

Software Engineering Institute
Carnegie Mellon University
4500 Fifth Avenue
Pittsburgh, PA 15213-2612

Phone: 412-268-5800
Toll-free: 1-888-201-4479

www.sei.cmu.edu

Estimating Benefits from Investing
in Secure Software Development

ABSTRACT: This article discusses the costs and benefits of incorporating secu-
rity in software development and presents formulas for calculating security costs
and security benefits.

BACKGROUND
The press is full of articles about how lack of secure software leads to security
breaches. The number of reported incidents is on the rise, and the same is true
about the security vulnerabilities found and disclosed in many major software
applications. The CERT Coordination Center received 3,782 reports of vulnera-
bilities in the year 2003 alone and has reported more than 82,000 incidents in-
volving various cyber attacks. These vulnerabilities cause significant losses to
the user organizations. Cavusoglu et al. [Cavusoglu 04] and Cambell et al.
[Cambell 03] estimate that such losses can run in millions. Similar observations
are reported in CSI/FBI surveys.

While major software companies are committing themselves to designing more
secure software, there is little work that demonstrates the value of secure soft-
ware. For one thing, unlike physical goods manufacturers such as automakers,
software vendors do not face legal liability if vulnerabilities in their products are
exploited. Thus there is no direct cost of poor security. However, a paper by Tel-
ang and Wattal is the first piece of evidence that vulnerability announcements
are adversely linked to market prices of software vendors [Telang 05]. Using an
event study methodology, the authors show that the market reacts negatively to
software vendors whose products have revealed significant vulnerability. The
authors conclude that this is due to loss of reputation, cost of patching, etc. The
study provides some evidence that the market is willing to punish the vendor for
lack of security and hence creates incentives for providing more secure software.
Microsoft is using the level of vulnerabilities and therefore the level of patches
needed as a measure of improved cost/benefit [Microsoft 08].

However, as we noted, there is relatively little published work that quantifies the
benefits from investing in secure software development. The cost of incorporat-
ing security in software development practices is still a new area of work and

Ashish Arora

Rahaul Telang

Steven Frank

February 2007

consequently there are relatively few publications. In a work by Soo Hoo, Sad-
bury, and Jaquith, the return on secure software engineering was shown to be
21% [Soo Hoo 01]. Data presented by Fortify indicates that the cost of correction
of security flaws at the requirements level is up to 100 times less than the cost of
correction of security flaws in fielded software. The COCOMO developers have
found that the cost of fixing errors of all types at requirements time is about 20
times less than the cost of fixing errors in fielded software. Regardless of which
statistic is used, there would seem to be a substantial cost savings for fixing se-
curity flaws at during requirements development rather than fixing security flaws
after software is fielded. For vendors, the cost is magnified by the expense of
developing and releasing patches. However, it seems clear that cost savings exist
even in the case of custom software when security flaws are corrected early in
the development process.

EXTANT WORK
Our approach to quantifying the value of secure software development is to fo-
cus on the cost of security and the benefits of security separately.

Cost of Secure Software
Major roadblocks to quantify the cost of secure software development include
lack of precise data, lack of consensus on measurement metrics, and relatively
recent focus on security. However, there has been significant work on quantify-
ing and estimating the cost of software development. Some of the early work
started with the COCOMO (Constructive Cost Model) model (see [Clark 98] for
details). This model has been revised significantly, and various other models for
estimating the effort and duration for software development have been proposed
and implemented by industry (see
http://sern.ucalgary.ca/courses/seng/621/W98/johnsonk/cost.htm).

One way to think about the cost of security is to think security in terms of quali-
ty. There is some work in software engineering literature that focuses on the cost
of software quality. Generally, quality improvements in software are associated
with better design, more testing, and inspection, all of which directly affect the
cost [Krishnan 97, Slaughter 98]. Of course the benefits of such activities may
still outweigh the costs. Slaughter et al. divide the cost of better quality as “con-
formance based” and “non-conformance” based. Conformance is the ability to
reach desired quality. To achieve desired quality one either (a) eliminates the
source that causes defects (by improved training, quality improvement meetings,
design reviews, etc.) or (b) eliminates the defects by valuating and auditing the
product (code inspection, testing, software measurement activities, etc). The re-

1 | ESTIMATING BENEFITS FROM INVESTING IN SECURE SOFTWARE DEVELOPMENT

searchers then quantify return on investment on quality improvement by using
the data from a firm and show that this ROI is positive and significant.

Unfortunately, formulating and implementation any of the cost metrics for soft-
ware quality is difficult because these measures tend to be either product specif-
ic, technology specific, or firm specific [Boehm 76] and hence hard to general-
ize. In another work, Krishnan, Kriebel, Kekre, and Mukhopadhyay show that
having better personnel, more use of case tools, and more up front investments in
planning, design, etc. improve product quality [Krishnan 00].

Given the fact that quantification for better software quality has been demon-
strated, one can start from the same approach for security as well. However, all
of these studies implicitly assume that more quality merely reduces the number
of bugs but does not affect product size (i.e., to achieve more quality one need
not necessarily add more lines), does not affect product complexity, etc. If we
believe incorporating more security in the product is similar to quality, one can
use the metrics proposed in the studies mentioned above to measure the cost of
security.

However, potentially incorporating security affects the product design more sub-
stantively than incorporating quality. In other words, making a product more
secure may mean more or less complexity in the product, more or less size, and
more or less functionality in the product. Thus one may incur indirect costs in
product design that are over and above conformance costs like training cost, case
tool cost, etc.

Benefits of Secure Software
For understanding the benefits of secure software, we focus on the work that
describes methods and models for supporting decision making regarding invest-
ments in information security from a user perspective, i.e., from the perspective
of an IT-using organization that wishes to protect itself against cyber attacks.
Insofar as secure software development is one way of investing in information
security, this research is relevant.

Some typical examples of this work include [Arora 04], [Soo Hoo 01], [Butler
02], [Pinto 04], and [Mead 04]. In addition, there are a number of articles pub-
lished in the popular press that take a similar approach. We adapt this approach
to a software development context, applying it to the problem of assessing the
return on investing in secure software development practices.

The approach in all these studies is similar. In particular, the benefits are meas-
ured as the capitalized dollar value of losses averted as a result of secure soft-
ware development practices. The studies differ mainly in how they seek to

2 | ESTIMATING BENEFITS FROM INVESTING IN SECURE SOFTWARE DEVELOPMENT

measure the avoided losses. In Arora et al., Pinto et al., and Mead et al. the data
required to estimate losses with and without security investments (including pos-
sibly secure software development practices) are based on administrative data. A
crucial issue here is calculating bypass rates. Bypass rates measure what percent-
age of loss event (such as intrusions, attacks, virus infections, and insider theft)
are stopped by the existing security measures (and therefore not captured by ad-
ministrative data on observed intrusions or losses). The observed frequency of a
given type of loss event is multiplied by the inverse of the bypass rate to obtain
the baseline rate for that type of loss event. Separately, administrative data or
other sources (such as estimates by managers) are used to estimate the range of
losses, measured in dollars, suffered by the organization corresponding to that
loss event. In Arora et al. the losses are measured in terms of the resources re-
quired for remediation, and the resources are then converted into monetary units.
The estimates of average loss and the estimated baseline frequency are combined
to produce an estimate of baseline loss (sometimes called baseline risk). A simi-
lar procedure is followed to calculate the expected loss after security measures
are implemented (also sometimes called residual risk). Note that security
measures may reduce both the frequency of loss events and their impact (i.e.,
losses due to those events). The difference between the baseline risk and residual
risk yields the expected benefit (also sometimes called avoided risk).

The other studies cited differ mostly in how the data are obtained. Kevin So Hoo
shows how publicly available data can be used. He uses published data from
CSI/FBI surveys to estimate losses and frequencies of loss events. Butler’s
method economizes on administrative data and relies on informed but subjective
assessments by experienced security managers regarding the likely types of loss
events, the losses from such events, and their frequencies. It also relies on such
subjective assessments to obtain the residual risk. Another important difference
is in the way in which the loss data are elicited. Instead of eliciting the monetary
value of the dollar loss for all loss events, for some types of events managers
respond on a Likert scale. Butler then converts all monetary and non-monetary
loss data into a common severity scale for aggregation. Since the cost of security
investments is mostly measured in dollars, Butler’s method does not directly
support a return on security calculation. However, his method can be modified to
allow a calculation of a return on security.

The forgoing research is aimed at estimating the benefits of cybersecurity related
investments. Our framework for understanding the business relevance draws on
this literature by acknowledging that a key benefit of secure software develop-
ment is that users of the software will have greater avoided risk relative to base-
line. The value of secure software therefore includes a component that is calcu-
lated analogously to the value of investing in information security. The details
will differ depending on the context. For internal software development teams,

3 | ESTIMATING BENEFITS FROM INVESTING IN SECURE SOFTWARE DEVELOPMENT

the benefit will include the difference between baseline and residual risk. For
custom software development (where an independent vendor is responsible for
development), the benefit will include the part of the difference that the vendor
captures (through higher payment, bonus, future business or testimonials and
references leading to future business). The benefit must be scaled by the number
of users, as is the case for a product developed for several users (such as shrink-
wrap software). Since the vendor and users are, in this case, distinct organiza-
tions, one must adjust the benefits to reflect the portion of the benefits captured
by vendors. In some cases, service level agreements and other contractual provi-
sions may provide additional constraints.

In proposing this, we are also mindful of the many challenges in obtaining data.
In particular, when the developer belongs to a different organization than the
user, the developer is unlikely to have access to administrative records to form
estimates of the frequency of loss events and the associated losses. Similarly,
developers may be unable to estimate such quantities. Further, developers may
be unable to estimate the fraction of the benefits created that they capture. In-
stead, for vendors, factors such as loss of reputation and loss of future sales are
likely to be more salient. Accordingly, our proposed framework is flexible in
allowing respondents to estimate value in alternative ways. We are careful, how-
ever, to minimize the possibility of double counting.

There are other potential benefits. An important one is that software that has
fewer vulnerabilities will also need fewer patches and security related updates.
Thus, a second component of the benefit of secure software development is the
reduction in patching costs. Although there is no published method for estimat-
ing avoided patching costs, one could adapt the risk framework for this. Thus,
the benefit would be measured as the difference between the baseline patching
cost and the residual patching cost. The baseline patching cost is measured as the
observed number of vulnerabilities per year per thousand lines of code multi-
plied by the discovery rate, multiplied by the average cost of patching per vul-
nerability. In this context, the discovery rate is needed because not all vulnerabil-
ities present in a system are likely to be discovered. Indeed, Rescorla’s findings
suggest that in large systems, the rate at which vulnerabilities are discovered is
roughly constant over time, implying that even as the number of vulnerabilities
remaining in a system (i.e., those that have not yet been discovered) falls, the
discovery rate increases in proportion, leaving the overall number of vulnerabili-
ties discovered per period constant. More recent research casts some doubt on
this assertion [Rescorla 04, Ozment 05]. The third category of benefits includes
the estimated monetary value of avoided risk of regulatory penalties, contractual
penalties, and other sanctions.

4 | ESTIMATING BENEFITS FROM INVESTING IN SECURE SOFTWARE DEVELOPMENT

COST AND BENEFIT CALCULATORS
Two programs are available for download: one to calculate the benefits gained
from added software security measures and one to calculate the costs associated
with added software security measures. Both were designed in Excel using Visu-
al Basic for Applications. For the programs to operate, you must have macros
enabled.

Calculating Security Benefits
To calculate the benefits gained from adding security to a software project, it is
necessary to gather the following information:

• program size: The program’s size in number of source lines of code.
• bug frequency: The number of bugs (both security and non-security bugs)

that appear in the program per thousand source lines of code (tsloc).
• costs incurred from bugs: The overall cost per bug.

The program’s size is a fairly easy number to ascertain from anyone on the de-
velopment team, and recent research indicates that it may be possible to roughly
determine the number of lines of code from a compiled program based on file
size.

Bug frequency is a combination of the total number of non-security bugs plus the
total number of security bugs that occur per thousand lines of code. Research
currently indicates that the number of security bugs per thousand lines of code
ranges from around 1 to 6. There are in fact commercial enterprises that are
working on the problem of identifying bugs in source code, such as Coverity, as
well as others who engage in independent code reviews.

The costs incurred from a bug are divided into pre-release costs and post-release
costs. The following information is required to determine the cost component:

• pre-release component
− the percentage of bugs detected and fixed pre-release
− the average cost per bug fix pre-release

• post-release component
− the percentage of security bugs believed to be discovered and ex-

ploited by attackers. (This number may be a guess on the part of
the user, so it is best to try running the program with a series of
guesses to build up a range of values.)

− public relations costs, including the amount of effort expended in
terms of man months plus any additional costs incurred

− legal costs, including the amount of effort expended in terms of
man months plus any additional costs incurred

5 | ESTIMATING BENEFITS FROM INVESTING IN SECURE SOFTWARE DEVELOPMENT

− client support costs in terms of man months expended
− the effect on future sales revenue lost due to a security breach.

Sales are assumed to recover after one year.
− additional incidental costs in dollars
− the overall cost involved in diagnosing a problem post-release in

man months plus incidentals
− the overall cost involved in patching software post-release in man

months plus incidentals
− the overall cost involved in software testing post-release in man

months plus incidentals
− the user’s average cost per man month

• post-security component
− the estimated reduction in the overall number of bugs (in percent-

age) that will occur due to increased security standards and con-
trols

− the estimated raise in bug detection pre-release due to increased
security standards and controls

There are two separate equations used in the benefits calculation. The first one
calculates the expected losses before security is added, and the second calculates
the expected costs after security is added. The equations are as follows:

Benefit Equation (One): Expected Cost Pre-Security
Pre-Release Component = (PercentageOfBugsDiscoveredPreRelease * Pre-
ReleaseFixCost)

Exploit Component = (((NumberOfSecurityBugs / (NumberofSecurityBugs
+ NumberOfNonSecurityBugs)) * (1- PercentageOfBugsDiscoveredPreRe-
lease)) * (PercentBugsExploited * TotalCosts))

Where:

TotalCosts = Total PR Costs + Total Legal Costs + Total Client Sup-
port Costs + Lost Profits + Other Costs

LostProfits= (PercentSalesLost * TotalSalesRevenue) * ProfitMargin

Post-Release Component = (1 – PercentDiscoveredPostRelease) * PostRe-
leaseTotal

Where:

PostReleaseTotal = TotalDiagnosticCost + TotalPatchCost + TotalTest-
ingCost

6 | ESTIMATING BENEFITS FROM INVESTING IN SECURE SOFTWARE DEVELOPMENT

ExpectedCostPreSecurity = (Pre-ReleaseComponent + ExploitComponent +
Post-ReleaseComponent) * NumberOfBugs * ProjectSize

Where:

NumberOfBugs = SecurityBugs + NonSecurityBugs

ProjectSize = Number of Lines of Code / 1000

Benefit Equation (Two): Expected Cost Post-Security
Pre-Release Component = (PercentageOfBugsDiscoveredPreRelease * (1 +
IncreaseInPercentDiscoveredPreRelease) * PreReleaseFixCost)

Exploit Component = (((NumberOfSecurityBugs / (NumberofSecurityBugs
+ NumberOfNonSecurityBugs)) * (1- PercentageOfBugsDiscoveredPreRe-
lease)) * (PercentBugsExploited * TotalCosts))

Where:

TotalCosts = Total PR Costs + Total Legal Costs + Total Client Sup-
port Costs + Lost Profits + Other Costs

LostProfits = (PercentSalesLost * TotalSalesRevenue) * ProfitMargin

Post-Release Component = (1 – PercentDiscoveredPostRelease) * (1 + In-
creaseInPercentDiscoveredPreRelease) * PostReleaseTotal

Where:

PostReleaseTotal = TotalDiagnosticCost + TotalPatchCost + Total-
TestingCost

ExpectedCostPostSecurity = (Pre-ReleaseComponent + ExploitComponent
+ Post-ReleaseComponent) * NumberOfBugs * ProjectSize

Where:

NumberOfBugs = SecurityBugs + NonSecurityBugs

ProjectSize = Number of Lines of Code / 1000

Benefit Equation (Three): Total Benefit
Total Benefit = Equation One – Equation Two

7 | ESTIMATING BENEFITS FROM INVESTING IN SECURE SOFTWARE DEVELOPMENT

Calculating Security Costs
For calculating the cost of secure development, we modify the extant models to
incorporate security features. Some of recent work in secure software develop-
ment attempts to extend the existing cost estimation models (in particular
COCOMO-II) to incorporate security features. The underlying idea of this ap-
proach is that incorporating security probably increases the effort required to
develop the product. Thus conceptually,

ΔE = E(with security) - E(without security)

where E is the effort level in person month (PM) and ΔE is the additional effort
required to develop a secure product. Since COCOMO-II has been used exten-
sively in estimating E(without security) and users are quite familiar with such
models, one can also estimate E(with security) with some confidence. The for-
mula for effort level E (in person month) is given by

E (estimated) = a KLOCSF x Π (EM)

where KLOC is lines of code in thousands and SF is a scaling factor. In particu-
lar, SF can be set as SF = 1.01 + 0.01 SUM(Wi), where Wi are five scaling fac-
tors. EM are effort multipliers (there are 17 of them). Both Wi and EM are rated
on the scale from very low, low nominal, high, very high, and extra high. The
weight of each factor has been quantified based on calibration with various pro-
jects and continues to evolve. (See
http://sunset.usc.edu/events/2003/March_2003/COCOMO_II_2003_Recalibratio
n.pdf.)

Thus one of the strategies in calculating ΔE is to posit that incorporating more
security affects KLOC, SF, and EM. If we can measure the percentage changes
in these (for example, more security may mean that one of EM may shift from
nominal to very high) then one can estimate how such a change will affect the
effort level of the final product. Thus, if a manager can provide information on
how incorporating security changes the effort multipliers and scaling factors,
then we can use the formula above to calculate the additional cost incurred due
to security.

Thus some recent work (still under research) has proposed this strategy, along
with the fact that besides changing the EM or Ws, more security may induce
some extra drivers not considered in COCOMO-II. For example, Boehm et al.
propose a driver SECU that is additional to existing drivers in COCOMO and
hence affects the effort level [Boehm 04]. Unfortunately, it is not entirely clear
what the impact of new driver is and how it should constrain other drivers (to
avoid double counting).

8 | ESTIMATING BENEFITS FROM INVESTING IN SECURE SOFTWARE DEVELOPMENT

Based on the synthesis of the existing literature and practices, we first outline
major costs that may be incurred when adding security to the software develop-
ment and then suggest ways to measure them.

Major cost items:

1. Use of new CASE tools or hardware/software that is required for develop-
ing secure software. If these tools are generic and can be used with other
projects as well, their capital costs should be prorated appropriately.

2. User training – Security requirements may require the firm to provide the
developers some training. The costs are twofold: (1) there is the direct cost
of training (i.e., hiring and paying someone to train employees; (2) there is
an opportunity cost in term of time when employees are undergoing train-
ing. Both should be incorporated.

3. Increase in the effort level (person month) due to security components and
cost of increased effort. This is based on the formulae above.

4. Impact of delay in product introduction due to additional security. More
effort may cause project delay. In software, delay may or may not be costly.
For example, [Hendricks 97] find that firms lose 5.25% in market value
when delay in products is announced.

Thus to calculate the cost of additional software security, the following infor-
mation must be obtained from the appropriate project staff member:

• an estimate of the percentage change in source code size from adding securi-
ty protection. For example, the staff member may believe the program’s size
will grow 5% in number of lines of code due to increased security measures.

• the estimated complexity (from very low to very high) of the software pro-
ject before and after security is added. For example, the staff member may
think the software project’s complexity was low before adding security
measures but moderate or high afterwards.

• an estimate of the level of program documentation (from very low to very
high) required before and after security measures are increased

• the estimated systems analyst capability (overall experience from very low
to very high) before and after security is added (i.e., an estimate of the effect
that the addition of security measures will have on the system analysts’
technical capabilities)

• the estimated programming team capability (overall development experience
from very low to very high) before and after security is added (i.e., an esti-
mate of the effect that the addition of security measures will have on the
programming teams’ technical capabilities)

• an estimate of familiarity with tools that are required to add security to the
software project. The staff member is asked how he or she feels the devel-

9 | ESTIMATING BENEFITS FROM INVESTING IN SECURE SOFTWARE DEVELOPMENT

opment teams’ experience with those tools is (from very low to very high)
before and after addition of security.

• an estimate of the change in development time required (from very low to
very high) before and after security measures are added. For example, the
staff member may believe that before security was needed, the project would
take a moderate amount of time to complete, but after security is added it
will take a very high amount of development time.

• an estimate of the overall effort (in man months) required to develop the
software before security is added. There may be records indicating that it
takes on average 5 man months to complete a similar project, for example.

• the average cost per man month, which is the amount spent on average per
30 days of an employee’s time

• an estimate of reliability requirements (from very low to very high) before
and after security. Before adding security, the staff member may have be-
lieved that the program only needed to be highly reliable, whereas to meet
the claims and safety requirements of a security system it needs to be very
highly stable.

• an estimate of the cost of required user training
− To calculate this, include the number of employees being trained,

the average time (in days) they spend in training, and the average
cost per employee per day.

• an estimate of any losses that will be incurred due to a delayed market entry
(in dollars)

Cost Equation (One): Effort Cost
EffortCost = NewEffort * CostPerPersonMonth

NewEffort = OldEffort * EffortChange

Where:

EffortChange = ((1 + PercentCodeSizeIncrease)^1.15) * (ComplexityBefore
/ Complexity After) * (Documentation Before / Documentation After) * (An-
alystCapabilityBefore / AnalystCapabilityAfter) * (ProgrammerCapabil-
ityBefore / ProgrammerCapabilityAfter) * (ToolsBefore / ToolsAfter) *
(TimeBefore / TimeAfter) * (ReliabilityBefore / ReliabilityAfter)

The numerator and denominator of each of the terms in the “EffortChange” cal-
culation is derived from the user’s answers to the corresponding values above
and is assigned a numerical value from the University of Southern California’s
Center for Software Engineering COCOMO cost driver research. We chose
COCOMO because it is widely known and non-proprietary. There are other pos-

10 | ESTIMATING BENEFITS FROM INVESTING IN SECURE SOFTWARE DEVELOPMENT

sible models for estimating effort cost, such as SLIM, Function Points, and
ESTIMACS (see, for instance, [Kemerer 87]).

The following table contains each cost driver’s corresponding value for each
choice (very low to very high), where applicable.

 Complexity Development
Time

Documentation
Requirements

Analyst
Capability

Programmer
Capability

Tools Required
Reliability

Very High 1.34 1.29 1.23 .81 .85 .78 1.26

High 1.17 1.11 1.11 .88 .91 .9 1.1

Moderate 1 1 1 1 1 1 1

Low .87 N/A .91 1.11 1.09 1.09 .92

Very Low .73 N/A N/A 1.22 1.19 1.17 .82

Cost Equation (Two): Opportunity Costs
OpportunityCost = NumberOfEmployeesInTraining * Average-
LengthOfTraining * (AverageEmployeeCost / 365)

Cost Equation (Three): Cost of new CASE tools or hardware/software
Cost of New hardware and software = Capital expense to buy additional
hardware and software for (prorated by the project). So if the cost of addi-
tional capital expense can be divided into 10 projects equally, then the cost
= Capital Expense/10.

Cost Equation (four): Total Cost
TotalCost = EffortCost + TrainingCost + OpportunityCost + Cost of new
CASE tools or hardware/software + DelayToMarketCost

11 | ESTIMATING BENEFITS FROM INVESTING IN SECURE SOFTWARE DEVELOPMENT

REFERENCES

References

[Arora 04]
Arora, A.; Hall, D.; Piato, C. A.; Ramsey, D.; & Telang, R. “Measuring the Risk-
Based Value of IT Security Solutions.” IEEE IT Professional 6, 6 (Nov.-Dec. 2004):
35-42.

[Boehm 76]
Boehm, B.; Brown, J. R.; & Lipow. “Quantitative Evaluation of Software Quality,”
592-605. Proceedings of the 20th International Conference on Software Engineering,
1976.

[Boehm 04]
Boehm, B.; Colbert, E.; Chen, Y.; Wu, D.; & Reifer, D. “Costing the Development
of Secure Systems.” Eighth Annual PSM Users' Group Conference: Measurement
for Enterprise Excellence. Keystone, CO, July 26-30, 2004.

[Butler 02]
Butler, Shawn. “Security Attribute Evaluation Method: A Cost-Benefit Approach,”
2002.

[Campbell 03]
Campbell, K.; Gordon, L. A.; Loeb, M. P.; & Zhou, L. “The Economic Cost of Pub-
licly Announced Information Security Breaches: Empirical Evidence from the Stock
Market.” Journal of Computer Security 11, 3 (2003): 431-448.

[Cavusoglu 04]
Cavusoglu, H.; Mishra, B.; & Raghunathan, S. “The Effect of Internet Security
Breach Announcements on Market Value: Capital Market Reactions for Breached
Firms and Internet Security Developers.” International Journal of Electronic Com-
merce 9, 1 (Fall 2004): 69-104.

[Clark 98]
Clark, B.; Chulani, S.; & Boehm, B. “Calibrating the COCOMO II Post-Architecture
Model,” 477–480. Proceedings of the 20th International Conference on Software
Engineering, 1998.

12 | ESTIMATING BENEFITS FROM INVESTING IN SECURE SOFTWARE DEVELOPMENT

https://buildsecurityin.us-cert.gov/redirect?url=http%3A%2F%2Fwww.psmsc.com%2FUsersGroup2004.asp
https://buildsecurityin.us-cert.gov/redirect?url=http%3A%2F%2Fwww.psmsc.com%2FUsersGroup2004.asp
https://buildsecurityin.us-cert.gov/redirect?url=http%3A%2F%2Fwww.cs.cmu.edu%2F%7Eshawnb%2FSAEM-ICSE2002.pdf

[Hendricks 97]
Hendricks K. B. & Singhal, V. R. “Delays in New Product Introductions and the
Market Value of the Firm: The Consequences of Being Late to the Market.” Man-
agement Science 43, 4 (1997): 422-436.

[Kemerer 87]
Kemerer, C. “An Empirical Validation of Software Cost Estimation Models.” Com-
munication of the ACM, May 1987, 416-429.

[Krishnan 97]
Krishnan, M. S. “Cost Quality and User Satisfaction of Software Products: An Em-
pirical Analysis.” Technical Report. 1997.

[Krishnan 00]
Krishnan, M. S.; Kriebel, C.; Kekre, S.; & Mukhopadhyay, T. “An Empirical Analy-
sis of Cost and Conformance Quality in Software Products.” Management Science
46 (2000): 745-759.

[Mead 04]
Xie, Nick (Ning); Mead, Nancy R.; Chen, Peter; Dean, Marjon; Lopez, Lilian;
Ojoko-Adams, Don; & Osman, Hasan. SQUARE Project: Cost/Benefit Analysis
Framework for Information Security Improvement Projects in Small Companies
(CMU/SEI-2004-TN-045, ADA431118). Pittsburgh, PA: Software Engineering In-
stitute, Carnegie Mellon University, 2004.

[Microsoft 08]
MSDN. The Microsoft Security Development Lifecycle (SDL): Measurable Im-
provements for Flagship Microsoft Products, 2008.

[Ozment 05]
Ozment, A. “The Likelihood of Vulnerability Rediscovery and the Social Utility of
Vulnerability Hunting.” Fourth Workshop on the Economics of Information Securi-
ty. Cambridge, MA, June 2-3, 2005.

[Pinto 04]
Pinto, C. Ariel; Arora, Ashish; Hall, Dennis; & Schmitz, Edward. Challenges To
Sustainable Risk Management, 2004.

[Slaughter 98]
Slaughter, S.; Harter, D. E.; & Krishnan, M. S. “Evaluating the Cost of Software
Quality.” Communication of the ACM 41, 8 (August 1998).

13 | ESTIMATING BENEFITS FROM INVESTING IN SECURE SOFTWARE DEVELOPMENT

https://buildsecurityin.us-cert.gov/redirect?url=http%3A%2F%2Fwww.sei.cmu.edu%2Fpublications%2Fdocuments%2F04.reports%2F04tn045.html
https://buildsecurityin.us-cert.gov/redirect?url=http%3A%2F%2Fmsdn.microsoft.com%2Fen-us%2Fsecurity%2Fcc424866.aspx
https://buildsecurityin.us-cert.gov/redirect?url=http%3A%2F%2Fmsdn.microsoft.com%2Fen-us%2Fsecurity%2Fcc424866.aspx
https://buildsecurityin.us-cert.gov/redirect?url=http%3A%2F%2Finfosecon.net%2Fworkshop%2Fpdf%2F10.pdf
https://buildsecurityin.us-cert.gov/redirect?url=http%3A%2F%2Finfosecon.net%2Fworkshop%2Fpdf%2F10.pdf
http://www.asem.org/conferences/2004conferenceproceedings/Pinto60.pdf
http://www.asem.org/conferences/2004conferenceproceedings/Pinto60.pdf

[Soo Hoo 01]
Soo Hoo, Kevin; Sadbury, A. W.; & Jaquith, A. R. “Return on Security Invest-
ments.” Secure Business Quarterly 1, 2 (2001).

[Rescorla 04]
Rescorla, E. “Is Finding Security Holes a Good Idea?” The Third Workshop on Eco-
nomics and Information Security. Minneapolis, MN, 2004.

[Telang 04]
Telang, Rahul & Wattal, Sunil. “Effect of Vulnerability Disclosures on Market Val-
ue of Software Vendors – An Event Study Analysis.” Workshop on Information Sys-
tems and Economics, Washington, DC, 2004.

14 | ESTIMATING BENEFITS FROM INVESTING IN SECURE SOFTWARE DEVELOPMENT

https://buildsecurityin.us-cert.gov/redirect?url=http%3A%2F%2Fwww.dtc.umn.edu%2Fweis2004%2Frescorla.pdf
https://buildsecurityin.us-cert.gov/redirect?url=http%3A%2F%2Fopim-sun.wharton.upenn.edu%2Fwise2004%2Fsat622.pdf
https://buildsecurityin.us-cert.gov/redirect?url=http%3A%2F%2Fopim-sun.wharton.upenn.edu%2Fwise2004%2Fsat622.pdf

Copyright © Carnegie Mellon University 2005-2012.

This material is based upon work funded and supported by Department of Homeland
Security under Contract No. FA8721-05-C-0003 with Carnegie Mellon University
for the operation of the Software Engineering Institute, a federally funded research
and development center sponsored by the United States Department of Defense.

Any opinions, findings and conclusions or recommendations expressed in this mate-
rial are those of the author(s) and do not necessarily reflect the views of Department
of Homeland Security or the United States Department of Defense.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND
SOFTWARE ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON AN
“AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO
WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO
ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF
FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR
RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON
UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH
RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT
INFRINGEMENT.

This material has been approved for public release and unlimited distribution except
as restricted below.

Internal use:* Permission to reproduce this material and to prepare derivative works
from this material for internal use is granted, provided the copyright and “No War-
ranty” statements are included with all reproductions and derivative works.

External use:* This material may be reproduced in its entirety, without modification,
and freely distributed in written or electronic form without requesting formal permis-
sion. Permission is required for any other external and/or commercial use. Requests
for permission should be directed to the Software Engineering Institute at permis-
sion@sei.cmu.edu.

* These restrictions do not apply to U.S. government entities.

DM-0001120

15 | ESTIMATING BENEFITS FROM INVESTING IN SECURE SOFTWARE DEVELOPMENT

	Estimating Benefits from Investing in Secure Software Development
	Background
	Extant Work
	Cost of Secure Software
	Benefits of Secure Software

	Cost and Benefit Calculators
	Calculating Security Benefits
	Benefit Equation (One): Expected Cost Pre-Security
	Benefit Equation (Two): Expected Cost Post-Security
	Benefit Equation (Three): Total Benefit

	Calculating Security Costs
	Cost Equation (One): Effort Cost
	Cost Equation (Two): Opportunity Costs
	Cost Equation (Three): Cost of new CASE tools or hardware/software
	Cost Equation (four): Total Cost

	References
	References

