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Automated Binary Analysis Challenges

Software Assurance
• We need to answer basic questions about functionality
• Does it contain known bad or suspicious code?
• Does this binary program do what we think it does?

Malware Analysis
• Time consuming and complex manual process
• Requires highly specialized reverse engineering skills
• We need to fully automate malware analysis tasks
• Custom tools must be built on a solid foundation
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Binary Static Analysis Infrastructure

Components needed for 
binary analysis framework
• File format parsing
• Disassembler
• Function partitioner
• Instruction semantics
• Emulation framework
• Use-def chains
• SMT solver integration
• Algebraic simplification

We built on the ROSE platform:
• Binary analysis capabilities
• Working closely with LLNL
• BSD Licensed
• C++ Library Implementation
• Highly extensible

We extended ROSE with:
• Calling convention detection
• Stack delta analysis
• Parameter tracking
• Type recovery (in progress)
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Objdigger: Object Oriented Analysis
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Design Pattern Recovery Problem

Malware authors face similar software design challenges
• Develop reusable components to ease software evolution
• Combine components in new ways to accomplish goals
• Code reuse is challenged by anti-virus detection efforts
Analysts want to match these patterns in executables
• Recognize higher abstractions in low-level assembly
• Anecdotal evidence supports “malware specific” patterns

Pattern diagram 
from the “Gang of 

Four” book.
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A Command Pattern Source Implementation

class Receiver {
public:
void RunCP(PTSTR proc);
void RunDF(PTSTR filename); };

class Cmd {
public: virtual void Exec() = 0;
protected: Receiver rcvr; };

class Invoker {
public: void runCmd(Cmd& c) {
c.Exec(); } };

class CPCmd : public Cmd {
private: PTSTR proc;
public:
CPCmd(Receiver &r, PTSTR p) {
rcvr = r; proc = p; } 

virtual void Exec() {
rcvr.RunCP(proc); }

};

class DFCmd : public Cmd {
private: PTSTR file;
public:
DFCmd(Receiver &r, PTSTR f) {
rcvr = r; file = f; } 

virtual void Exec() {
rcvr.RunDF(file); }

};

int main() { 
Receiver r;
CPCmd cp(r, "c:\\calc.exe");
DFCmd del(r, "mal.txt");
Invoker i;
i.runCmd(cp);
i.runCmd(del);

}
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A Command Pattern Binary

Example on left is part of CPCmd::CPCmd() on right CPCmd::Exec().
Obviously, many of the source code features are lost or obscured.
But many features are still there as well (as required for execution).
Calling convention identified this pointer, vftable virtual functions, etc.
Features can be extracted using our binary analysis framework.

mov [ebp+this], ecx
mov ecx, [ebp+this]
call  Cmd_Ctor
mov eax, [ebp+this]
mov [eax], offset vftable
mov eax, [ebp+this]
mov ecx, [ebp+c]
mov [eax+8], ecx
mov eax, [ebp+this]

mov [ebp+this], ecx
mov eax, [ebp+this]
mov ecx, [eax+8]
push  ecx
mov ecx, [ebp+this]
add   ecx, 4
call  Receiver_RunCP
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Design Pattern Features & Detection

Enumerate the features that define the pattern:
1. There exist four unnamed classes (we’ll call them C, CC, I, & R).
2. CC inherits from C (begin by temporarily labeling C & CC)
3. The constructor for CC (#2) takes an R as a parameter.
4. There’s a method E on CC (#2) that calls a method in R (#3).
5. The method E (#4) is virtual.
6. Class C (#2) contains an instance of R (#3) as a member.
7. Class I that has a method X that takes C or CC (#2) as a parameter.
8. The method X (#7) calls method E (#5).

Test for each feature. Pattern is present if all features are present.
Identified components can be labelled automatically after detection.
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Prototype Tool & Experimental Results 

We implemented a design pattern matching prototype
• Framework exports facts about program as Prolog facts
• Patterns are very naturally expressed as Prolog rules
• Prolog finds the pattern and reports the matching classes

We conducted an experiment in malware family detection
• Built a gh0st/evilight malware variant from source code
• Detected a variety of classes, methods and functions
• Used class relationships, API sequences, and the call graph
• Core pattern was a socket and a command design pattern
• Primarily leveraged a reciprocal relationship between classes
• Identified command classes both generically and specifically
• Also key constructs like procedural command dispatch loop
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Conclusions & Future Research

More work yet to be done on design pattern matching
• Continue to improve accuracy and completeness of features
• Conduct more experiments on pattern variation in malware
• Evaluate expressiveness of patterns given current features
• Evaluate new feature exporters to implement in framework

Successfully detected numerous abstractions in a malware sample
• Allows malware analysts to share knowledge about family
• Reduces effort by assigning semantic labels to abstractions
• Focuses analyst attention on unmatched features in new variants

Future Research in Decompilation
• Focusing on decompilation to source code in FY 2016
• Goal is to allow source analysis tools to be applied to binaries



12
SEI Research Review 2015
October 7–8, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for 
Public Release; Distribution is Unlimited

Questions?

For more information about the Pharos suite of Automated Static 
Binary Analysis tools, please contact:

Cory Cohen <cfc@cert.org> 1-412-268-7925

mailto:cfc@cert.org
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