A Defect Prioritization Method Based on the Risk Priority Number

Will Hayes – SEI Julie Cohen – SEI Bob Ferguson – SEI

Software Solutions Conference 2015 November 16–18, 2015

Software Engineering Institute

Carnegie Mellon University

© 2015 Carnegie Mellon University

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Copyright 2015 Carnegie Mellon University

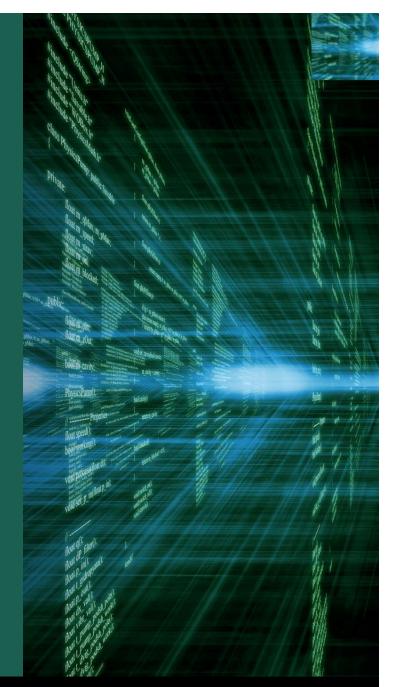
This material is based upon work funded and supported by the Department of Defense under Contract No. FA8721-05-C-0003 with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research and development center.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

This material has been approved for public release and unlimited distribution except as restricted below.

This material may be reproduced in its entirety, without modification, and freely distributed in written or electronic form without requesting formal permission. Permission is required for any other use. Requests for permission should be directed to the Software Engineering Institute at permission@sei.cmu.edu.

DM-0002730

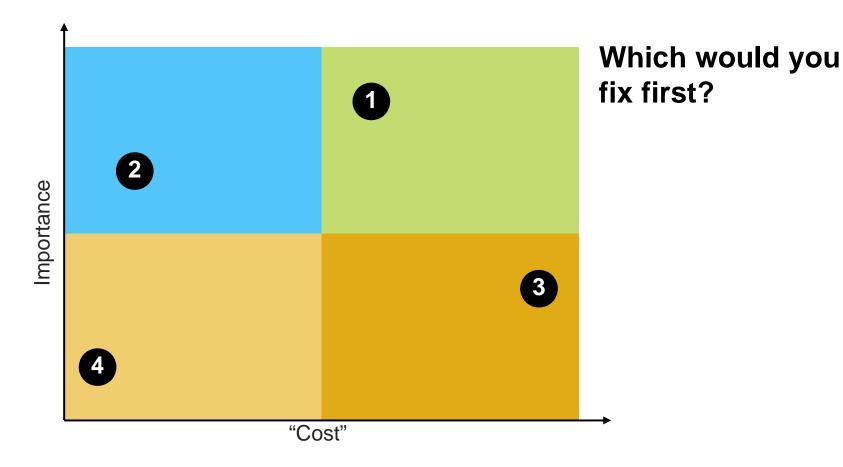

Agenda

Overview Pilot Experience Measurement Scales Numeric Example

A Defect Prioritization Method Based on the Risk Priority Number November 18, 2015 © 2015 Carnegie Mellon University Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Risk Priority Number: A Method for Defect Report Analysis **Overview**

© 2015 Carnegie Mellon University



Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Overview

A Generic Example – Comparing Four Defects

Carnegie Mellon University

Software Engineering Institute

A Defect Prioritization Method Based on the

Overview

How do we judge importance?

Using "severity" alone has issues

- People are tempted to negotiate a severity rating to account for the importance they perceive
- Without a way to discuss what makes things important, the conversation may become a competition among advocates

RPN focuses on risk exposure

- Allows the team to assess the priority of fixes
- Can relate priority to the understanding of risk

Risk can be perceived from different viewpoints

- User, developer, cost, time
- May need multiple views to make the best decision

Overview

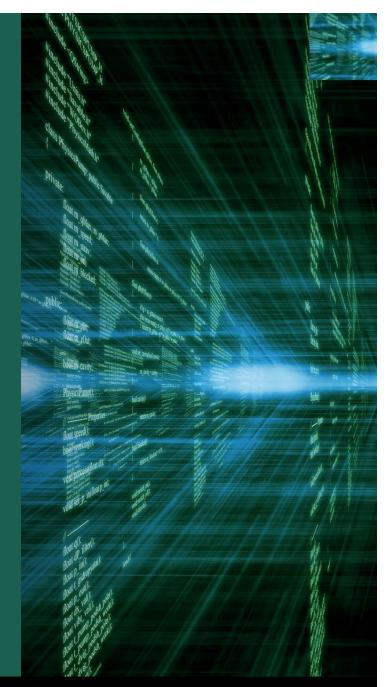
Elements of Risk Priority Number

Generally based on processes that were developed from reliability and cost methods

- Severity: a rating of the adverse impact of the defect a measure that reflects the negative consequence to the users or developers
- Occurrence: how often the defect is encountered and/or how long it takes to recover functionality – a measure that reflects a different element of the impact of the defect
- Detection: how easy it is to spot the defect is when it occurs a measure that reflects the risk of unmitigated consequences if the defect is not remedied

General Explanation

RPN includes:


- Rating scales characterizing elements of:
 - Severity,
 - Occurrence
 - Detection
- Scaling values for the ratings
- (Optional) Weighting for each rating scale to emphasize what matters most/least in a given system

RPN = Severity x Occurrence x Detection

• A weighted sum, rather than multiplying the numbers together, can be included an option

Risk Priority Number: A Method for Defect Report Analysis **Pilot Experience**

© 2015 Carnegie Mellon University

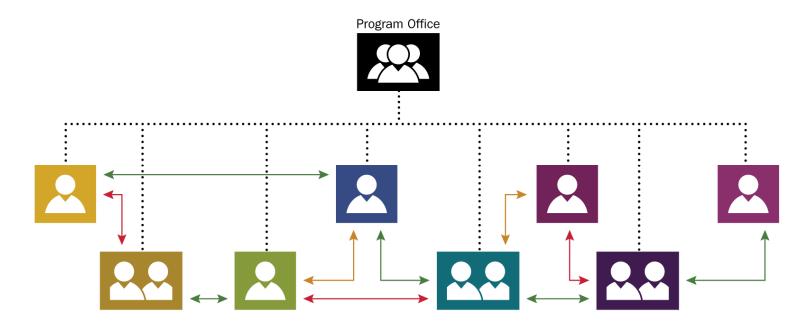
差 Software Engineering Institute **Carnegie Mellon University**

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

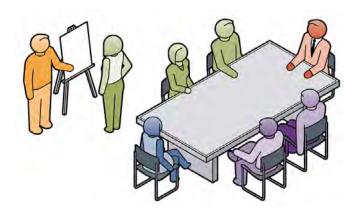
Expected Range of Application

Development, operation, and sustainment contexts are all candidates for adapting RPN to support decision making on which defects to fix first

Keys to successful usage

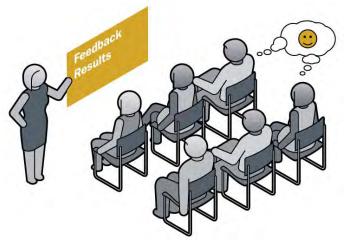

- Custom rating scales developed with appropriate personnel
- Socializing draft materials with stakeholders
- Buy-in from participants in existing defect review processes

Example Usage – scenario


A major weapon system in early fielding is looking for a way to plan the contents of releases comprised of defect fixes

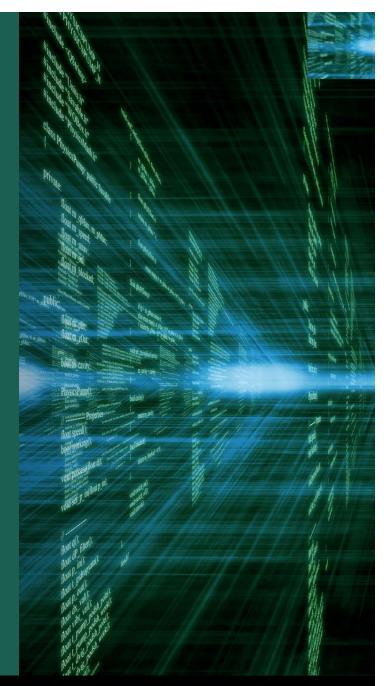
- Diverse user community with legitimate competing priorities
- Limited funding for future work (many defects will never be fixed)
- Program office motivated to maximize system utility/value

A Defect Prioritization Method Based on the Risk Priority Number November 18, 2015 © 2015 Carnegie Mellon University Distribution Statement A: Approved for Public Release; Distribution is Unlimited


Example Usage 1

- 1. A small working group was formed
 - Representatives familiar with existing defects for this system
 - A member of the program office staff who understands the vision for the system
 - Measurement coach who can help navigate the process of constructing measurement scales
 - Draft rating scales were developed as well as computation procedures

A Defect Prioritization Method Based on the

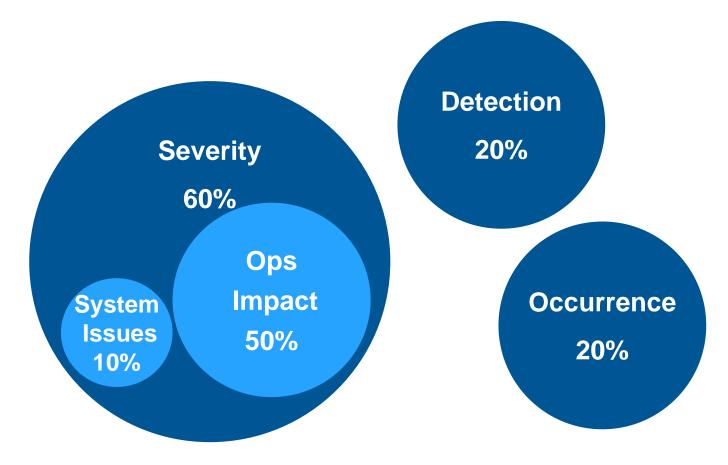

Example Usage – 2

- 3. Draft materials were reviewed with user communities
 - The reasons for using RPN were explained and tied to the current decision processes
 - The rating scales were explained to people who write defects or who champion defects to be included in releases
 - Worked examples of real defects to discuss how ratings are assigned
- 4. Rating scales and procedures were updated based on feedback

A Defect Prioritization Method Based on the

Risk Priority Number: A Method for Defect Report Analysis **Measurement Scales**

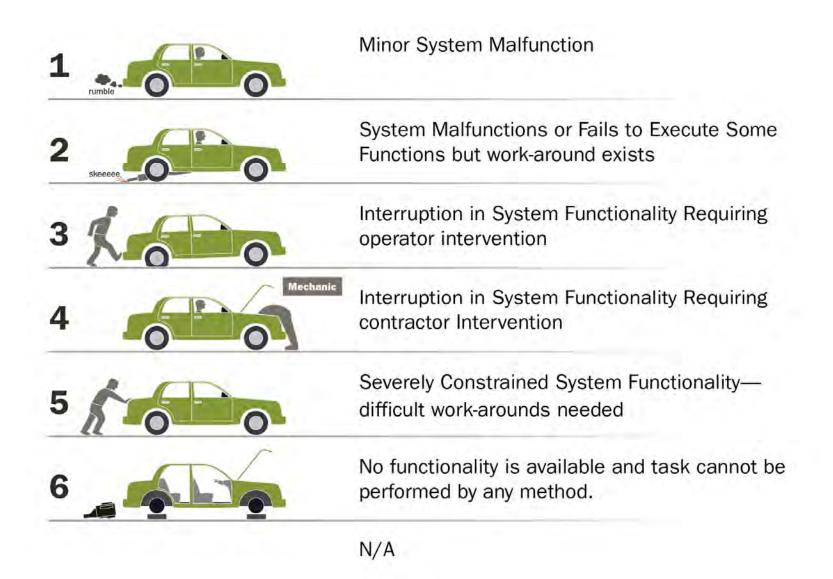
© 2015 Carnegie Mellon University


Distribution Statement A: Approved for Public Release; Distribution is Unlimited

差 Software Engineering Institute Carnegie Mellon University

Measurement Scales Sample Scales

The following example covers scales developed to fit a specific context, with active involvement of stakeholders.



Software Engineering Institute Carnegie Mellon University

A Defect Prioritization Method Based on the Risk Priority Number November 18, 2015 © 2015 Carnegie Mellon University Distribution Statement A: Approved for Public Release; Distribution is Unlimited **Measurement Scales**

Software Engineering Institute

Rating Scales – Severity – System Function

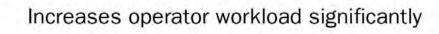
Carnegie Mellon University

16

A Defect Prioritization Method Based on the

roved for Public Release; Distribution is Unlimited

Risk Priority Number


Distribution Statement A: A

18.2015

Measurement Scales

Rating Scales – Severity - Operational Impact

- 1 🔮
- Increases operator workload slightly
- 2

- 3
 - **.....**?
 - Certain delay/limit to mission operations

Could limit/delay mission operations

5 CANCEL

- Could cause mission failure
- 6
- Certain mission failure
 - N/A

Rating Scales – Detection

There is an explicit alert or warning that there is a malfunction; or the system or application fails or crashes.

Users will always notice a visible malfunction, and only novices would fail to detect the unexpected system behavior.

Users will always notice a visible malfunction, but only after other functions or workflow steps have completed.

A user may detect subtle symptoms during normal operation, but may not immediately recognize the cause.

Issue not detectable during normal operation

A Defect Prioritization Method Based on the Risk Priority Number November 18, 2015 © 2015 Carnegie Mellon University nent A: Approved for Public Release; Distribution is Unlimited

Rating Scales – Occurrence

- **1** O Under 10 hours to recover
- **2 ((() (() (() ()()()()()()()()()()()()()()()()(**
- **3 O O O O** About a week to to recover
 - Weeks to months to recover
- 5 000
- Up to 3 months to recover
- More than 3 months to recover

Note: Occurrence = Number of times the defect is encountered per year x the time restore functionality

4

6

Measurement Scales

Using Proportional Scales

RPN is based on the use of proportional scales

The ordinal discussed in the last few slides must be changed to a proportional rating

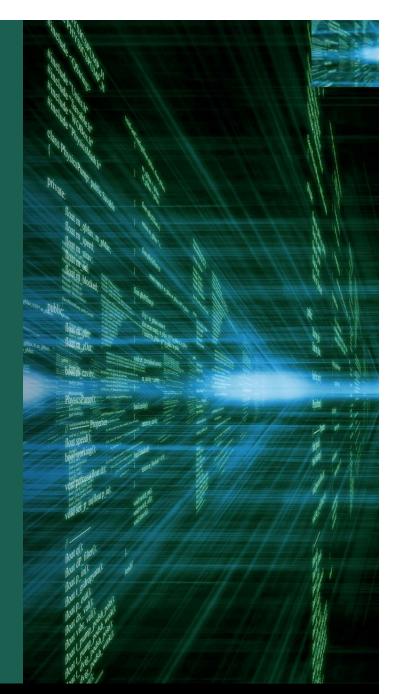
A Defect Prioritization Method Based on the Risk Priority Number November 18, 2015 © 2015 Carnegie Mellon University Distribution Statement A: Approved for Public Release; Distribution is Unlimited Based on user input the final weighed average was:

Scaled System Behavior rating scale value * 10% +

Scaled Operational Impact scale value * 50% +

Scaled Detection rating scale value * 20% +

Scaled Time scale value * 20%


Resulted in a non-continuous rating scale from 0 to 2400

Note: The four values could also have just been multiplied together, using different scales to adjust for importance

Risk Priority Number: A Method for Defect Report Analysis

Back-Up Materials Numeric Example

© 2015 Carnegie Mellon University

Software Engineering Institute | Carnegie Mellon University

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Resource Available

For a more complete discussion of the examples presented here, please download the white paper available at the following URL:

http://resources.sei.cmu.edu/asset_files/whitepaper/2013_019_001_70276.pdf

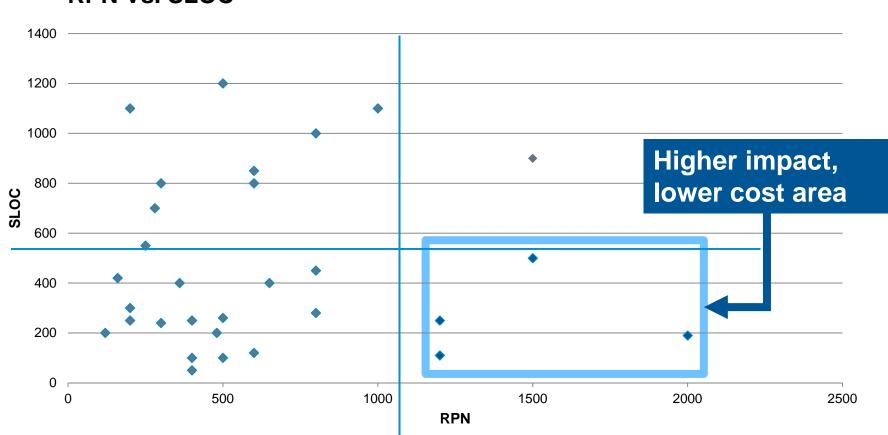
Software Engineering Institute Carnegie Mellon University

A Defect Prioritization Method Based on the Risk Priority Number November 18, 2015 © 2015 Carnegie Mellon University Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Sample Data Description

For the sample data we have:

Three users – A, B, and C with 10 defects each


Five Functions

- Communications
- Navigation
- Planning
- Propulsion
- Security

Assume defects will be fixed in increments of 3,000 Source Lines Of Code (SLOC) each (Note: SLOC is used as a proxy for cost) Even with this small sample there are hundreds of combinations!

One way to look at the sample data

RPN Vs. SLOC

Note: In this example, SLOC is being used as a proxy for cost

A Defect Prioritization Method Based on the **Risk Priority Number** November 18, 2015 © 2015 Carnegie Mellon University Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Four Analysis Methods

Method	Brief Description	Pros	Cons
Functionality	Group defects by system function using RPN and SLOC to select order	 Easier to test specific functional areas Should see improvements in specific areas addressed 	 May not address top user ranked defects Some functional areas will not be addressed in every increment Some functional areas may still need to be split due to SLOC constraints
System Risk	List defects by RPN and draw a line at the 3000 SLOC; Best used for pure maintenance (regression testing only)	 Addresses system level risk first Fairly easy to use 	 Doesn't specifically address functionality groups Doesn't specifically address user rankings
User rankings	List defects by user rankings and draw a line at 3000 SLOC;	Addresses user rankingsFairly easy to use	 May fix defects with lower overall system risk earlier; Doesn't address system value Doesn't specifically address functionality groups Need to address differences between users
Hybrid	Combinations of the methods above	Depends on method	Depends on method

A Defect Prioritization Method Based on the

Analysis Method - Functionality

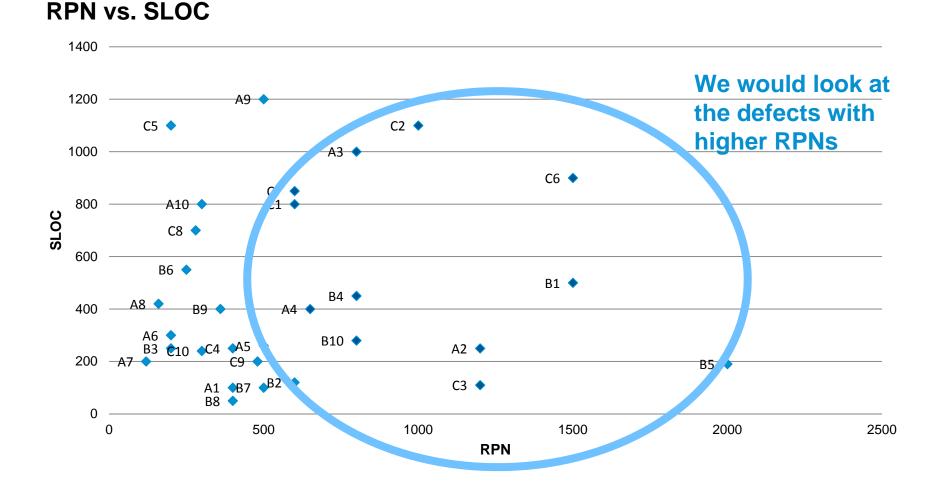
Look at top level data in a summary format (30 defects from 3 Users)

Functional Area	Defects	Total SLOC	Total RPN
Communications	7	2200	5240
Navigation	7	1700	4210
Planning	8	4700	3620
Security	5	3550	2720
Propulsion	3	1450	2100
		13600	

Highest RPN areas are Communications and Navigation

Assuming 3000 SLOC per build you could close all the defects in Communications, but you will need to do a partial fix in the
 Navigation Area

Draft Analysis Method - Functionality


Def#	User Priority	Area	SLOC	RPN	User Top 3 Priority
120	A2	Communications	250	1200	
114	A3	Communications	1000	800	RPN >1000
116	B5	Communications	200	2000	RPN <500
121	A6	Communications	100	200	
100	A8	Communications	400	160	SLOC > 500
123	B8	Communications	50	400	
115	C9	Communications	200	480	
102	B1	Navigation	500	1500	
106	B2	Navigation	100	600	
107	B3	Navigation	250	200	
108	B6	Navigation	100	250	3,000 SLOC
122	B7	Navigation	100	500	Cut-Off
101	B9	Navigation	400	360	
117	B10	Navigation	250	800	
			3900		

First Build - 4 of 9 Top 3 User Rankings, All Comm defects, First 2 Navigation defects; All 3 Users have at least 1 defects fixed

Software Engineering Institute **Carnegie** Mellon University

A Defect Prioritization Method Based on the **Risk Priority Number** November 18, 2015 © 2015 Carnegie Mellon University Distribution Statement A: Approved for Public Release; Distribution is Unlimited

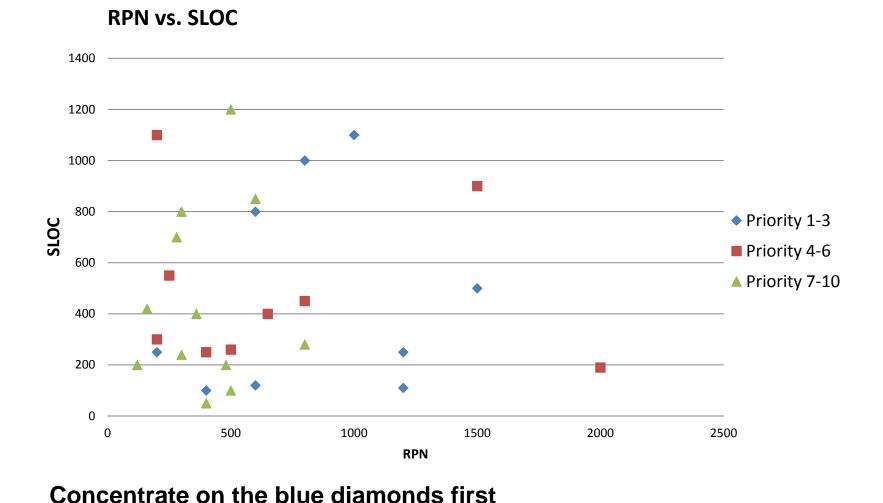
Second Analysis Method – System Risk

A Defect Prioritization Method Based on the

November 18, 2015 © 2015 Carnegie Mellon University Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Risk Priority Number

Top 10 RPN Defects


Def#	User Priority	Area	SLOC	RPN	User Top 3 Priority
116	B5	Communications	200	2000	
102	B1	Navigation	500	1500	RPN >1000
113	C6	Security	900	1500	RPN <500
120	A2	Communications	250	1200	
103	C3	Propulsion	400	1200	SLOC > 500
114	A3	Communications	1000	800	
117	B10	Navigation	250	800	T
125	B4	Security	450	800	
118	C2	Planning	1100	800	
106	B2	Navigation	100	600	
			5150		
					3.000 SLOC

3,000 SLOC Cut-Off

First Build - 3 of 9 Top 3 Priority defects, 4 of 5 functions, burns down ~40% of total system risk

A Defect Prioritization Method Based on the Risk Priority Number November 18, 2015 © 2015 Carnegie Mellon University Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Third Analysis Method – User Ranking

A Defect Prioritization Method Based on the Risk Priority Number November 18, 2015 3 © 2015 Carnegie Mellon University Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Top User Ranked DRs

Defect#	User Priority	Area	SLOC	RPN	User Top 3 Priority
124	A1	Planning	100	400	RPN >1000
102	B1	Navigation	500	1500	RPN <500
127	C1	Propulsion	800	600	
120	A2	Communications	250	1200	SLOC > 500
106	B2	Navigation	100	600	
118	C2	Planning	1100	800	
114	A3	Communications	1000	800	•
107	B3	Navigation	250	200	
103	C3	Propulsion	400	1200	3,000 SLOC Cut-Off

First Build - 6 of 9 Top 3 Priority defects, 4 of 5 functions

A Defect Prioritization Method Based on the Risk Priority Number November 18, 2015 © 2015 Carnegie Mellon University Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Hybrid Method – Start with User Ranking

Def#	User Priority	Area	SLOC	RPN	User Top 3 Priority
124	A1	Planning	100	400	
102	B1	Navigation	500	1500	RPN >1000
127	C1	Propulsion	800	600	
120	A2	Communications	250	1200	RPN <500
106	B2	Navigation	100	600	SLOC > 500
118	C2	Planning	1100	800	
114	A3	Communications	1000	800	
107	B 3	Navigation	250	200	
103	C3	Propulsion	400	1200	
126	A4	Security	400	100	
125	B4	Security	450	800	
129	C4	Planning	250	400	

Based solely on User Rankings you would fix all the users' top 2 defects

Hybrid Method – Then Consider Functionality

Look at top level data in a summary format (30 defects from 3 Users)

Functional Area	Defects	Total SLOC	Total RPN
Communications	7	2200	5240
Navigation	7	1700	4210
Planning	8	4700	3620
Security	5	3550	2720
Propulsion	3	1450	2100
		13600	

Based solely on User Rankings you would fix all the users' top 2 defects- BUT

There are only 3 Propulsion defects total and 2 were top-3 priority list – the total SLOC for all three is 1450 so you might consider doing those first

Hybrid Method – Determine What Else To Include

Based solely on User Rankings you would fix all the users top 2 defects - <u>BUT</u>

There are only 3 Propulsion defects total and 2 are in this list – the total SLOC for all three is 1450 so you might consider doing those first

You could then add in 6 of the 7 Navigation defects and still be under the 3000 SLOC budget

Hybrid Method – Final Listing

Def#	User Priority	Area	SLOC	RPN	User Top 3 Priority
127	C1	Propulsion	800	600	
103	C3	Propulsion	400	1200	RPN >1000
112	C10	Propulsion	250	300	
102	B1	Navigation	500	1500	RPN <500
106	B2	Navigation	100	600	SLOC > 500
107	B3	Navigation	250	200	
108	B6	Navigation	100	250	
122	B7	Navigation	100	500	
117	B10	Navigation	250	800	

Based solely on User Rankings you would fix all the users top 2 defects - BUT

There are only 3 Propulsion defects total and 2 are in this list – the total SLOC for all three is 1450 so you might consider doing those first

You could then add in 6 Navigation defects and 1300 SLOC (2750 total SLOC)

Note: You could add additional defects to get to 3000 SLOC; or you could have considered adding Communication defects next instead of Navigation

Other uses

Can be used in a development environment:

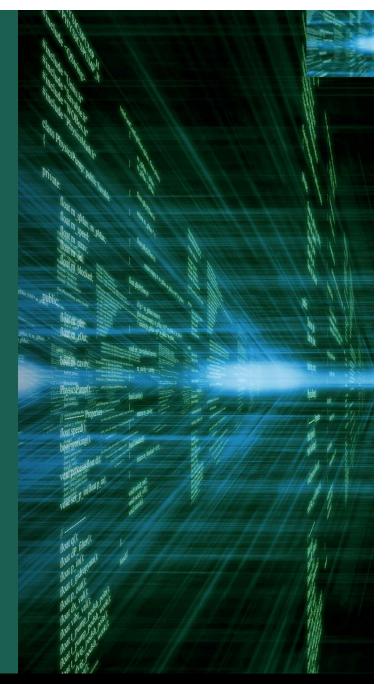
- Severity can be related to test blockers or number of interfaces to other units, to key requirements or to operational impacts (if known)
- Detection still based on ability to know the defect has occurred
- Time can be based on the effort needed to correct the defect
- RPN can still be compared to functionality and to total cost to fix

Can be used in a maintenance environments

- Rating scale development would be very similar to the example
- Would tend to try to fix the highest RPN defects first, but may still group by functionality or users depending on the situation

Suggestions for DoD Usage

Develop a team to put together the structure for RPN use


 Include the program office, using command, users, contractors, etc. as needed

Need to develop:

- Definitions for severity which may include different categories
- Definitions for detection which may include different categories
- Methods for dealing with occurrence measures
- Scaling factors
- Computation methods
- Data collection methods
- Process for using RPN values

Questions?

© 2015 Carnegie Mellon University

e Carnegie Mellon University

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Contact Information

Presenter / Point of Contact

William Hayes Client Technical Solutions Divisions Telephone: + 1 412.268.6398 Email: <u>wh@sei.cmu.edu</u>

Customer Relations

Email: info@sei.cmu.edu			
Telephone:	+1 412.268.5800		
SEI Phone:	+1 412.268.5800		
SEI Fax:	+1 412.268.6257		