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Big Data systems have a very dynamic runtime context –
assurance “by design” is still necessary but not sufficient

• New and changing data sources – sensors, humans, systems
• Evolving user workloads driven by new missions and new data
• Shared infrastructure – variable quality of service

Need to monitor the big data system in its runtime environment
• Collect measurements/metrics
• Assess health and trigger action to assure capability delivery

System Measurement for Assurance at 
Runtime

Introduction
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Future Work –
Predict, Diagnose

Focus of this year’s 
project
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System scale
• 1000s of nodes
• Millions of measurement time series streams
• Efficiency is critical

Processing and storage framework resiliency and redundancy 
makes individual node status less meaningful

• Need aggregate application-level measurements composed 
from component data

• End-to-end system performance is the ultimate health measure

Technical Challenges –
Measurement Collection in Big Data Systems

Introduction
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Scale → Automation
• Monitor generation
• Monitor insertion
• Measurement collection and aggregation
• (Future) Generate visualizations

Architecture Styles → Abstractions and constraints to enable 
efficient automation (metamodels)

• Styles/Patterns capture common architecture approaches
• Restrict types of components and topologies
• Establish semantics for a class of functionality
• Define what to measure, where to measure, how to aggregate

Solution Approach
Approach
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New Contribution
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Scale → Automation
Leverage Architecture Styles to Automate

Approach
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Results –
Architecture Styles for Big Data Systems

Results
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Architecture 
Styles for Data-
Intensive 
Systems

Results
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Component Types
• Source Adapter, Transformer, Writer, Persistent Store

Measurement Metamodel
• A healthy instance of the ingest pipeline style processes data at 

a rate that keeps ahead of incoming data. The measurements to 
provide visibility into this include:
• # of input messages/records and rate for each input source
• # of data store writes per namespace and write rate
• Application-specific counts of values of particular input and output 

data types (“peg counts” or histograms) to assess the distribution of 
input and output data sets.

Example – Ingest Pipeline Style
Results
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Results –
Using Styles to Model Big Data Systems

Results



13
SEI Research Review 2015
October 7–8, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release; 
Distribution is Unlimited

Style-Based System Modeling in
Acme Architecture Description Language

Results

Component types 
defined by arch. 

style

System Model
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Results – Automated Monitor Generation and 
Measurement Collection

Results



15
SEI Research Review 2015
October 7–8, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release; 
Distribution is Unlimited

Model-Generated Monitors and Collection for 
NoSQL Persistence (CMU MSE Project)

Results

Multiple NoSQL 
Databases

Model-Driven
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Demonstrated feasibility of automating measurement collection 
and aggregation

• Steps are manually integrated
• Limited monitor generation

Future Work:
• Transparent monitor insertion into existing systems that use 

open source processing frameworks (e.g., NTC using Apache 
Storm)

• Extension of style catalog for machine learning systems
• Automated generation of advanced visualizations
• Anomaly detection analytics (e.g., analytics like Netflix “starts 

per second” analytics)

Results and Future Work
Summary
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