
© 2015 Carnegie Mellon University

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

Distribution Statement A: Approved for
Public Release; Distribution is Unlimited

Design Pattern Recovery
from Malware Binaries
Cory F. Cohen

2
SEI Research Review 2015
October 7–8, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for
Public Release; Distribution is Unlimited

Copyright 2015 Carnegie Mellon University

This material is based upon work funded and supported by Department of Defense and Department of Homeland
Security under Contract No. FA8721-05-C-0003 with Carnegie Mellon University for the operation of the Software
Engineering Institute, a federally funded research and development center sponsored by the United States
Department of Defense.

Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s)
and do not necessarily reflect the views of Department of Defense and Department of Homeland Security or the
United States Department of Defense.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE
MATERIAL IS FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO
WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT
NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR
RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE
ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR
COPYRIGHT INFRINGEMENT.

This material has been approved for public release and unlimited distribution except as restricted below.

This material may be reproduced in its entirety, without modification, and freely distributed in written or electronic
form without requesting formal permission. Permission is required for any other use. Requests for permission
should be directed to the Software Engineering Institute at permission@sei.cmu.edu.

Carnegie Mellon® is registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.

DM-0002840

3
SEI Research Review 2015
October 7–8, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for
Public Release; Distribution is Unlimited

Automated Binary Analysis Challenges

Software Assurance
• We need to answer basic questions about functionality
• Does it contain known bad or suspicious code?
• Does this binary program do what we think it does?

Malware Analysis
• Time consuming and complex manual process
• Requires highly specialized reverse engineering skills
• We need to fully automate malware analysis tasks
• Custom tools must be built on a solid foundation

4
SEI Research Review 2015
October 7–8, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for
Public Release; Distribution is Unlimited

Binary Static Analysis Infrastructure

Components needed for
binary analysis framework
• File format parsing
• Disassembler
• Function partitioner
• Instruction semantics
• Emulation framework
• Use-def chains
• SMT solver integration
• Algebraic simplification

We built on the ROSE platform:
• Binary analysis capabilities
• Working closely with LLNL
• BSD Licensed
• C++ Library Implementation
• Highly extensible

We extended ROSE with:
• Calling convention detection
• Stack delta analysis
• Parameter tracking
• Type recovery (in progress)

5
SEI Research Review 2015
October 7–8, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for
Public Release; Distribution is Unlimited

Objdigger: Object Oriented Analysis

Constructor

Method

Method

DerivedClsB

Member1

Method1()

Method2()

Method3()

DerivedClsA

Member1

Member2

Method1()

Method2()

BaseClass

Member1

Member2

Member3

Method1()

Method2()

Stack
Allocated

6
SEI Research Review 2015
October 7–8, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for
Public Release; Distribution is Unlimited

Design Pattern Recovery Problem

Malware authors face similar software design challenges
• Develop reusable components to ease software evolution
• Combine components in new ways to accomplish goals
• Code reuse is challenged by anti-virus detection efforts
Analysts want to match these patterns in executables
• Recognize higher abstractions in low-level assembly
• Anecdotal evidence supports “malware specific” patterns

Pattern diagram
from the “Gang of

Four” book.

7
SEI Research Review 2015
October 7–8, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for
Public Release; Distribution is Unlimited

A Command Pattern Source Implementation

class Receiver {
public:
void RunCP(PTSTR proc);
void RunDF(PTSTR filename); };

class Cmd {
public: virtual void Exec() = 0;
protected: Receiver rcvr; };

class Invoker {
public: void runCmd(Cmd& c) {
c.Exec(); } };

class CPCmd : public Cmd {
private: PTSTR proc;
public:
CPCmd(Receiver &r, PTSTR p) {
rcvr = r; proc = p; }

virtual void Exec() {
rcvr.RunCP(proc); }

};

class DFCmd : public Cmd {
private: PTSTR file;
public:
DFCmd(Receiver &r, PTSTR f) {
rcvr = r; file = f; }

virtual void Exec() {
rcvr.RunDF(file); }

};

int main() {
Receiver r;
CPCmd cp(r, "c:\\calc.exe");
DFCmd del(r, "mal.txt");
Invoker i;
i.runCmd(cp);
i.runCmd(del);

}

8
SEI Research Review 2015
October 7–8, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for
Public Release; Distribution is Unlimited

A Command Pattern Binary

Example on left is part of CPCmd::CPCmd() on right CPCmd::Exec().
Obviously, many of the source code features are lost or obscured.
But many features are still there as well (as required for execution).
Calling convention identified this pointer, vftable virtual functions, etc.
Features can be extracted using our binary analysis framework.

mov [ebp+this], ecx
mov ecx, [ebp+this]
call Cmd_Ctor
mov eax, [ebp+this]
mov [eax], offset vftable
mov eax, [ebp+this]
mov ecx, [ebp+c]
mov [eax+8], ecx
mov eax, [ebp+this]

mov [ebp+this], ecx
mov eax, [ebp+this]
mov ecx, [eax+8]
push ecx
mov ecx, [ebp+this]
add ecx, 4
call Receiver_RunCP

9
SEI Research Review 2015
October 7–8, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for
Public Release; Distribution is Unlimited

Design Pattern Features & Detection

Enumerate the features that define the pattern:
1. There exist four unnamed classes (we’ll call them C, CC, I, & R).
2. CC inherits from C (begin by temporarily labeling C & CC)
3. The constructor for CC (#2) takes an R as a parameter.
4. There’s a method E on CC (#2) that calls a method in R (#3).
5. The method E (#4) is virtual.
6. Class C (#2) contains an instance of R (#3) as a member.
7. Class I that has a method X that takes C or CC (#2) as a parameter.
8. The method X (#7) calls method E (#5).

Test for each feature. Pattern is present if all features are present.
Identified components can be labelled automatically after detection.

10
SEI Research Review 2015
October 7–8, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for
Public Release; Distribution is Unlimited

Prototype Tool & Experimental Results

We implemented a design pattern matching prototype
• Framework exports facts about program as Prolog facts
• Patterns are very naturally expressed as Prolog rules
• Prolog finds the pattern and reports the matching classes

We conducted an experiment in malware family detection
• Built a gh0st/evilight malware variant from source code
• Detected a variety of classes, methods and functions
• Used class relationships, API sequences, and the call graph
• Core pattern was a socket and a command design pattern
• Primarily leveraged a reciprocal relationship between classes
• Identified command classes both generically and specifically
• Also key constructs like procedural command dispatch loop

11
SEI Research Review 2015
October 7–8, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for
Public Release; Distribution is Unlimited

Conclusions & Future Research

More work yet to be done on design pattern matching
• Continue to improve accuracy and completeness of features
• Conduct more experiments on pattern variation in malware
• Evaluate expressiveness of patterns given current features
• Evaluate new feature exporters to implement in framework

Successfully detected numerous abstractions in a malware sample
• Allows malware analysts to share knowledge about family
• Reduces effort by assigning semantic labels to abstractions
• Focuses analyst attention on unmatched features in new variants

Future Research in Decompilation
• Focusing on decompilation to source code in FY 2016
• Goal is to allow source analysis tools to be applied to binaries

12
SEI Research Review 2015
October 7–8, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for
Public Release; Distribution is Unlimited

Questions?

For more information about the Pharos suite of Automated Static
Binary Analysis tools, please contact:

Cory Cohen <cfc@cert.org> 1-412-268-7925

mailto:cfc@cert.org

	Design Pattern Recovery from Malware Binaries
	Slide Number 2
	Automated Binary Analysis Challenges
	Binary Static Analysis Infrastructure
	Objdigger: Object Oriented Analysis
	Design Pattern Recovery Problem
	A Command Pattern Source Implementation
	A Command Pattern Binary
	Design Pattern Features & Detection
	Prototype Tool & Experimental Results
	Conclusions & Future Research
	Questions?

