L W
= © 2015 Carnegie Mellon University

: SOftwal'e Eng ineering Institute Cal'llegie Me]_l()ll Unjvel'Sity Distribution Statement A: Approved for Public Release;

Distribution is Unlimited

Copyright 2015 Carnegie Mellon University

This material is based upon work funded and supported by the Department of Defense under Contract
No. FA8721-05-C-0003 with Carnegie Mellon University for the operation of the Software Engineering
Institute, a federally funded research and development center.

References herein to any specific commercial product, process, or service by trade name, trade mark,
manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or
favoring by Carnegie Mellon University or its Software Engineering Institute.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING
INSTITUTE MATERIAL IS FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY
MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER
INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR
MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL.
CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH
RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

This material has been approved for public release and unlimited distribution except as restricted below.

This material may be reproduced in its entirety, without modification, and freely distributed in written or
electronic form without requesting formal permission. Permission is required for any other use. Requests
for permission should be directed to the Software Engineering Institute at permission@sei.cmu.edu.

DM-0002842

SEI Research Review 2015
October 7-8, 2015

=— Software Engineering Institute | Carnegie Mellon University © 2015 Carnegie Mellon Universiy 2

Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

mailto:permission@sei.cmu.edu

Introduction

System Measurement for Assurance at
Runtime

Big Data systems have a very dynamic runtime context —
assurance “by design” is still necessary but not sufficient

- New and changing data sources — sensors, humans, systems
- Evolving user workloads driven by new missions and new data
- Shared infrastructure — variable guality of service

Need to monitor the big data system in its runtime environment
- Collect measurements/metrics
- Assess health and trigger action to assure capability delivery

% Software Engineering Institute | Carnegie Mellon University

Introduction

System Measurement for Assurance at
Runtime

Big Data systems have a very dynamic runtime context —
assurance “by design” is still necessary but not sufficient

- New and changing data sources — sensors, Focus of this year’s
- Evolving user workloads driven by new mis project
- Shared infrastructure — variable quality of s€

Need to monitor the big data system | runtime environment
- Collect measurements/metrics

- Assess health and trigger action to assure capability delivery

~
Future Work —

Predict, Diagnose

% Software Engineering Institute | Carnegie Mellon University

Introduction

Technical Challenges —
Measurement Collection in Big Data Systems

System scale

- 1000s of nodes

- Millions of measurement time series streams
- Efficiency is critical

Processing and storage framework resiliency and redundancy
makes individual node status less meaningful

- Need aggregate application-level measurements composed
from component data

- End-to-end system performance is the ultimate health measure

% Software Engineering Institute | Carnegie Mellon University

Approach

Solution Approach

Scale — Automation

- Monitor generation

- Monitor insertion

- Measurement collection and aggregation
- (Future) Generate visualizations

Architecture Styles — Abstractions and constraints to enable
efficient automation (metamodels)

. Styles/Patterns capture common architecture approaches
- Restrict types of components and topologies
- Establish semantics for a class of functionality
- Define what to measure, where to measure, how to aggregate

% Software Engineering Institute | Carnegie Mellon University

Approach

Solution Approach

Scale — Automation

- Monitor generation

- Monitor insertion

- Measurement collection and aggregation

. (Future) Generate visualizations New Contribution

Architecture Styles — Abstractions and coq ts to enable

efficient automation (metamodels)

. Styles/Patterns capture common ggfiitecture approaches

%% Software Engineering Institute ‘ Carnegie Mellon University

Approach

Scale — Automation
Leverage Architecture Styles to Automate

. Uses ADL
P45 Style Definition N\
‘ == - Component Types
Experts & Creates - Connector Types
Researchers ~ Configuration Constraints
- Properties
Metamodel v
) MDE
N Y Deslpn Edits System
‘ Uses .
Big Data Time ArChltecture
System Toolkit Uses
Architect
Generates Uses
e~ ; , Uses
: O | Deploys & Executes ~ Runtime
E : Framework
' Monitors |
| ol l
i | I | Deploys & Executes Visualization
: : . : Toolkit
{ Visualizations |

T o ¥t 8

SEI Research Review 2015
October 7-8, 2015

=— Software Engineering Institute | Carnegie Mellon University © 2015 Carnegie Mellon Universiy 8

Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Results

Results —
Architecture Styles for Big Data Systems

ADL

=

‘ Style Definition
- Component Types

Experts & - Connector Types
Researchers - Configuration Constraints
- Properties

Metamodel @

MDE

- [ges Design Edits Sy_Stem

Big Data Time Architecture

System Toolkit Uses

Architect

Generates Uses

O es~N A : Uses
! O | Deploys & Executes ~ Runtime
[@ : Framework
' Monitors !
} bl :
| | I Deploys & Executes Visualization
! IR, Toolkit
[Visualizations |

SEI Research Review 2015
October 7-8, 2015

== Software Engineering Institute | Carnegie Mellon University © 2015 Carnegie Mellon Universiy 9

Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Results

Publish- .
—| o,
Input to
N\
Stream Pipe-and- h .
Input to Ridcessing g Filter ArC |teCt u re

Processing

e Styles for Data-
Immutable .
wwm Intensive
Systems

/ \

Transformer Input to

-
Input to

& Transformer
=

‘t_F'ermstent Materialized
Store Vie

N

Serving Layer

“Classic” Style
[Clements 2011] l’
Big Data Interactive Lambda
'\'.:_ = ue ﬁ
Composition =—= / \

Batch Layer

3
L

A > B Shared Client-
Specialization Data S
(Ais-a B) Repository erver

SEI Research Review 2015
October 7-8, 2015
Software Engineering Institute ‘ Carnegie Mellon University © 2015 Camegie Mellon University 10

Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Results

Example — Ingest Pipeline Style

Component Types
- Source Adapter, Transformer, Writer, Persistent Store

Measurement Metamodel

- A healthy instance of the ingest pipeline style processes data at
a rate that keeps ahead of incoming data. The measurements to
provide visibility into this include:

- # of input messages/records and rate for each input source
- # of data store writes per namespace and write rate

 Application-specific counts of values of particular input and output

data types (“peg counts” or histograms) to assess the distribution of
iInput and output data sets.

SEI Research Review 2015
October 7-8, 2015

== Software Engineering Institute | Carnegie Mellon University © 2015 Carnegie Mellon Universiy 11

Disti t A: Approved for Public Release;
i ed

Results

Results —
Using Styles to Model Big Data Systems

‘ , Uses
/o

Experts &
Researchers

ADL

Style Definition
- Component Types
- Connector Types

- Configuration Constraints

Metamodel W

Creates

MDE
A Design Edits System
‘ Uses .
Big Data Time Architecture
System Toolkit Uses
Architect
Generates Uses

Ir— ___________________) R . USeS

! O ' Deploys & Executes untime

| 3 ! Framework

: Monitors |

i | Deploys & Executes Visualization
! : . i Toolkit

{ Visualizations |

T o ¥t 8

SEI Research Review 2015
October 7-8, 2015

== Software Engineering Institute | Carnegie Mellon University © 2015 Carnegie Mellon Universiy 12

Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Results

Style-Based System Modeling in
Acme Architecture Description Language

[] @ AcmeStudio - bd-styles/MapReduceDemo.acme - AcmeStudio
e v R S 124% [=@

5. Navigator 53 = O || MapReduceDemo.acme 2 =8
= “z ~ ||/bd-styles/MapReduceDemo.acme

=+

2 Acmel ab? L T - - T S - - T A : B - B £ R £
T bd-styles .
(= .git .
[=-families
.acmeproject k | :
DS_Store i DailyTwitterFeed | leywordl
|2l .project . L :
[E{MapReduceDemo.acme
MapReduceDemo.mtd
B PubSubStreamsExample.acme
PubSubStreamsExample.mtd :
[simpleMR.acme o
SimpleMR.mtd i
[simpleSystem.acme
SimpleSystem.mtd

Extractor . SentimentScores

- .
[s) A) e

TwitterSentimentScoringJob | I Scheduler

5= Outline 52

% MapReduceDemg
Overview | Acme Source | MapReduceDemo

] Properties 23 . = Tasks

Syste m M Od e I Name: ManReduceDe'noName Types: MapReducif:;IeT CO m po N e nt typeS

Bropedios =1 Daily TwitterFeed KVStoreCompT =
Gulos HlintermediateStore KVStoreCompT d efl n e d by arC h 0
Description D KeywordExtractor MapperCompT
Structure £ KeywordScoring ReducerCompT Styl e
Types MRConfig MRConfigConnT
Representations MapControl MRControlConnT
Source MapperOutput KVStreamConnT
Groups MapperRead KVStreamConnT
ReduceControl MRControlConnT

SEI Research Review 2015
October 7-8, 2015

Software Engineering Institute | Carnegie Mellon University © 2015 Camegie Mellon Universiy 13

Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Results

Results — Automated Monitor Generation and
Measurement Collection

@ ——N
186N i e N

ADL

Experts & Eroaies - Connector Types
Researchers - Configuration Constraints
- Properties
Metamodel v
MDE
» Design Edits System
‘ Uses .
Big Data Time Architecture
System Toolkit Uses
Architect

Generates Uses

O

Deploys & Executes ~ Runtime
Framework

Monitors

Deploys & Executes Visualization
Toolkit

Visualizations |

SEI Research Review 2015
October 7-8, 2015

14

== Software Engineering Institute | Carnegie Mellon University © 2015 Carnegie Mellon Universiy

Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Results

Model-Generated Monitors and Collection for
NoSQL Persistence (CMU MSE Project)

-
—1
—

A

¢{ @8 AIDbSs .
Dashboards I 134 MiB
Data Sources 114 MB
95 MiB
Notifications

TEMIB

57MiB
admin 182 1824 1826 1828

'R 0] 1838

= collecid 54_152_101_54 GanericINMX memary-heap-memused

NightOwis

Grafana admin
39,6 MiB

Sign out 30 3MiB
3918
389MB

BEMIB —

384 MiB
¥ 1824 182% 1828

== collecid.54_88_65_60.memory memory-used

Model-Driven

Software Engineering Institute

Mongo Network Requests

Carnegie Mellon University

Multiple NoSQL
Databases

/ = n

858 19:02

SEI Research Review 2015

October 7-8, 2015

© 2015 Carnegie Mellon University 15
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Summary

Results and Future Work

Demonstrated feasibility of automating measurement collection
and aggregation

. Steps are manually integrated
- Limited monitor generation

Future Work:

- Transparent monitor insertion into existing systems that use
open source processing frameworks (e.g., NTC using Apache
Storm)

- Extension of style catalog for machine learning systems
- Automated generation of advanced visualizations

- Anomaly detection analytics (e.g., analytics like Netflix “starts
per second” analytics)

% Software Engineering Institute ‘ Carnegie Mellon University

Contact Information

John Klein

Senior Member of Technical Staff
Software Solutions Division
Telephone: +1 617-283-2170
Email: jklein@sei.cmu.edu

Web
www.sel.cmu.edu
www.sei.cmu.edu/contact.cfm

U.S. Malil

Software Engineering Institute
Customer Relations

4500 Fifth Avenue

Pittsburgh, PA 15213-2612
USA

Customer Relations
Email: info@sei.cmu.edu

Telephone: +1 412-268-5800
SEI Phone: +1 412-268-5800
SEI Fax: +1 412-268-6257

—__% cto
—=— Software Engineering Institute | Carnegie Mellon University © 201 ellon University

r
ent A: Approved for Public Release;

17

	Runtime Assurance for Big Data Systems
	Slide Number 2
	System Measurement for Assurance at Runtime
	System Measurement for Assurance at Runtime
	Technical Challenges –�Measurement Collection in Big Data Systems
	Solution Approach
	Solution Approach
	Scale → Automation�Leverage Architecture Styles to Automate
	Results – �Architecture Styles for Big Data Systems
	Architecture Styles for Data-Intensive Systems
	Example – Ingest Pipeline Style
	Results – �Using Styles to Model Big Data Systems
	Style-Based System Modeling in�Acme Architecture Description Language
	Results – Automated Monitor Generation and Measurement Collection
	Model-Generated Monitors and Collection for NoSQL Persistence (CMU MSE Project)
	Results and Future Work
	Slide Number 17

