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Collaboration Between Human Experts and ML
Introduction

Two typical approaches to classification or categorization:
Human analysts and machine learning (ML) classifiers.

Different strengths and weaknesses. Why pick one?  

Analysts
• Flexible, adaptable
• Sensitive to context
• Ability to explain

Machine Learning
• Scalable
• High dimensional
• Precisely specified
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A Motivating Problem – Malware Classification
Introduction
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Total Artifacts Over Time • CERT artifact catalog is a 
valuable resource that 
depends on expert reverse 
engineers for labels.

• Sample growth is 
exponential. Staffing growth 
is… sub-exponential.

• One-off ML models show 
promise, but can we do 
better?

• Other potential domains
• SOC/CSIRT Triage
• Insider Threat
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Background and goals
Learning theory progress
Experimental progress
Conclusions and next steps
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Traditional machine learning: select a random sample to label 
for training data.

Active learning: the model estimates an ideal sequence of 
samples and gets labels.

From Classifiers to Collaboration
Background
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Traditional Active Learning (uncertainty-based)
Background
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Simulated Active Learning
Background
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Traditional machine learning: select a random sample to label 
for training data.

Active learning: the model estimates an ideal sequence of 
samples and gets labels.

Proactive learning: active learning, but don’t assume the labels 
are perfect or perfectly reliable since they come from a human, 
not an oracle.

Human-computer collaboration:
The human experts are a persistent team. The algorithm 
estimates the best instances to show to each analyst to improve 
the long-term performance of both the machine and human 
learners.

From Classifiers to Collaboration
Background
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• How is it done today? Simulations, mostly.

• Why isn’t that good enough?
• Proactive learning and human-computer decision systems 

model and respond to the behavior of humans annotators.
• Simulated annotators will not have the same behavior (errors 

and learning patterns) as actual human experts.

• What would we need to know whether a new approach works?
• Realistic data: Class and feature distributions that relate to a 

transition domain.
• Human participants: Actual errors and learning patterns.
• Ground truth: Because we know labelers are fallible.

Apparatus for HCDS Research
Background
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Track 1: Learning theory advances to account for persistent 
human expert teams.

Track 2: Human subjects experiments to validate improvement to 
system.

What We are Doing
Background
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Background and goals
Learning theory progress
Experimental progress
Conclusions and next steps
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Traditional Active Learning (uncertainty-based)
Background
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Proactive Learning With Multiple Domain Experts
Learning theory progress

[Moon and Carbonell, 2014]
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Dynamic Proactive Learning (DPAL)
Learning theory progress

• Learned from past history

• Updated periodically

• Uncertainty

• Density

• Expertise

• …

DPAL is a mathematical framework to support active learning using 
many simultaneous criteria.
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Preliminary DPAL Results
Learning theory progress

• In simulation, a simple DPAL 
configuration outperforms 
other active learning 
strategies.

• US = Uncertainty Sampling
• DENS = Density Sampling
• US + DENS = static weighting
• DPAL = dynamic weighting
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Background and goals
Learning theory progress
Experimental progress
Conclusions and next steps
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Experiments In the Wild
Experimental progress

For research development and 
validation, we need a learnable task 
and ground truth. 

To stay close to the real data, we 
projected the samples into a three 
dimensional PCA space, and mapped 
those dimensions onto stick figures to 
classify.
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Proactive Learning API
Experimental progress

 allows for real 
experiments using the 
most advanced active 
learning techniques

AL API: Web Server (Python Django)

AL Worker
get_next_query(), train(), test(), …

DB
Annotator
Query
Answer
…

AL Library
Multi-class PAL
…

Front-end

POST: /answers/      GET: /queries/
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Complete Experimentation System
Experimental progress

Browser (from Mechanical Turk)

AL API: Web Server (Python Django)

AL Worker
get_next_query(), train(), test(), …

DB Annotator

Query

Answer

…

AL Library
Multi-class PAL

…

POST: /answers/      GET: /queries/

Exp API: Web Server (Python Django)
GET: newsession, GET: nextstim, …
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Creature Classification on AMT
Experimental progress
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Creature Classification on AMT
Experimental progress
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• Complete pilot: Is the task learnable?

• DPAL vs. baseline

• Joint optimization of analyst and classifier objectives.

• Extension of experimentation software to allow multi-session 
experiments and team experiments.

• …
• Test transferability of results to a target task (i.e., malware 

reverse engineering).

Next Steps
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• Including humans makes the system more resilient against 
adversaries.

• When thinking of machine learning for cybersecurity problems, 
we should be optimizing for what we really care about – the 
performance the complete human-computer system.

• Experimentation with humans is essential in understanding the 
true impact of active learning advancements.

• “The ability to accurately represent fully reactionary complex 
human and group activity in experiments will be instrumental in 
creating laboratory environments that realistically represent real-
world cyber operations.” – Cybersecurity Experimentation of the 
Future Report

Conclusions
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