
© 2015 Carnegie Mellon University

Software Solutions Conference 2015
November 16–18, 2015

Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Engineering High-
Assurance Software for
Distributed Adaptive Real-
Time Systems
Sagar Chaki, Dionisio de Niz, Mark Klein

2
Engineering High-Assurance DART Software
Nov 17, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Copyright 2015 Carnegie Mellon University

This material is based upon work funded and supported by the Department of Defense under
Contract No. FA8721-05-C-0003 with Carnegie Mellon University for the operation of the Software
Engineering Institute, a federally funded research and development center.

Any opinions, findings and conclusions or recommendations expressed in this material are those of
the author(s) and do not necessarily reflect the views of the United States Department of Defense.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING
INSTITUTE MATERIAL IS FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY
MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY
MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR
MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL.
CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH
RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

[Distribution Statement A] This material has been approved for public release and unlimited
distribution. Please see Copyright notice for non-US Government use and distribution.

This material may be reproduced in its entirety, without modification, and freely distributed in written
or electronic form without requesting formal permission. Permission is required for any other use.
Requests for permission should be directed to the Software Engineering Institute at
permission@sei.cmu.edu.

DM-0003053

3
Engineering High-Assurance DART Software
Nov 17, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Distributed Adaptive Real-Time (DART) systems are key to many
areas of DoD capability (e.g., autonomous multi-UAS missions)
with civilian benefits.

However achieving high assurance DART software is very difficult
• Concurrency is inherently difficult to reason about.
• Uncertainty in the physical environment.
• Autonomous capability leads to unpredictable behavior.
• Assure both guaranteed and probabilistic properties.
• Verification results on models must be carried over to source

code.

High assurance unachievable via testing or ad-hoc formal
verification

Goal: Create a sound engineering approach for producing high-
assurance software for Distributed Adaptive Real-Time (DART)

Motivation

4
Engineering High-Assurance DART Software
Nov 17, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

System +
Properties

(AADL + DMPL)
Verification Code

Generation

1. Enables compositional and requirement
specific verification

2. Use proactive self-adaptation and mixed
criticality to cope with uncertainty and
changing context

Demonstrate on DoD-relevant model
problem (DART prototype)

• Engaged stakeholders

• Technical and operational validity

1. ZSRM Schedulability (Timing)

2. Software Model Checking (Functional)

3. Statistical Model Checking (Probabilistic)

Brings Assurance to Code

1. Middleware for communication

2. Scheduler for ZSRM

3. Monitor for runtime assurance

DART Approach

5
Engineering High-Assurance DART Software
Nov 17, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

High
Hazard
Area

Adaptation: Formation
change (loose ⇔ tight)

Loose: fast but high
leader exposure

Tight: slow but low
leader exposure

Low
Hazard
Area

Loose
Formation

Tight
Formation

Challenge: compute the
probability of reaching end of
mission in time while never

reducing protection to less than .

Challenge: compare between
different adaptation strategies.

Solution: Statistical model
checking (SMC)

Example: Self-Adaptive and Coordinated UAS Protection

6
Engineering High-Assurance DART Software
Nov 17, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

High
Hazard
Area

Adaptation: Formation
change (loose ⇔ tight)

Loose: fast but high
leader exposure

Tight: slow but low
leader exposure

Low
Hazard
Area

Loose
Formation

Tight
Formation

Video

Example: Self-Adaptive and Coordinated UAS Protection

7
Engineering High-Assurance DART Software
Nov 17, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Architecture

DMPL
AADL

Proactive
Self-

Adaptation

Statistical
Model

Checking

MADARA

ZSRM
Scheduling

Functional
Verification

Constrain the system structure
and behavior to facilitate tractable
analysis and code generation

Program DART systems
and specify properties
in a precise manner

Use probabilistic model
checker to repeatedly
compute optimal
adaptation strategies
with bounded lookahead

Evaluate adaptation
strategy quality over

mission lifetime

Efficient middleware
provides distributed

shared variables with
well-defined data

consistency

Ensures high-critical
tasks meet their

deadlines despite CPU
overload

Combine model checking
& hybrid analysis to

ensure end-to-end CPS
correctness

8
Engineering High-Assurance DART Software
Nov 17, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Environment
– network,
sensors,

atmosphere,
ground etc.

Low‐Critical
Threads (LCTs)

High‐Critical
Threads (HCTs)

H
C
T

L
C
T

Software for guaranteed
requirements, e.g., collision

avoidance protocol must
ensure absence of collisions

ZSRM Mixed-Criticality Scheduler
OS/Hardware

Sched
OS/HW

MADARA Middleware MADARA

Software for probabilistic
requirements, e.g., adaptive path-

planner to maximize area coverage
within deadline

Sensors &
Actuators

Distributed
Shared
MemoryBaked into the

programming
languages used

Design constraint
enables analysis
tractability

9
Engineering High-Assurance DART Software
Nov 17, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

	

WaypointCollision
Avoidance

ZSRM Mixed-Criticality Scheduler
OS/Hardware

MADARA Middleware

Adaptation
Manager

Leader
Threads

	

WaypointCollision
Avoidance

ZSRM Scheduler
OS/Hardware

MADARA Middleware

Protector
Threads

System Architecture for Demo

10
Engineering High-Assurance DART Software
Nov 17, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

AADL : Architecture Analysis and Description Language
DMPL : DART Modeling and Programming Language

AADL : High level architecture + threads + real-time attributes
• Perform ZSRM schedulability via OSATE Plugin
• Generate appropriate DMPL annotations

DMPL : Behavior
• Roles : leader, protector
• Functions : mapped to real-time threads

• Period, priority, criticality (generated from AADL)
• C-style syntax. Invoke external libraries and components

• Functional properties (safety) : software model checking
• Probabilistic properties (expectation) : statistical model checking

AADL and DMPL supports the right level of abstraction at
architecture and code level to formally reason about DART systems

11
Engineering High-Assurance DART Software
Nov 17, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

DART Modeling and Programming Language (DMPL)

Domain-Specific Language for DART programming and verifying
• C-like syntax
• Balances expressivity with precise semantics
• Supports formal assertions usable for model checking and

probabilistic model checking
• Physical and logical concurrency can be expressed in sufficient

detail to perform timing analysis
• Can invoke external libraries and components
• Generates C++ targeted at a variety of platforms

Developed syntax, semantics, and compiler

AADL and DMPL supports the right level of abstraction at
architecture and code level to formally reason about DART systems

https://github.com/cps-sei/dart

12
Engineering High-Assurance DART Software
Nov 17, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Monitor ExecuteKnowledge

Analyze Plan

Target system MAPE-K Emerged from
Autonomic Computing

Community
[Kephart 2003]

Proactive Self-Adaptation
via MAPE-K

13
Engineering High-Assurance DART Software
Nov 17, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Some aspects of the environment are unknown before the mission
execution

• for example, the threat level of different areas
• the environment conditions are discovered as the mission

progresses
• it’s not possible to plan everything in advance

Need for proactive adaptation
• Adaptations may take time (e.g., formation change), so they have to

be started proactively
• Decisions taken at any point impact future outcomes (e.g., higher

fuel consumption reduces range)

Current solution based on constructing a MDP and using probabilistic
model checking to find the best strategy at each adaptation point

• Exploring integration with Machine Learning techniques

Self-Adaptation in DART

14
Engineering High-Assurance DART Software
Nov 17, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

tacticN

system
tick

tactic1_end

tacticN_end

shared action

module

clock

environment

self-adaptive system
. . .

tactic1

Stochastic model of the
environment updated at

run time

Time over the
decision horizon

Starting tactic or not is a
nondeterministic choice

High-level system
properties relevant to
computing objective

function

System model reflects
effect of tactic when tactic

completes

Adaptation using a Markov Decision Process

15
Engineering High-Assurance DART Software
Nov 17, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

t=0

t=1

p3p2

T1

p1

T2 T1 T2 T1 T2

p3p2

T1

p1

T2 T1 T2 T1 T2

T1 T2

p3p2

T1

p1

T1 T2

T2

system

t=1

environment

t=0

non-deterministic

probabilistic

deterministic

PRISM
strategy synthesis Resolves

nondeterministic choices
to maximize expected

value of objective
function

First choice independent
of subsequent

environment transitions Ongoing work: replace
probabilistic model
checking with dynamic
programming for speed.

16
Engineering High-Assurance DART Software
Nov 17, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Probability estimate for each property evaluated via “Bernoulli Trials”
Number of trials required to estimate probability of a property depends on

• desired “relative error” (ratio of standard deviation to mean)
• true probability of the property

Running trials in parallel reduces required simulation time.
• SMC Client invokes Vrep simulation on each node.
• SMC Aggregator collects results and determines if precision is met.
• Simulations run in “batches” to prevent simulation time bias.

Importance sampling (focuses simulation effort on faults)

Statistical Model
Checker

DMPL Program
with random inputs

Probabilistic Property
encoded in DMPL

Estimated
Probability that

⊨ with
relative error

Target relative
error

Statistical MC Overview

17
Engineering High-Assurance DART Software
Nov 17, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

dmplc Log
Generator

(DMPL)

Executable

Log (1
per

node)

Log
Analyzer Result

SMC Client

SMC
Aggregator

One
Bernoulli

Trial

(DMPL)

DMPL
Compiler

DART Statistical
MC Workflow

18
Engineering High-Assurance DART Software
Nov 17, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

log-
analyzelog-genlog-genlog-gen

log-
analyzelog-

analyze

Update

and acceptable?

Batch Log and Analyze

Each run of log-generator and log-
analyzer occurs on a Virtual Machine.
Multiple such VMs run in parallel on

HPC platform. Clients can be added and
removed on-the-fly.

Future Work: Importance
Sampling to reduce

number of simulations
needed for “rare” events.

SMC Client

SMC Aggregator

Statistical Model Checking
of Distributed Adaptive
Real-Time Software. David
Kyle, Jeffery Hansen, Sagar
Chaki. In Proc. of Runtime
Verifcation 2015

DART Distributed
Statistical MC

19
Engineering High-Assurance DART Software
Nov 17, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Statistical MC Results

Leader

Protectors

Protected
Area

Total
Coverage

Single Protector
Coverage

20
Engineering High-Assurance DART Software
Nov 17, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

MADARA: A Middleware for Distributed AI
More information at http://madara.sourceforge.net

User
Code

Knowledge
Base

Logger

Native User
Functions

Transport

Filters

Bandwidth
Monitor

Packet
Scheduler

Network

User OS/file

KaRL Transport

Legend

System
Calls

OS/file

Threads MADARA Architecture

21
Engineering High-Assurance DART Software
Nov 17, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

GAMS: Group Autonomy for Mobile Systems
1. Built directly on top of MADARA (https://github.com/jredmondson/gams)

2. Utilizes MAPE loop (IBM autonomy construct)

3. Provides extensible platform, sensor, and algorithm support

4. Uses new MADARA feature called Containers, which support object-oriented
programming of the Knowledge Base

GAMS Architecture

22
Engineering High-Assurance DART Software
Nov 17, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Zero-Slack Rate Monotonic
(ZSRM) software stack

• ZSRM Schedulability
Analysis as AADL/OSATE
Plugin

• ZSRM Scheduler as Linux
Kernel Module

• ZSRM Priority & Criticality
Ceiling Mutexes

CPU1

CPU2

task1

task2

task1

task2

Parallel
execution

Pipelined ZSRM
• Based on pipelines that allows

parallel execution of multiple tasks
in different stages.

• Avoids assuming all tasks start
together in all stages

• Reduces the end-to-end response
time and improves utilization

• Paper submitted to RTAS’16

23
Engineering High-Assurance DART Software
Nov 17, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Combining model checking of collision-avoidance protocol with reachability
analysis of control algorithms via assume-guarantee reasoning

Application

Controller

Platform

Prove application-controller
controller contract for
unbounded time

• Previously limited to
bounded verification only

Prove controller-platform
contract via hybrid
reachability analysis

• Done by AFRL

Working on automation and
asynchronous model of
computation

Proof of
collision
avoidance

DART Node

Assume-
Guarantee
Contract

Assume-
Guarantee
Contract

Verifying “cyber & physical” behavior

24
Engineering High-Assurance DART Software
Nov 17, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Interactive Verification of
at Source Code Level

Distributed
Application

Safety
Specification

Sequentialization

Single-Threaded
C Program

Software Model Checking Software Model Checking
(CBMC, BLAST etc.)

Failure Success

DMPL Program

//‐‐ INVAR : inductive invariant
void main()
{

INIT(); //‐‐ initialization
assert(INVAR); //‐‐ base case
HAVOC(); //‐‐ assign all variable ND
__CPROVER_assume(INVAR); //‐‐ IH
ROUND_NODE_1();
…
ROUND_NODE_k();
assert(INVAR); //‐‐ inductive check

}

Generated C Program

Assume
Synchronous

Model of
Computation

Round
Invariants

Ongoing work: more
automation, moving to
asynchronous model of
computation.

25
Engineering High-Assurance DART Software
Nov 17, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Transition and application to realistic systems

Logical Isolation between Verified and Unverified
Code

Big Trusted Computing Base (Compilers, Operating
Systems, Middleware)

Discovered more complexity and nuances about
mixed-criticality scheduling (end-to-end)

Importance sampling for distributed systems

Longer term: Ultra-Large Scale, Fault-Tolerance,
Runtime Assurance, Security

26
Engineering High-Assurance DART Software
Nov 17, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Team
Bjorn Andersson Mark Klein
Bud Hammons Arie Gurfinkel
Gabriel Moreno David Kyle
Jeffery Hansen James Edmondson
Scott Hissam Dionisio de Niz
Sagar Chaki

QUESTIONS?
https://github.com/cps-sei/dart

Summary
Distributed Adaptive Real-Time
(DART) systems promise to
revolutionize several areas of
DoD capability (e.g., autonomous
systems). We want to create a
sound engineering approach for
producing high-assurance
software for DART Systems, and
demonstrate on stakeholder
guided examples.

