
© 2015 Carnegie Mellon University

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Verifying Distributed
Adaptive Real-Time
(DART) Systems
Sagar Chaki, Dionisio de Niz
October 8, 2015

2
SEI Research Review 2015
October 7–8, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Copyright 2015 Carnegie Mellon University

This material is based upon work funded and supported by the Department of Defense under
Contract No. FA8721-05-C-0003 with Carnegie Mellon University for the operation of the Software
Engineering Institute, a federally funded research and development center.

Any opinions, findings and conclusions or recommendations expressed in this material are those of
the author(s) and do not necessarily reflect the views of the United States Department of Defense.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING
INSTITUTE MATERIAL IS FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY
MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY
MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR
MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL.
CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH
RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

This material has been approved for public release and unlimited distribution except as restricted
below.

This material may be reproduced in its entirety, without modification, and freely distributed in written
or electronic form without requesting formal permission. Permission is required for any other use.
Requests for permission should be directed to the Software Engineering Institute at
permission@sei.cmu.edu.

DM-0002760

3
SEI Research Review 2015
October 7–8, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Background
Distributed Adaptive Real-Time (DART) systems are key to many areas of
DoD capability (e.g., autonomous multi-UAS missions) with civilian
benefits.

However achieving high assurance DART software is very difficult
• Concurrency is inherently difficult to reason about.
• Uncertainty in the physical environment.
• Autonomous capability leads to unpredictable behavior.
• Assure both guaranteed and probabilistic properties.
• Verification results on models must be carried over to source code.

High assurance unachievable via testing or ad-hoc formal verification

Goal: Create a sound engineering approach for producing high-assurance
software for Distributed Adaptive Real-Time (DART)

4
SEI Research Review 2015
October 7–8, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

DART Approach

System +
Properties

(AADL + DMPL)
Verification Code

Generation

1. Enables compositional and requirement
specific verification

2. Use proactive self-adaptation and mixed
criticality to cope with uncertainty and
changing context

Demonstrate on DoD-relevant model
problem (DART prototype)

• Engaged stakeholders

• Technical and operational validity

1. ZSRM Schedulability (Timing)

2. Software Model Checking (Functional)

3. Statistical Model Checking (Probabilistic)

Brings Assurance to Code

1. Middleware for communication

2. Scheduler for ZSRM

3. Monitor for runtime assurance

5
SEI Research Review 2015
October 7–8, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Example: Self-Adaptive and Coordinated UAS Protection

High
Hazard

Area

Adaptation: Formation
change (loose ⇔ tight)

Loose: fast but high
leader exposure

Tight: slow but low
leader exposure

Low
Hazard

Area

Loose
Formation

Tight
Formation

Challenge: compute the
probability of reaching end of
mission in time 𝑻𝑻 while never

reducing protection to less than 𝑿𝑿.

Challenge: compare between
different adaptation strategies.

Solution: Statistical model
checking (SMC)

6
SEI Research Review 2015
October 7–8, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Example: Self-Adaptive and Coordinated UAS Protection

High
Hazard

Area

Adaptation: Formation
change (loose ⇔ tight)

Loose: fast but high
leader exposure

Tight: slow but low
leader exposure

Low
Hazard

Area

Loose
Formation

Tight
Formation

Video

7
SEI Research Review 2015
October 7–8, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Architecture

DMPL

Proactive
Self-

Adaptation

Statistical
Model

Checking

MADARA

ZSRM
Scheduling

Functional
Verification

Constrain the system structure
and behavior to facilitate tractable
analysis and code generation

Program DART systems
and specify properties
in a precise manner

Use probabilistic model
checker to repeatedly
compute optimal
adaptation strategies
with bounded lookahead

Evaluate adaptation
strategy quality over

mission lifetime

Efficient middleware
provides distributed
shared variables with

well-defined data
consistency

Ensures high-critical
tasks meet their

deadlines despite CPU
overload

Combine model checking
& hybrid analysis to

ensure end-to-end CPS
correctness

8
SEI Research Review 2015
October 7–8, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

𝑁𝑁𝑁𝑁𝑁𝑁𝑒𝑒1 𝑁𝑁𝑁𝑁𝑁𝑁𝑒𝑒𝑘𝑘

Environment
– network,

sensors,
atmosphere,
ground etc.

Low-Critical
Threads (LCTs)

High-Critical
Threads (HCTs)

H
C
T

L
C
T

Software for guaranteed
requirements, e.g., collision

avoidance protocol must
ensure absence of collisions

ZSRM Mixed-Criticality Scheduler
OS/Hardware

Sched
OS/HW

MADARA Middleware MADARA

Software for probabilistic
requirements, e.g., adaptive path-

planner to maximize area coverage
within deadline

Sensors &
Actuators

Distributed
Shared
MemoryBaked into the

programming
languages used

Design constraint
enables analysis
tractability

9
SEI Research Review 2015
October 7–8, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

DART Modeling and Programming Language (DMPL)

C-like language that can express distributed, real-time systems
• Semantics are precise
• Supports formal assertions usable for model checking and

probabilistic model checking
• Physical and logical concurrency can be expressed in sufficient

detail to perform timing analysis
• Can call external libraries
• Generates compilable C++

Developed syntax, semantics, and compiler (dmplc)

DMPL supports the right level of abstraction to formally reason about
DART systems

Open Source
Release on Github

10
SEI Research Review 2015
October 7–8, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

t=0

t=1

p3p2

T1

p1

T2 T1 T2 T1 T2

p3p2

T1

p1

T2 T1 T2 T1 T2

T1 T2

p3p2

T1

p1

T1 T2

T2

system

t=1

environment

t=0

non-deterministic

probabilistic

deterministic

PRISM
strategy synthesis Resolves

nondeterministic choices
to maximize expected

value of objective
function

First choice independent
of subsequent

environment transitions Ongoing work: replace
probabilistic model
checking with dynamic
programming for speed.

11
SEI Research Review 2015
October 7–8, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

𝑅𝑅𝑒𝑒𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡1
log-

analyzelog-genlog-genlog-gen
log-

analyzelog-
analyze

𝑅𝑅𝑒𝑒𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡1𝑅𝑅𝑒𝑒𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡𝑛𝑛

Update
𝑅𝑅𝑒𝑒𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡
and 𝑅𝑅𝑅𝑅

𝑅𝑅𝑅𝑅
acceptable?

𝑁𝑁𝑁𝑁

𝑌𝑌𝑒𝑒𝑅𝑅

𝑅𝑅𝑒𝑒𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡

Batch Log and Analyze

Each run of log-generator and log-
analyzer occurs on a Virtual Machine.
Multiple such VMs run in parallel on

HPC platform. Clients can be added and
removed on-the-fly.

Future Work: Importance
Sampling to reduce

number of simulations
needed for “rare” events.

SMC Client

SMC Aggregator

Statistical Model Checking
of Distributed Adaptive
Real-Time Software. David
Kyle, Jeffery Hansen, Sagar
Chaki. In Proc. of Runtime
Verifcation 2015 (to appear)

12
SEI Research Review 2015
October 7–8, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Zero-Slack Rate Monotonic
(ZSRM) software stack

• ZSRM Schedulability
Analysis as AADL/OSATE
Plugin

• ZSRM Scheduler as Linux
Kernel Module

• ZSRM Priority & Criticality
Ceiling Mutexes

CPU1

CPU2

task1

task2

task1

task2

Parallel
execution

End-to-end Zero-Slack Scheduling
• Based on pipelines that allows

parallel execution of multiple tasks
in different stages.

• Avoids assuming all tasks start
together in all stages

• Reduces the end-to-end response
time and improves utilization

• Working on submission to RTSS’15

13
SEI Research Review 2015
October 7–8, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Combining model checking of collision-avoidance protocol with reachability
analysis of control algorithms via assume-guarantee reasoning

Application

Controller

Platform

𝑰𝑰𝑨𝑨𝑨𝑨

𝑰𝑰𝑨𝑨𝑪𝑪

Prove application-controller
controller contract for
unbounded time

• Previously limited to
bounded verification only

Prove controller-platform
contract via hybrid
reachability analysis

• Done by AFRL

Working on automation and
asynchronous model of
computation

Proof of
collision
avoidance

DART Node

Assume-
Guarantee
Contract

Assume-
Guarantee
Contract

14
SEI Research Review 2015
October 7–8, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Transition and application to realistic systems

Logical Isolation between Verified and Unverified Code

Big Trusted Computing Base (Compilers)

Discovered more complexity and nuances about mixed-criticality
scheduling (end-to-end)

Importance sampling for distributed systems

Longer term: Fault-Tolerance, Runtime Assurance, Security

15
SEI Research Review 2015
October 7–8, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Team
Bjorn Andersson Mark Klein
Bud Hammons Arie Gurfinkel
Gabriel Moreno David Kyle
Jeffery Hansen James Edmondson
Scott Hissam Dionisio de Niz
Sagar Chaki

QUESTIONS?

https://github.com/cps-sei/dart

Summary
Distributed Adaptive Real-Time
(DART) systems promise to
revolutionize several areas of
DoD capability (e.g., autonomous
systems). We want to create a
sound engineering approach for
producing high-assurance
software for DART Systems, and
demonstrate on stakeholder
guided examples.

16
SEI Research Review 2015
October 7–8, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Contact Information

Sagar Chaki
Senior MTS
SSD/CSC
Telephone: +1 412-268-1436
Email: chaki@sei.cmu.edu

U.S. Mail
Software Engineering Institute
Customer Relations
4500 Fifth Avenue
Pittsburgh, PA 15213-2612
USA

Web
www.sei.cmu.edu
www.sei.cmu.edu/contact.cfm

Customer Relations
Email: info@sei.cmu.edu
Telephone: +1 412-268-5800
SEI Phone: +1 412-268-5800
SEI Fax: +1 412-268-6257

mailto:chaki@sei.cmu.edu

17
SEI Research Review 2015
October 7–8, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Backup Slides

18
SEI Research Review 2015
October 7–8, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Monitor ExecuteKnowledge

Analyze Plan

Target system
MAPE-K [Kephart 2003]

Proactive Self-
Adaptation

Implemented proactive self-adaptation manager in a multi-UAS coordinated protection
DART example. Manager adapts by changing system formation to tradeoff between
energy consumption and protection provided to a mothership.

Paper presented at ACM/SIGSoft FSE’15: Gabriel Moreno, Javier Camara, David Garlan
and Bradley Schmerl, "Proactive Self-Adaptation under Uncertainty: a Probabilistic Model
Checking Approach".

Adaptation Decision

19
SEI Research Review 2015
October 7–8, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

dmplc Log
Generator

𝓜𝓜

(DMPL)

Executable

Log (1
per

node)

Log
Analyzer Result

SMC Client

SMC
Aggregator

One
Bernoulli

Trial

𝝓𝝓

(DMPL)

	Verifying Distributed Adaptive Real-Time (DART) Systems
	Slide Number 2
	Background
	DART Approach
	Example: Self-Adaptive and Coordinated UAS Protection
	Example: Self-Adaptive and Coordinated UAS Protection
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Contact Information
	Slide Number 17
	Slide Number 18
	Slide Number 19

