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Project Introduction and Overview

Scalability = fundamental challenge in software model checking (SMC)
• Model Checking: My 30-year Quest to Overcome the State 

Explosion Problem, Prof. Edmund Clarke

Most tools are sequential and do not use the abundant CPU cycles
• SMC is inherently difficult to parallelize
• SPIN has been parallelized, but is explicit-state

Develop a parallel symbolic software model checking algorithm
• Target multi-processors and clusters

Parallelize a recently developed SMC algorithm called Generalized 
Property Directed Reachability (GPDR)

• Has inherent parallelization opportunities (promising candidate)
• Being used in several SMC application domains (wide impact)
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Intellectual and Scientific Merit

 
void main() { 

  int x = 0; 

  while(x < 10) x++; 

  assert (x == 10); 

} 

     

 
𝑐1: 𝑥 = 0 ⇒ 𝑃𝑃(𝑥) 

𝑐2: 𝑃𝑃(𝑥) ∧ 𝑥 < 10 ∧ 𝑥′ = 𝑥 + 1
⇒ 𝑃𝑃(𝑥′) 

𝑐3: 𝑃𝑃(𝑥) ∧ 𝑥 ≥ 10 ∧ 𝑥 ≠ 10 ⇒ 𝐸𝑃𝑃𝑃𝑃𝑜𝑃𝑃() 

𝑄: 𝐸𝑃𝑃𝑃𝑃𝑜𝑃𝑃() 

SMC Problem
Constrained HORN-SAT 

(CHC) Instance

• CHC = Predicates () + Clauses () + Query ()

• Solution = Assignment to predicates that satisfies the clauses such that 
the Query predicate is assigned 

• Claim : Solution exists for CHC iff main() never violates assertion

• SMC for concurrent programs, real-time software, Lustre programs etc. 
also being reduced to CHC

• Idea: parallelize a recently developed algorithm (GPDR) for solving CHC
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Intellectual and Scientific Merit

𝑷𝑷𝟎𝟎

𝑸𝑸𝟎𝟎

𝑹𝑹𝟎𝟎

GPDR: Iteratively compute 
candidate solutions 𝑷𝑷𝟎𝟎, 𝑷𝑷𝟏𝟏, 𝑸𝑸𝟎𝟎, 𝑸𝑸𝟏𝟏, 
𝑹𝑹𝟎𝟎, 𝑹𝑹𝟏𝟏 etc. till a real solution is 
found, or it is proved  that no 
solution can exist.
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GPDR: Iteratively compute 
candidate solutions 𝑷𝑷𝟎𝟎, 𝑷𝑷𝟏𝟏, 𝑸𝑸𝟎𝟎, 𝑸𝑸𝟏𝟏, 
𝑹𝑹𝟎𝟎, 𝑹𝑹𝟏𝟏 etc. till a real solution is 
found, or it is proved  that no 
solution can exist.
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Parallel PDR with Lemma Sharing

PDR = GPDR with a single negative 
predicate per clause

• Used for hardware model checking
• Also known as IC3

Parallelized a publicly available reference 
implementation of IC3

• Several copies of IC3 running in 
parallel

• Sharing facts learned about reachable 
states (lemmas)

• Three variants: synchronous, 
asynchronous, proof-checking

• Evaluated on benchmarks from the 
Hardware Model Checking Competition 
2014

• Average speed up over 2x, in some 
cases over 300x

𝑰𝑰𝑰𝑰𝟑𝟑𝟏𝟏

𝑰𝑰𝑰𝑰𝟑𝟑𝟐𝟐

𝑰𝑰𝑰𝑰𝟑𝟑𝟑𝟑
SAT Solver 

Pool

𝑰𝑰𝑰𝑰𝟑𝟑𝒌𝒌

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑃𝑃𝑃𝑃𝑃𝑃
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Unpredictability in Runtime of Parallel PDR

Matches Weibull Distribution = Minimum of iid
random variables under Extreme Value Theorem 
Solvers “compete” and the fastest one “wins”
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Portfolio of Parallel PDRs

Parallelization leads to random runtime
• Information from other copies perturbs the SAT 

solver and alters the search path in 
unpredictable ways

• Solution: Use a portfolio
• Run many solvers in parallel
• Stop as soon as one finds solution

• How big should the portfolio be?
• Answer: 20 gives you a .99999 probability of 

hitting the expected runtime of a single 
solver

• Derived using statistical analysis and 
extreme value theory
• Runtime of portfolio = min (runtime of solvers)
• Minimum on iid random variables converge to 

Weibull distribution

Paper under submission. Tools publicly available.

𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷 𝑷𝑷𝑷𝑷𝑹𝑹𝟏𝟏

𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷 𝑷𝑷𝑷𝑷𝑹𝑹𝟏𝟏

𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷 𝑷𝑷𝑷𝑷𝑹𝑹𝒏𝒏

𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹

Probability that a portfolio of 𝒎𝒎
parallel PDRs will finish in 
expected running time of a 

single parallel PDR
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Results: Parallel PDR (4)
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Results: GPDR Strategies

Rewrote our implementation of GPDR (called Spacer)
• Re-design and re-implementation

• improved the original code written by a student 
• new architecture is similar to IC3 allowing to reuse our existing 

work on parallelizing IC3
• Implemented three different solution strategies

• Differ in the way priorities queues are populated and cleared
• Results indicate that strategies are complementary
• Each performs well on different subset of benchmarks
• Good idea to run in parallel with “loose” coupling

• Tool is publicly available
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Results: Parallel GPDR 

Run different strategies on different 
machines/cores and share 
inductive invariants and reachable 
states (partial solutions)

Use restarts to weed out bad 
strategies

Observed speedups in some cases, 
approach has potential

• Insufficient data to draw solid 
conclusions

𝑮𝑮𝑮𝑮𝑮𝑮𝑹𝑹 𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝟏𝟏

𝑮𝑮𝑮𝑮𝑮𝑮𝑹𝑹 𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝟏𝟏

𝑮𝑮𝑮𝑮𝑮𝑮𝑹𝑹 𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝟑𝟑

𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹
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Summary

Parallel Software Model Checking
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