Design Pattern Recovery

from Malware Binaries
Cory F. Cohen H

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

o . . . © 2015 Carnegie Mellon University
=4 SOftwaI‘e Englneerlng |nStItUte Carnegie Me]lOIl UniVeI'Sity Distribution Statement A: Approved for

Public Release; Distribution is Unlimited



Copyright 2015 Carnegie Mellon University

This material is based upon work funded and supported by Department of Defense and Department of Homeland
Security under Contract No. FA8721-05-C-0003 with Carnegie Mellon University for the operation of the Software
Engineering Institute, a federally funded research and development center sponsored by the United States
Department of Defense.

Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s)
and do not necessarily reflect the views of Department of Defense and Department of Homeland Security or the
United States Department of Defense.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE
MATERIAL IS FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO
WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT
NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR
RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE
ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR
COPYRIGHT INFRINGEMENT.

This material has been approved for public release and unlimited distribution except as restricted below.

This material may be reproduced in its entirety, without modification, and freely distributed in written or electronic
form without requesting formal permission. Permission is required for any other use. Requests for permission
should be directed to the Software Engineering Institute at permission@sei.cmu.edu.

Carnegie Mellon® is registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.

DM-0002840

SEI Research Review 2015
October 7-8, 2015

=— Software Engineering Institute | Carnegie Mellon University © 2015 Carnegie Mellon Universiy

Distribution Statement A: Approved for
Public Release; Distribution is Unlimited



Automated Binary Analysis Challenges

Software Assurance
- We need to answer basic questions about functionality
 Does it contain known bad or suspicious code?
 Does this binary program do what we think it does?

Malware Analysis
- Time consuming and complex manual process
- Requires highly specialized reverse engineering skills
- We need to fully automate malware analysis tasks
« Custom tools must be built on a solid foundation

SEI Research Review 2015
October 7-8, 2015

% Software Engineering Institute | Carnegie Mellon University



Binary Static Analysis Infrastructure

Components needed for
binary analysis framework

* File format parsing
Disassembler
Function partitioner
Instruction semantics
Emulation framework
Use-def chains
SMT solver integration

Algebraic simplification

We built on the ROSE platform:
Binary analysis capabilities
Working closely with LLNL
BSD Licensed
C++ Library Implementation
Highly extensible

We extended ROSE with:
Calling convention detection
Stack delta analysis
Parameter tracking

Type recovery (in progress)

SEIl Researc h Review 2015
October 7-8, 2015

Software Engineering Institute | Carnegie Mellon University © 2015 Camegie Mellon University

Distribution Statement A: Approved for
Public Release; Distribution is Unlimited



Objdigger: Object Oriented Analysis

88481818 _main proc near

ashe1818

g84B1818 var_BLY = byte ptr -8B4h

084810818 var C = dword ptr -BCh StaCk
aeLe1818 var_4 = dword ptr -4

aB4E1010 arge - dword ptr & Allocated
aeLe1818 argv = dword ptr 8

f84681818 envp = dword ptr BCh

gaya1e18

goLe1018 push -1

aeuye1812 push

aeye1817 mow eax, large fs:@
ae4ye181D push eax

aay mou large fs:8, esp

ees  Constructor | sub esp, BASH

aoy push esi

ae4 061820 ecx, [esp+BB8h+var_B4]
aeLB1838 call sub_483868

884081835 mow eax, [esp+BBBh+argu]
ae4B183c mou ecx, [esp+BBBh+argc]
084610843 push eax

00401044 Method |push ecx

a8461045
a840610849
ae461854
aeL 1859
ge461a85D
ge4e165F
ae4e1066A
ae4e186F
a84081876
g84Ba1678

geLe1679 [ MethOd
genp1088

ae4e1086

ge4u@1e886 _main

Software Engineering Institute

lea

call
lea
mou
mou
call
mow

pop
mouy
add
retn
endp

ecx, [esp+BCBh+var_Bu]
[esp+BCBh+var_4], @
sub_481478

ecx, [esp+BBBh+var_Bi]
esi, eax
[esp+@B8h+var 4], -1
sub_481F28

ecx, [esp+BEBh+var_C]
eax, esi

esi

large fs:8, ecx

esp, BB4h

Carnegie Mellon University

BaseClass
Memberl
Member2
Member3
Methodl()
Method?2()

1

DerivedCIsA DerivedClsB
Memberl Memberl
Member2 Method1()
Method1() Method2()
Method?2() Method3()

SEI Research Review 2015

October 7-8, 2015

© 2015 Carnegie Mellon University
Distribution Statement A: Approved for
Public Release; Distribution is Unlimited



Design Pattern Recovery Problem

Pattern diagram

Client Invoker [ | Command -
E—— from the “Gang of

' Execuley, "

| . Four” book.

l

|

: me HECEBIVEr ZLE‘

I e

i Action{) _ﬂ ConcreteCommand

|

: Execute() O----—--- --—1 recgiver-=Action();

|

CoTTTTTTToTTomooomoososooooooooooos "l state

Malware authors face similar software design challenges

« Develop reusable components to ease software evolution
- Combine components in new ways to accomplish goals

- Code reuse is challenged by anti-virus detection efforts
Analysts want to match these patterns in executables

- Recognize higher abstractions in low-level assembly

- Anecdotal evidence supports “malware specific” patterns

SEI Research Review 2015
October 7-8, 2015

% Software Engineering Institute ‘ Carnegie Mellon University



A Command Pattern Source Implementation

class Receiver { class DFCmd : public Cmd {
public: private: PTSTR file;

void RunCP(PTSTR proc); public:

void RunDF(PTSTR filename); }; DFCmd(Receiver &r, PTSTR f) {

rcvr = r; file = f; }

class Cmd { virtual void Exec() {
public: virtual void Exec() = 0; rcvr.RunDF(file); }
protected: Receiver rcvr; }; }s

class Invoker {
public: void runCmd(Cmd& c) {

c.Exec(); } };

class CPCmd : public Cmd { int main() {
private: PTSTR proc; Receiver r;
public: CPCmd cp(r, "c:\\calc.exe");
CPCmd(Receiver &r, PTSTR p) { DFCmd del(r, "mal.txt");
rcvr = r; proc = p; } Invoker i;
virtual void Exec() { i.runCmd(cp);
rcvr.RunCP(proc); } i.runCmd(del);
}s5 }

SEI Research Review 2015
October 7-8, 2015

=— Software Engineering Institute | Carnegie Mellon University © 2015 Carnegie Mellon Universiy

Distribution Statement A: Approved for
Public Release; Distribution is Unlimited



A Command Pattern Binary

mov  [ebp+this], ecx mov  [ebp+this], ecx
mov  ecx, [ebp+this] mov  eax, [ebp+this]
call Cmd_Ctor mov  ecX, [eax+8]
mov  eax, [ebp+this] push ecx

mov  [eax], offset vftable mov  ecxX, [ebp+this]
mov  eax, [ebp+this] add ecx, 4

mov  ecx, [ebp+c] call Receiver_RunCP

mov  [eax+8], ecx
mov  eax, [ebp+this]

Example on left is part of CPCmd::CPCmd() on right CPCmd::Exec().
Obviously, many of the source code features are lost or obscured.
But many features are still there as well (as required for execution).
Calling convention identified this pointer, vftable virtual functions, etc.
Features can be extracted using our binary analysis framework.

SEI Research Review 2015
October 7-8, 2015

% Software Engineering Institute ‘ Carnegie Mellon University



Design Pattern Features & Detection

Enumerate the features that define the pattern:

. There exist four unnamed classes (we’ll call them C, CC, |, & R).

. CC inherits from C (begin by temporarily labeling C & CC)

. The constructor for CC (#2) takes an R as a parameter.

. There’s a method E on CC (#2) that calls a method in R (#3).

. The method E (#4) is virtual.

. Class C (#2) contains an instance of R (#3) as a member.

. Class | that has a method X that takes C or CC (#2) as a parameter.
. The method X (#7) calls method E (#5).

0O N O O b WD B

Test for each feature. Pattern is present if all features are present.
|dentified components can be labelled automatically after detection.

% Software Engineering Institute | Carnegie Mellon University



Prototype Tool & Experimental Results

We implemented a design pattern matching prototype
- Framework exports facts about program as Prolog facts
- Patterns are very naturally expressed as Prolog rules
- Prolog finds the pattern and reports the matching classes
We conducted an experiment in malware family detection
- Built a ghOst/evilight malware variant from source code
« Detected a variety of classes, methods and functions
- Used class relationships, APl sequences, and the call graph
- Core pattern was a socket and a command design pattern
- Primarily leveraged a reciprocal relationship between classes
- Identified command classes both generically and specifically
- Also key constructs like procedural command dispatch loop

% Software Engineering Institute ‘ Carnegie Mellon University



Conclusions & Future Research

More work yet to be done on design pattern matching

- Continue to improve accuracy and completeness of features

- Conduct more experiments on pattern variation in malware

- Evaluate expressiveness of patterns given current features

- Evaluate new feature exporters to implement in framework
Successfully detected numerous abstractions in a malware sample

- Allows malware analysts to share knowledge about family

- Reduces effort by assigning semantic labels to abstractions

« Focuses analyst attention on unmatched features in new variants
Future Research in Decompilation

« Focusing on decompilation to source code in FY 2016

- Goal is to allow source analysis tools to be applied to binaries

SEI Research Review 2015
October 7-8, 2015

% Software Engineering Institute ‘ Carnegie Mellon University



Questions?

For more information about the Pharos suite of Automated Static
Binary Analysis tools, please contact:

Cory Cohen <cfc@cert.org> 1-412-268-7925

SEI Research Review 2015
October 7-8, 2015

% Software Engineering Institute | Carnegie Mellon University


mailto:cfc@cert.org

	Design Pattern Recovery from Malware Binaries
	Slide Number 2
	Automated Binary Analysis Challenges
	Binary Static Analysis Infrastructure
	Objdigger: Object Oriented Analysis
	Design Pattern Recovery Problem
	A Command Pattern Source Implementation
	A Command Pattern Binary
	Design Pattern Features & Detection
	Prototype Tool & Experimental Results 
	Conclusions & Future Research
	Questions?

