
© 2015 Carnegie Mellon University

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

API Usability and Security
FY 15 LENS
Sam Weber

2
SEI Research Review 2015
October 7–8, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Copyright 2015 Carnegie Mellon University

This material is based upon work funded and supported by the Department of Defense under Contract No. FA8721-
05-C-0003 with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally
funded research and development center.

Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and
do not necessarily reflect the views of the United States Department of Defense.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE
MATERIAL IS FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO
WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING,
BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY,
EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON
UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM
PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

This material has been approved for public release and unlimited distribution except as restricted below.

This material was prepared for the exclusive use of SEI Research Review and may not be used for any other purpose
without the written consent of permission@sei.cmu.edu.

DM-0002775

3
SEI Research Review 2015
October 7–8, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Team members

Motivation

Project Progress
• Semi-structured interviews
• Prototypes
• User validation studies

Summary and Future Work

Schedule

4
SEI Research Review 2015
October 7–8, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Project co-funded by SEI and the National Science Foundation
• SEI: One-year funding, FY 15
• NSF: Three-year funding, FY 15-17. Award 1423054

Team Members

Project Funding and Team Members

Dr. Sam Weber Dr. Brad Myers
Dr. Forrest Shull Dr. Jonathan Aldrich
Robert Seacord Dr. Joshua Sunshine
David Keaton Michael Coblenz

Summer Interns: Sophie Gairo, Paul Peng

5
SEI Research Review 2015
October 7–8, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Goal: To develop and empirically test concrete and actionable API
design principles that lead to more secure code
Long-term vision: empirically test secure development practices

• Many decades of work on secure development practices, most of it
based upon experience and reflections by smart people, but little, if
any, information about validity and relative merit of different practices

“While design vulnerabilities are common they are not often
tracked….With a lack of empirical results on security-related
design flaws, research that provides security at the design level
may not have any empirical support to validate against.”

(Dr. Andrew Meneely)
Principle: Programmers and designers are people too

• Need to design APIs that foster more secure code

Project Aims and Vision

6
SEI Research Review 2015
October 7–8, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

APIs have a large impact upon system security
• C string library still major cause of problems
• See Wang et al, “Explicating SDKs: Uncovering Assumptions

Underlying Secure Authentication and Authorization”
APIs are long-lasting
APIs are generally designed by a small number of more-
experienced people

Core Idea: APIs represent boundaries between components. They
define what entities exist, what operations they can do and can be
done to them, and the responsibilities of the API users and
implementers. Most importantly, they rely on programmers
understanding each other’s responsibilities and possible actions.

Why APIs?

7
SEI Research Review 2015
October 7–8, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

In order to be concrete, we need to focus on a particular subset of
API design decisions
First focus: state management

• How are system state changes controlled?
• Ex: immutable data structures, whose value is fixed when

created
Methodology: iterative participatory design

• elicit designer’s pain-points and ways of thinking, make trial
attempts to address them, evaluate, then iterate

Steps:
1. Semi-structured interviews with experienced developers
2. Create prototypes addressing issues
3. Evaluate with user studies

Project Decisions and Methodology

8
SEI Research Review 2015
October 7–8, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

• Controlling where/when state is changed and by whom is a
serious problem. All interviewees agreed!
• Example: mistrust created between groups caused by third-

party changing data-structure internals
• Programmers do use concepts like immutability
• Language features, like const don’t satisfy programmer’s

needs:
• Are all objects of a certain class immutable or just some?
• What about objects which are logically immutable, but whose

bits change (caches, self-optimizing data structures…)?
• Viral nature of C++’s const
• Objects that can be mutated by some parties but not others
• …

Interview Results Summary

9
SEI Research Review 2015
October 7–8, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Want to have actionable advice for API developers.
Designed three language extensions for Java, addressing common
use-cases

• Two pertain to what data is immutable
• Transitive vs non-transitive

• One pertains to when it is immutable
• Mutable during set-up process, fixed afterwards

Current status: two implemented, one in-progress

Prototypes

10
SEI Research Review 2015
October 7–8, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Syntax simple: annotate class with “@Immutable”
class AContainer {

Date d; // Oops; needs to be immutable
@Immutable AContainer () {
}

}
Error message: Cannot declare AContainer() with annotation
@Immutable because AContainer transitively contains d, which does not
have a strong enough immutability annotation

Two variations: transitive vs non-transitive
• If object immutable, are objects that it refers to also immutable?
• Use cases for both. For example, if map from keys to values

immutable, does that imply that the values themselves are
unchangeable?

Class-Based Immutability Extensions

11
SEI Research Review 2015
October 7–8, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Immutability During Initialization

Foo

fluid Foo frozen Foo

fluid Foo frozen
Foo

fluid Foo bar = new fluid Foo();
bar.baz = 0; // initialize the object

// mutably
freeze bar; // freeze the object to be

// used immutably

rest_of_program(bar);

New type system

Objects can be mutable during
initialization, immutable afterwards

(subtle rules about use of fluid
objects)

12
SEI Research Review 2015
October 7–8, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

User-studies to show effectiveness of prototypes
• Again, use participatory design techniques, including

think-aloud protocols
• Give developers tasks
• Elicit how they would want to solve tasks, before telling them

about features that we are testing
• How do programmers conceptualize the problems?

• Introduce features being tested
• Have developers use features, and discuss out loud their

thoughts, strategies and problems

Evaluation

13
SEI Research Review 2015
October 7–8, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Task Examples

Online game scenario
• Data structures to keep track

of game state
• Programmers have to

enhance/modify code

Bus routes
• Data structures to keep track

of bus routes, including
transfers between buses

• Create new routes without
changing old ones

14
SEI Research Review 2015
October 7–8, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Goal: To develop and empirically test concrete and actionable API
design principles that lead to more secure code

Initial Focus: State management
• How API-defined entities can change state, and by which

parties

Project Plan
• Structured interviews of experienced developers
• Prototype solutions to address issues
• User evaluation studies of prototypes

Project Summary

15
SEI Research Review 2015
October 7–8, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

• Identified design-space of state-change restrictions
• Interviews confirmed management of state to be serious

problem, and current language features are not suitable
• Succeeded in showing that various kinds of immutability

features are possible which better match developer needs
• Publications:

• workshops: PLATEAU ‘15 (associated with SPLASH)
LAW ‘14 (associated with ACSAC)

• conferences: VL/HCC ‘15
submission to ICSE ‘16

Future plans:
• Partners will continue ongoing work
• Partner emphasis will primarily shift towards usability

Results and Future Work

	API Usability and Security FY 15 LENS
	Slide Number 2
	Schedule
	Project Funding and Team Members
	Project Aims and Vision
	Why APIs?
	Project Decisions and Methodology
	Interview Results Summary
	Prototypes
	Class-Based Immutability Extensions
	Immutability During Initialization
	Evaluation
	Task Examples
	Project Summary
	Results and Future Work

