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Distributed Adaptive Real-Time (DART) systems are key to many 
areas of DoD capability (e.g., autonomous multi-UAS missions) 
with civilian benefits.

However achieving high assurance  DART software is very difficult 
• Concurrency is inherently difficult to reason about.
• Uncertainty in the physical environment.
• Autonomous capability leads to unpredictable behavior.
• Assure both guaranteed and probabilistic properties.
• Verification results on models must be carried over to source 

code.

High assurance unachievable via testing or ad-hoc formal 
verification

Goal: Create a sound engineering approach for producing high-
assurance software for Distributed Adaptive Real-Time (DART)

Motivation
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System + 
Properties 

(AADL + DMPL)
Verification Code 

Generation

1. Enables compositional and requirement 
specific verification

2. Use proactive self-adaptation and mixed 
criticality to cope with uncertainty and 
changing context

Demonstrate on DoD-relevant model 
problem (DART prototype)

• Engaged stakeholders

• Technical and operational validity

1. ZSRM Schedulability (Timing)

2. Software Model Checking (Functional)

3. Statistical Model Checking (Probabilistic)

Brings Assurance to Code

1. Middleware for communication

2. Scheduler for ZSRM

3. Monitor for runtime assurance

DART Approach
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High 
Hazard 
Area

Adaptation: Formation 
change (loose ⇔ tight)

Loose: fast but high 
leader exposure

Tight: slow but low 
leader exposure

Low 
Hazard 
Area

Loose 
Formation

Tight 
Formation

Challenge: compute the 
probability of reaching end of 
mission in time while never 

reducing protection to less than .

Challenge: compare between 
different adaptation strategies.

Solution: Statistical model 
checking (SMC)

Example: Self-Adaptive and Coordinated UAS Protection
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High 
Hazard 
Area

Adaptation: Formation 
change (loose ⇔ tight)

Loose: fast but high 
leader exposure

Tight: slow but low 
leader exposure

Low 
Hazard 
Area

Loose 
Formation

Tight 
Formation

Video

Example: Self-Adaptive and Coordinated UAS Protection
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Architecture

DMPL
AADL

Proactive 
Self-

Adaptation

Statistical 
Model 

Checking

MADARA

ZSRM 
Scheduling

Functional 
Verification

Constrain the system structure 
and behavior to facilitate tractable 
analysis and code generation

Program DART systems 
and specify properties 
in a precise manner

Use probabilistic model 
checker to repeatedly 
compute optimal 
adaptation strategies 
with bounded lookahead

Evaluate adaptation 
strategy quality over 

mission lifetime

Efficient middleware 
provides distributed 

shared variables with 
well-defined data 

consistency

Ensures high-critical 
tasks meet their 

deadlines despite CPU 
overload

Combine model checking 
& hybrid analysis to 

ensure end-to-end CPS 
correctness
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Environment 
– network, 
sensors, 

atmosphere, 
ground etc.

Low‐Critical 
Threads (LCTs)

High‐Critical 
Threads (HCTs)

H
C
T

L
C
T

Software for guaranteed 
requirements, e.g., collision 

avoidance protocol must 
ensure absence of collisions

ZSRM Mixed-Criticality Scheduler
OS/Hardware

Sched
OS/HW

MADARA Middleware MADARA

Software for probabilistic 
requirements, e.g., adaptive path-

planner to maximize area coverage 
within deadline

Sensors & 
Actuators

Distributed 
Shared 
MemoryBaked into the 

programming 
languages used

Design constraint 
enables analysis 
tractability
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WaypointCollision 
Avoidance

ZSRM Mixed-Criticality Scheduler
OS/Hardware

MADARA Middleware

Adaptation 
Manager

Leader 
Threads

	

WaypointCollision 
Avoidance

ZSRM Scheduler
OS/Hardware

MADARA Middleware

Protector 
Threads

System Architecture for Demo
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AADL : Architecture Analysis and Description Language
DMPL : DART Modeling and Programming Language

AADL : High level architecture + threads + real-time attributes
• Perform ZSRM schedulability via OSATE Plugin
• Generate appropriate DMPL annotations

DMPL : Behavior
• Roles : leader, protector
• Functions : mapped to real-time threads

• Period, priority, criticality (generated from AADL)
• C-style syntax. Invoke external libraries and components

• Functional properties (safety) : software model checking
• Probabilistic properties (expectation) : statistical model checking

AADL and DMPL supports the right level of abstraction at 
architecture and code level to formally reason about DART systems
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DART Modeling and Programming Language (DMPL)

Domain-Specific Language for DART programming and verifying
• C-like syntax
• Balances expressivity with precise semantics
• Supports formal assertions usable for model checking and 

probabilistic model checking
• Physical and logical concurrency can be expressed in sufficient 

detail to perform timing analysis
• Can invoke external libraries and components
• Generates C++ targeted at a variety of platforms

Developed syntax, semantics, and compiler

AADL and DMPL supports the right level of abstraction at 
architecture and code level to formally reason about DART systems

https://github.com/cps-sei/dart
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Monitor ExecuteKnowledge

Analyze Plan

Target system MAPE-K Emerged from 
Autonomic Computing 

Community       
[Kephart 2003]

Proactive Self-Adaptation 
via MAPE-K
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Some aspects of the environment are unknown before the mission 
execution

• for example, the threat level of different areas
• the environment conditions are discovered as the mission 

progresses
• it’s not possible to plan everything in advance

Need for proactive adaptation
• Adaptations may take time (e.g., formation change), so they have to 

be started proactively
• Decisions taken at any point impact future outcomes (e.g., higher 

fuel consumption reduces range)

Current solution based on constructing a MDP and using probabilistic 
model checking to find the best strategy at each adaptation point

• Exploring integration with Machine Learning techniques

Self-Adaptation in DART
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tacticN

system
tick

tactic1_end

tacticN_end

shared action

module

clock

environment

self-adaptive system
. . .

tactic1

Stochastic model of the 
environment updated at 

run time

Time over the 
decision horizon

Starting tactic or not is a 
nondeterministic choice

High-level system 
properties relevant to 
computing objective 

function

System model reflects 
effect of tactic when tactic 

completes

Adaptation using a Markov Decision Process
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t=0

t=1

p3p2

T1
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p3p2

T1

p1

T2 T1 T2 T1 T2

T1 T2

p3p2

T1

p1

T1 T2

T2

system

t=1

environment

t=0

non-deterministic

probabilistic

deterministic

PRISM
strategy synthesis Resolves 

nondeterministic choices 
to maximize expected 

value of objective 
function

First choice independent 
of subsequent 

environment transitions Ongoing work: replace 
probabilistic model 
checking with dynamic 
programming for speed.
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Probability estimate for each property evaluated via “Bernoulli Trials”
Number of trials required to estimate probability of a property depends on

• desired “relative error” (ratio of standard deviation to mean)
• true probability of the property

Running trials in parallel reduces required simulation time.
• SMC Client invokes Vrep simulation on each node.
• SMC Aggregator collects results and determines if precision is met.
• Simulations run in “batches” to prevent simulation time bias.

Importance sampling (focuses simulation effort on faults)

Statistical Model 
Checker

DMPL Program 
with random inputs

Probabilistic Property 
encoded in DMPL

Estimated 
Probability that 

⊨ with 
relative error 

Target relative 
error 

Statistical MC Overview



17
Engineering High-Assurance DART Software
Nov 17, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release; 
Distribution is Unlimited

dmplc Log 
Generator

(DMPL)

Executable

Log (1 
per 

node)

Log 
Analyzer Result

SMC Client

SMC 
Aggregator

One 
Bernoulli 

Trial

(DMPL)

DMPL 
Compiler

DART Statistical 
MC Workflow
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log-
analyzelog-genlog-genlog-gen

log-
analyzelog-

analyze

Update 

and acceptable?

Batch Log and Analyze

Each run of log-generator and log-
analyzer occurs on a Virtual Machine. 
Multiple such VMs run in parallel on 

HPC platform. Clients can be added and 
removed on-the-fly.

Future Work: Importance 
Sampling to reduce 

number of simulations 
needed for “rare” events.

SMC Client

SMC Aggregator

Statistical Model Checking 
of Distributed Adaptive 
Real-Time Software. David 
Kyle, Jeffery Hansen, Sagar 
Chaki. In Proc. of Runtime 
Verifcation 2015

DART Distributed 
Statistical MC
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Statistical MC Results

Leader

Protectors

Protected
Area

Total 
Coverage

Single Protector 
Coverage
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MADARA: A Middleware for Distributed AI
More information at http://madara.sourceforge.net

User 
Code

Knowledge 
Base

Logger

Native User 
Functions

Transport

Filters

Bandwidth 
Monitor

Packet 
Scheduler

Network

User OS/file

KaRL Transport

Legend

System 
Calls

OS/file

Threads MADARA Architecture
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GAMS: Group Autonomy for Mobile Systems
1. Built directly on top of MADARA (https://github.com/jredmondson/gams)

2. Utilizes MAPE loop (IBM autonomy construct)

3. Provides extensible platform, sensor, and algorithm support

4. Uses new MADARA feature called Containers, which support object-oriented 
programming of the Knowledge Base

GAMS Architecture
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Zero-Slack Rate Monotonic 
(ZSRM) software stack

• ZSRM Schedulability
Analysis as AADL/OSATE 
Plugin

• ZSRM Scheduler as Linux 
Kernel Module

• ZSRM Priority & Criticality 
Ceiling Mutexes

CPU1

CPU2

task1

task2

task1

task2

Parallel
execution

Pipelined ZSRM
• Based on pipelines that allows 

parallel execution of multiple tasks 
in different stages.

• Avoids assuming all tasks start 
together in all stages

• Reduces the end-to-end response 
time and improves utilization

• Paper submitted to RTAS’16
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Combining model checking of collision-avoidance protocol with reachability 
analysis of control algorithms via assume-guarantee reasoning

Application

Controller

Platform

Prove application-controller 
controller contract for 
unbounded time

• Previously limited to 
bounded verification only

Prove controller-platform 
contract via hybrid 
reachability analysis

• Done by AFRL

Working on automation and 
asynchronous model of 
computation

Proof of 
collision 
avoidance

DART Node

Assume-
Guarantee 
Contract

Assume-
Guarantee 
Contract

Verifying “cyber & physical” behavior
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Interactive Verification of 
at Source Code Level

Distributed 
Application

Safety 
Specification

Sequentialization

Single-Threaded
C Program

Software Model Checking Software Model Checking 
(CBMC, BLAST etc.)

Failure Success

DMPL Program

//‐‐ INVAR : inductive invariant
void main()
{

INIT(); //‐‐ initialization
assert(INVAR); //‐‐ base case
HAVOC(); //‐‐ assign all variable ND
__CPROVER_assume(INVAR); //‐‐ IH
ROUND_NODE_1();
…
ROUND_NODE_k();
assert(INVAR); //‐‐ inductive check

}

Generated C Program

Assume
Synchronous 

Model of 
Computation

Round
Invariants

Ongoing work: more 
automation, moving to 
asynchronous model of 
computation.
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Transition and application to realistic systems

Logical Isolation between Verified and Unverified 
Code

Big Trusted Computing Base (Compilers, Operating 
Systems, Middleware)

Discovered more complexity and nuances about 
mixed-criticality scheduling (end-to-end)

Importance sampling for distributed systems

Longer term: Ultra-Large Scale, Fault-Tolerance, 
Runtime Assurance, Security
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Team
Bjorn Andersson Mark Klein
Bud Hammons Arie Gurfinkel
Gabriel Moreno David Kyle
Jeffery Hansen James Edmondson
Scott Hissam Dionisio de Niz
Sagar Chaki

QUESTIONS?
https://github.com/cps-sei/dart

Summary
Distributed Adaptive Real-Time 
(DART) systems promise to 
revolutionize several areas of 
DoD capability (e.g., autonomous 
systems). We want to create a 
sound engineering approach for 
producing high-assurance 
software for DART Systems, and 
demonstrate on stakeholder 
guided examples. 


