the customer visible,

functional aspects of the system
problems

- Results in overlooking underlying
contributors of defects as design
issues

- Fails to recognize accumulating
interest of potential technical debt that
the defects might be signaling

15
Technical Debt: Why You Should Care?
November 17, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Correction: Defects are key symptoms of
technical debt

Defects, especially recurring defects,
defects that have been open for a long
time, and defects accumulating around
particular aspects of the system point to
technical debt to tackle.

Understand the amount of resources and
processes that go into defect
management to better understand
accumulating side effects of technical
debt.

16
Technical Debt: Why You Should Care?
November 17, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Misconception: Focusing on customer value-added
functionality is sufficient to manage technical debt

This view suffers from the following
short-comings:
- Assumes getting functionality into the

hands of the customers as quickly as
possible is what value is

- Follows the “if it works then there is
nothing wrong with it, don’t touch it”
culture

- Disregards the importance of
architecturally significant requirements

17
Technical Debt: Why You Should Care?
November 17, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Results from over 1800 developers from two large
industry and one government software development
organization

“Measure it? Manage it? Ignore it? Software Practitioners and
Technical Debt” N. Ernst, S. Bellomo, I. Ozkaya, R. Nord, I.
Gorton, Int. Symp on Foundations of Software Engineering 2015

Correction: Customer value-added functionality
includes longevity and sustainability

Results from over 1800 developers
from two large industry and one
government software development
organization.
“Measure it? Manage it? Ignore it? Software Practitioners and
Technical Debt” N. Ernst, S. Bellomo, I. Ozkaya, R. Nord, I.
Gorton, Int. Symp on Foundations of Software Engineering 2015.

18
Technical Debt: Why You Should Care?
November 17, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Correction: Customer value-added functionality
includes longevity and sustainability

Most challenging technical debt issues
are architectural.

Differentiate strategic structural technical
debt from technical debt that emerges
from low code quality or poor
engineering practices.

Invest time to understand architecturally
significant requirements and their trade-
offs.

https://insights.sei.cmu.edu/sei_blog/2015/07/a-field-study-of-technical-debt.html

19
Technical Debt: Why You Should Care?
November 17, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Misconception: Technical debt cannot be
quantified

This view suffers from the following
short-comings:
- Assumes measurement always

happens with numbers
- Lumps project management and

technical quality management
together immaturely

- Expects one dollar figure for getting
ahead of technical debt

20
Technical Debt: Why You Should Care?
November 17, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Correction: Quantifying technical debt requires
combination of qualitative and quantitative measures

Define clearly short-term and long-term
structural goals of the system.

Invest in a sound development and
testing infrastructure that incorporates
automated quality measurement
aspects.

Scout for project management and
technical review practices that can easily
be revised to include tracking technical
debt.

Integrate technical debt reduction into
iteration planning.

21
Technical Debt: Why You Should Care?
November 17, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Ask the Hard Questions Early and Often

What are our dominant sources of debt?
• start with code, structure and process as larger

areas of investigation
How can debt be visualized with effective tool
support?

• decide on key business metrics and relate them
to the product, that will drive what tool if any is
right

How to identify and manage strategic
architectural debt?

• optimize for cost of rework, if you need to
minimize it, more up-front analysis is needed

How and when to pay-back debt?
• make it an ongoing process

22
Technical Debt: Why You Should Care?
November 17, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Manage the Technical Debt Timeline

321

Incurred Symptom

Intentional and strategic

PayoffRework

4

5

23
Technical Debt: Why You Should Care?
November 17, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

• Make architecture features and technical debt visible.

• Differentiate strategic structural technical debt from technical
debt that emerges from low code quality.

• Invest in tools and technique that help elicit and track leading
indicators.

• Engage business and technical persons in making tradeoffs.

• Integrate technical debt management into planning and standard
operating procedures.

• Associate technical debt with risk management.

Start today!

24
Technical Debt: Why You Should Care?
November 17, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Questions?

25
Technical Debt: Why You Should Care?
November 17, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Contact Information

Ipek Ozkaya
email: ozkaya@sei.cmu.edu

Robert Nord
email: rn@sei.cmu.edu

http://www.sei.cmu.edu/architecture/

