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Automated Binary Analysis Challenges

Software Assurance
- We need to answer basic questions about functionality
 Does it contain known bad or suspicious code?
 Does this binary program do what we think it does?

Malware Analysis
- Time consuming and complex manual process
- Requires highly specialized reverse engineering skills
- We need to fully automate malware analysis tasks
« Custom tools must be built on a solid foundation
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Binary Static Analysis Infrastructure

Components needed for
binary analysis framework

* File format parsing
Disassembler
Function partitioner
Instruction semantics
Emulation framework
Use-def chains
SMT solver integration

Algebraic simplification

We built on the ROSE platform:
Binary analysis capabilities
Working closely with LLNL
BSD Licensed
C++ Library Implementation
Highly extensible

We extended ROSE with:
Calling convention detection
Stack delta analysis
Parameter tracking

Type recovery (in progress)
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Objdigger: Object Oriented Analysis

88481818 _main proc near

ashe1818

g84B1818 var_BLY = byte ptr -8B4h

084810818 var C = dword ptr -BCh StaCk
aeLe1818 var_4 = dword ptr -4

aB4E1010 arge - dword ptr & Allocated
aeLe1818 argv = dword ptr 8

f84681818 envp = dword ptr BCh

gaya1e18

goLe1018 push -1

aeuye1812 push

aeye1817 mow eax, large fs:@
ae4ye181D push eax

aay mou large fs:8, esp

ees  Constructor | sub esp, BASH

aoy push esi

ae4 061820 ecx, [esp+BB8h+var_B4]
aeLB1838 call sub_483868

884081835 mow eax, [esp+BBBh+argu]
ae4B183c mou ecx, [esp+BBBh+argc]
084610843 push eax

00401044 Method |push ecx

a8461045
a840610849
ae461854
aeL 1859
ge461a85D
ge4e165F
ae4e1066A
ae4e186F
a84081876
g84Ba1678

geLe1679 [ MethOd
genp1088

ae4e1086

ge4u@1e886 _main
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lea

call
lea
mou
mou
call
mow

pop
mouy
add
retn
endp

ecx, [esp+BCBh+var_Bu]
[esp+BCBh+var_4], @
sub_481478

ecx, [esp+BBBh+var_Bi]
esi, eax
[esp+@B8h+var 4], -1
sub_481F28

ecx, [esp+BEBh+var_C]
eax, esi

esi

large fs:8, ecx

esp, BB4h
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BaseClass
Memberl
Member2
Member3
Methodl()
Method?2()

1

DerivedCIsA DerivedClsB
Memberl Memberl
Member2 Method1()
Method1() Method2()
Method?2() Method3()
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Design Pattern Recovery Problem

Pattern diagram
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Malware authors face similar software design challenges

« Develop reusable components to ease software evolution
- Combine components in new ways to accomplish goals

- Code reuse is challenged by anti-virus detection efforts
Analysts want to match these patterns in executables

- Recognize higher abstractions in low-level assembly

- Anecdotal evidence supports “malware specific” patterns
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A Command Pattern Source Implementation

class Receiver { class DFCmd : public Cmd {
public: private: PTSTR file;

void RunCP(PTSTR proc); public:

void RunDF(PTSTR filename); }; DFCmd(Receiver &r, PTSTR f) {

rcvr = r; file = f; }

class Cmd { virtual void Exec() {
public: virtual void Exec() = 0; rcvr.RunDF(file); }
protected: Receiver rcvr; }; }s

class Invoker {
public: void runCmd(Cmd& c) {

c.Exec(); } };

class CPCmd : public Cmd { int main() {
private: PTSTR proc; Receiver r;
public: CPCmd cp(r, "c:\\calc.exe");
CPCmd(Receiver &r, PTSTR p) { DFCmd del(r, "mal.txt");
rcvr = r; proc = p; } Invoker i;
virtual void Exec() { i.runCmd(cp);
rcvr.RunCP(proc); } i.runCmd(del);
}s5 }
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A Command Pattern Binary

mov  [ebp+this], ecx mov  [ebp+this], ecx
mov  ecx, [ebp+this] mov  eax, [ebp+this]
call Cmd_Ctor mov  ecX, [eax+8]
mov  eax, [ebp+this] push ecx

mov  [eax], offset vftable mov  ecxX, [ebp+this]
mov  eax, [ebp+this] add ecx, 4

mov  ecx, [ebp+c] call Receiver_RunCP

mov  [eax+8], ecx
mov  eax, [ebp+this]

Example on left is part of CPCmd::CPCmd() on right CPCmd::Exec().
Obviously, many of the source code features are lost or obscured.
But many features are still there as well (as required for execution).
Calling convention identified this pointer, vftable virtual functions, etc.
Features can be extracted using our binary analysis framework.
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Design Pattern Features & Detection

Enumerate the features that define the pattern:

. There exist four unnamed classes (we’ll call them C, CC, |, & R).

. CC inherits from C (begin by temporarily labeling C & CC)

. The constructor for CC (#2) takes an R as a parameter.

. There’s a method E on CC (#2) that calls a method in R (#3).

. The method E (#4) is virtual.

. Class C (#2) contains an instance of R (#3) as a member.

. Class | that has a method X that takes C or CC (#2) as a parameter.
. The method X (#7) calls method E (#5).

0O N O O b WD B

Test for each feature. Pattern is present if all features are present.
|dentified components can be labelled automatically after detection.
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Prototype Tool & Experimental Results

We implemented a design pattern matching prototype
- Framework exports facts about program as Prolog facts
- Patterns are very naturally expressed as Prolog rules
- Prolog finds the pattern and reports the matching classes
We conducted an experiment in malware family detection
- Built a ghOst/evilight malware variant from source code
« Detected a variety of classes, methods and functions
- Used class relationships, APl sequences, and the call graph
- Core pattern was a socket and a command design pattern
- Primarily leveraged a reciprocal relationship between classes
- Identified command classes both generically and specifically
- Also key constructs like procedural command dispatch loop

% Software Engineering Institute ‘ Carnegie Mellon University



Conclusions & Future Research

More work yet to be done on design pattern matching

- Continue to improve accuracy and completeness of features

- Conduct more experiments on pattern variation in malware

- Evaluate expressiveness of patterns given current features

- Evaluate new feature exporters to implement in framework
Successfully detected numerous abstractions in a malware sample

- Allows malware analysts to share knowledge about family

- Reduces effort by assigning semantic labels to abstractions

« Focuses analyst attention on unmatched features in new variants
Future Research in Decompilation

« Focusing on decompilation to source code in FY 2016

- Goal is to allow source analysis tools to be applied to binaries
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Questions?

For more information about the Pharos suite of Automated Static
Binary Analysis tools, please contact:

Cory Cohen <cfc@cert.org> 1-412-268-7925
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