
© 2015 Carnegie Mellon University

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Parallel Software Model
Checking
Sagar Chaki
October 8, 2015

2
SEI Research Review 2015
October 7–8, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Copyright 2015 Carnegie Mellon University

This material is based upon work funded and supported by the Department of Defense under
Contract No. FA8721-05-C-0003 with Carnegie Mellon University for the operation of the Software
Engineering Institute, a federally funded research and development center.

Any opinions, findings and conclusions or recommendations expressed in this material are those of
the author(s) and do not necessarily reflect the views of the United States Department of Defense.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING
INSTITUTE MATERIAL IS FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY
MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY
MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR
MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL.
CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH
RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

This material has been approved for public release and unlimited distribution except as restricted
below.

This material may be reproduced in its entirety, without modification, and freely distributed in written
or electronic form without requesting formal permission. Permission is required for any other use.
Requests for permission should be directed to the Software Engineering Institute at
permission@sei.cmu.edu.

DM-0002761

3
SEI Research Review 2015
October 7–8, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Project Introduction and Overview

Scalability = fundamental challenge in software model checking (SMC)
• Model Checking: My 30-year Quest to Overcome the State

Explosion Problem, Prof. Edmund Clarke

Most tools are sequential and do not use the abundant CPU cycles
• SMC is inherently difficult to parallelize
• SPIN has been parallelized, but is explicit-state

Develop a parallel symbolic software model checking algorithm
• Target multi-processors and clusters

Parallelize a recently developed SMC algorithm called Generalized
Property Directed Reachability (GPDR)

• Has inherent parallelization opportunities (promising candidate)
• Being used in several SMC application domains (wide impact)

4
SEI Research Review 2015
October 7–8, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Intellectual and Scientific Merit

void main() {

 int x = 0;

 while(x < 10) x++;

 assert (x == 10);

}

𝑐1: 𝑥 = 0 ⇒ 𝑃𝑃(𝑥)

𝑐2: 𝑃𝑃(𝑥) ∧ 𝑥 < 10 ∧ 𝑥′ = 𝑥 + 1
⇒ 𝑃𝑃(𝑥′)

𝑐3: 𝑃𝑃(𝑥) ∧ 𝑥 ≥ 10 ∧ 𝑥 ≠ 10 ⇒ 𝐸𝑃𝑃𝑃𝑃𝑜𝑃𝑃()

𝑄: 𝐸𝑃𝑃𝑃𝑃𝑜𝑃𝑃()

SMC Problem
Constrained HORN-SAT

(CHC) Instance

• CHC = Predicates () + Clauses () + Query ()

• Solution = Assignment to predicates that satisfies the clauses such that
the Query predicate is assigned

• Claim : Solution exists for CHC iff main() never violates assertion

• SMC for concurrent programs, real-time software, Lustre programs etc.
also being reduced to CHC

• Idea: parallelize a recently developed algorithm (GPDR) for solving CHC

5
SEI Research Review 2015
October 7–8, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Intellectual and Scientific Merit

𝑷𝑷𝟎𝟎

𝑸𝑸𝟎𝟎

𝑹𝑹𝟎𝟎

GPDR: Iteratively compute
candidate solutions 𝑷𝑷𝟎𝟎, 𝑷𝑷𝟏𝟏, 𝑸𝑸𝟎𝟎, 𝑸𝑸𝟏𝟏,
𝑹𝑹𝟎𝟎, 𝑹𝑹𝟏𝟏 etc. till a real solution is
found, or it is proved that no
solution can exist.

6
SEI Research Review 2015
October 7–8, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Intellectual and Scientific Merit

𝑷𝑷𝟎𝟎

𝑷𝑷𝟏𝟏

𝑸𝑸𝟎𝟎

𝑹𝑹𝟎𝟎

𝑹𝑹𝟏𝟏

𝑸𝑸𝟏𝟏

GPDR: Iteratively compute
candidate solutions 𝑷𝑷𝟎𝟎, 𝑷𝑷𝟏𝟏, 𝑸𝑸𝟎𝟎, 𝑸𝑸𝟏𝟏,
𝑹𝑹𝟎𝟎, 𝑹𝑹𝟏𝟏 etc. till a real solution is
found, or it is proved that no
solution can exist.

7
SEI Research Review 2015
October 7–8, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Parallel PDR with Lemma Sharing

PDR = GPDR with a single negative
predicate per clause

• Used for hardware model checking
• Also known as IC3

Parallelized a publicly available reference
implementation of IC3

• Several copies of IC3 running in
parallel

• Sharing facts learned about reachable
states (lemmas)

• Three variants: synchronous,
asynchronous, proof-checking

• Evaluated on benchmarks from the
Hardware Model Checking Competition
2014

• Average speed up over 2x, in some
cases over 300x

𝑰𝑰𝑰𝑰𝟑𝟑𝟏𝟏

𝑰𝑰𝑰𝑰𝟑𝟑𝟐𝟐

𝑰𝑰𝑰𝑰𝟑𝟑𝟑𝟑
SAT Solver

Pool

𝑰𝑰𝑰𝑰𝟑𝟑𝒌𝒌

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑃𝑃𝑃𝑃𝑃𝑃

8
SEI Research Review 2015
October 7–8, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Unpredictability in Runtime of Parallel PDR

Matches Weibull Distribution = Minimum of iid
random variables under Extreme Value Theorem
Solvers “compete” and the fastest one “wins”

9
SEI Research Review 2015
October 7–8, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Portfolio of Parallel PDRs

Parallelization leads to random runtime
• Information from other copies perturbs the SAT

solver and alters the search path in
unpredictable ways

• Solution: Use a portfolio
• Run many solvers in parallel
• Stop as soon as one finds solution

• How big should the portfolio be?
• Answer: 20 gives you a .99999 probability of

hitting the expected runtime of a single
solver

• Derived using statistical analysis and
extreme value theory
• Runtime of portfolio = min (runtime of solvers)
• Minimum on iid random variables converge to

Weibull distribution

Paper under submission. Tools publicly available.

𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷 𝑷𝑷𝑷𝑷𝑹𝑹𝟏𝟏

𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷 𝑷𝑷𝑷𝑷𝑹𝑹𝟏𝟏

𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷 𝑷𝑷𝑷𝑷𝑹𝑹𝒏𝒏

𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹

Probability that a portfolio of 𝒎𝒎
parallel PDRs will finish in
expected running time of a

single parallel PDR

10
SEI Research Review 2015
October 7–8, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Results: Parallel PDR (4)

11
SEI Research Review 2015
October 7–8, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Results: GPDR Strategies

Rewrote our implementation of GPDR (called Spacer)
• Re-design and re-implementation

• improved the original code written by a student
• new architecture is similar to IC3 allowing to reuse our existing

work on parallelizing IC3
• Implemented three different solution strategies

• Differ in the way priorities queues are populated and cleared
• Results indicate that strategies are complementary
• Each performs well on different subset of benchmarks
• Good idea to run in parallel with “loose” coupling

• Tool is publicly available

12
SEI Research Review 2015
October 7–8, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Results: Parallel GPDR

Run different strategies on different
machines/cores and share
inductive invariants and reachable
states (partial solutions)

Use restarts to weed out bad
strategies

Observed speedups in some cases,
approach has potential

• Insufficient data to draw solid
conclusions

𝑮𝑮𝑮𝑮𝑮𝑮𝑹𝑹 𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝟏𝟏

𝑮𝑮𝑮𝑮𝑮𝑮𝑹𝑹 𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝟏𝟏

𝑮𝑮𝑮𝑮𝑮𝑮𝑹𝑹 𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝟑𝟑

𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹

13
SEI Research Review 2015
October 7–8, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Summary

Parallel Software Model Checking

Sagar Chaki (chaki@sei.cmu.edu)
Arie Gurfinkel (arie@sei.cmu.edu)
Derrick Karimi (dhkarimi@sei.cmu.edu)

mailto:chaki@sei.cmu.edu
mailto:arie@sei.cmu.edu
mailto:dhkarimi@sei.cmu.edu

	Parallel Software Model Checking
	Slide Number 2
	Project Introduction and Overview
	Intellectual and Scientific Merit		
	Intellectual and Scientific Merit		
	Intellectual and Scientific Merit		
	Parallel PDR with Lemma Sharing
	Unpredictability in Runtime of Parallel PDR
	Portfolio of Parallel PDRs
	Results: Parallel PDR (4)
	Results: GPDR Strategies
	Results: Parallel GPDR
	Summary

