
© 2015 Carnegie Mellon University

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Effecting Large-Scale
Adaptive Swarms Through
Intelligent Collaboration
(ELASTIC)
James Edmondson

2
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Copyright 2015 Carnegie Mellon University

This material is based upon work funded and supported by the Department of Defense under Contract No. FA8721-05-C-
0003 with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research
and development center.

Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do
not necessarily reflect the views of the United States Department of Defense.

References herein to any specific commercial product, process, or service by trade name, trade mark, manufacturer, or
otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by Carnegie Mellon
University or its Software Engineering Institute.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL
IS FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND,
EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF
FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE
MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT
TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

This material has been approved for public release and unlimited distribution except as restricted below.

This material may be reproduced in its entirety, without modification, and freely distributed in written or electronic form
without requesting formal permission. Permission is required for any other use. Requests for permission should be
directed to the Software Engineering Institute at permission@sei.cmu.edu.

Carnegie Mellon® is registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.

DM-0002816

3
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Autonomous systems are difficult
1. Current unmanned systems (UAS) are individually controlled

by a handful of pilots and potentially dozens of analysts
micromanaging every aspect of the device

2. This control paradigm results in poor scalability and high
training costs

3. A centralized control station is also prone to failure,
bottlenecks, and enemy attacks taking out all UAS managed
by that station

4. Missions change but AI tends to be static and preset

Introduction Challenges Results Future Work Conclusion

We want to make controlling autonomous
systems scalable, effective, and predictable
1. Allow one person to command an entire swarm of UAS to

do mission-level tasks

2. Focus on 1) scalability, 2) bringing simulated distributed AI
to reality, and providing 3) predictable control of UAS logic,
threads, sensors, actuators and software components

3. Provide all distributed algorithms and capabilities through
open source release of middleware and software via BSD-
style licenses at Sourceforge and Github

4
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

The state of the art in robotics control

Introduction Challenges Results Future Work Conclusion

Feature ROS Stage/Player ELASTIC *
Scalability Low. Dozens. Low. Dozens. High. Thousands.
Potential in partially
disconnected
environments

Low. Blocking
(TCP)

Low. Blocking
(TCP)

High. Non-blocking
(UDP). Expects
disconnects

Consistency/QoS None None Lamport clocks, QoS-
enabled threads

Knowledge
Abstraction

Socket based Message
based

Containers for native
language debugging,
real-time scripting
language

Simulation
transition to reality

Some. Mostly
Custom

Some. Mostly
Custom

Built-in support

* Via the GAMS (http://jredmondson.github.io/gams/) and MADARA
(http://madara.sourceforge.net/) open source middlewares that we are creating and extending

http://jredmondson.github.io/gams/
http://madara.sourceforge.net/

5
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Challenge 1: Make distributed AI that is extensible, scalable and
not hindered by disconnects

Solution

• Use UDP instead of TCP and DDS

• Minimize blocking behaviors
within the knowledge engine,
threads

• Revamp middleware to provide
O(1) access to all knowledge to
minimize access times

• Add scalable read threads,
controlled publish/receive rates

• Add controllable AI execution via
MAPE constructs and controllable
execution and threading

• Frequently resend important
information

Introduction Challenges Results Future Work Conclusion

6
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Challenge 2: Move Distributed AI from simulation to reality

Solution

• Provide Pose abstraction that
resolves Cartesian-based sims
(the most common type of
reference frame for sims) to GPS
and other types of real-world
reference frames

• Only use simulator engines that
provide real-world physics and
accurate environments

• We developed boat models
for VREP simulator that were
so accurate that they were
used to develop PID
controllers for the boat

GAMS can now provide automatic
translation of coordinate planes,
references and rotations in
simulations to real-world

Introduction Challenges Results Future Work Conclusion

7
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Challenge 3: Make AI controllable to aid verification techniques

Solution
• Modify threading models with

predictable execution

• Modify networking layers to have
guaranteed consistency in knowledge
updates

• Create algorithms with synchronous
models of computations to help with
predictability and consistency

1. Chaki, S., & Edmondson, J. (2014, July). Toward
parameterized verification of synchronous distributed
applications. In Proceedings of the 2014 International
SPIN Symposium on Model Checking of Software (pp.
109-112). ACM.

2. Chaki, S., Edmondson, J. (2014). Model-Driven
Verifying Compilation of Synchronous Distributed
Applications. Model-Driven Engineering Languages
and Systems, Springer, LNCS, v.8767, pp. 201-217.

Introduction Challenges Results Future Work Conclusion

System Reqs

Verification

Code Generation

MADARA/GAMS
Implementation

The D
A

R
T Process

8
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Challenge 4: Change AI when the mission or environment changes
Solution
• Standardize command and control

messages between users and UAS

• Modify controller to allow distributed
algorithms to be changed at run time

• Create algorithm factory
infrastructure that allows users to bind
C++ and JavaTM algorithms to
command and control messages

Initial plan

Hazardous material detected

Local autonomous agents
search for source of

hazardous plume

NEW ALGORITHM CREATED Other agents search
elsewhere

Introduction Challenges Results Future Work Conclusion

9
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Scalability results with 20-node ODROID cluster

Challenges Future Work ConclusionIntroduction Challenges Results Future Work Conclusion

• Using ODROID boards that are
similar to the internals of Platypus
LLC boats to test scalability of real
world distributed autonomy

• We believe current middleware and
hardware on boat can scale to 280
before we miss optimal hertz rates

Min Hz Max Hz Avg Hz
Per Node Publish 500.00 517.30 507.46
Per Node Receive 432.00 490.00 468.12
Per Node Total Receive 8,820.00 9,082.00 8,921.38
Total Throughput 133,868.00

Platypus Node Publish 5.00 35.00 31.00
Platypus Node Receive 5.00 35.00 31.00
Platypus Per Node Total
Receive 100.00 700.00 620.00
Platypus Total Throughput 12,400.00

Estimated boat scaling 1764 240 280

10
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Challenges Future Work ConclusionIntroduction Challenges Results Future Work Conclusion

Platform and program development

• Platypus LLC has incorporated
ELASTIC middlewares into their
autonomous boat product

• 100k+ lines of code in C++
were fully ported to AndroidTM

• Deployments of MADARA and
GAMS in North America,
South America, Middle East,
and Europe

• Deployed 20 boats in Doha,
Qatar harbor

11
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Challenges Future Work ConclusionIntroduction Challenges Results Future Work Conclusion

Platform and program development

• ELASTIC middleware results have
been incorporated into the Keck
Institute for Space Studies Multi-
Planetary Smart Tile proposal

• Three phased project that
puts 2,000+ tiles into 1) orbit,
2) the Moon, and 3) Mars

• Energy harvesting,
localization, power beaming,
and oxygen/fuel harvesting

• MADARA and GAMS provide
knowledge, reasoning, and
group autonomy for tile swarm

• Created simulations and code
for the Smart Tile as part of
the planning and proposal
process

12
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

MADARA

How our technologies are being used
FY 2015 architecture for Platypus LLC and CMU
collaboration

GAMS Controller

GAMS

GAMS Algorithm
and Boat Platform

B
oa

t S
er

ve
r

CMU Student Development
SEI Staff Development

MADARA B
oa

t P
ro

xy

UDP

SAMI Planner

Task Decomposition

Boat Images © 2014-2015 Platypus LLC

Custom Commands

Challenges Future Work ConclusionIntroduction Challenges Results Future Work Conclusion

13
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

FY16 Technical goals (next steps MADPARTS line)
1. Scale to 20+ boats working collaboratively

2. Split boat swarm into competitive groups

3. Extend GAMS middleware to include adversarial models

4. Create algorithms that are adversary aware, with a jamming adversary
model

5. Extend poses and coordinate systems to individual actuator/sensor
intrinsic translations

6. Make reliable knowledge transfer seamless (e.g., with commands)

FY16 collaborators
1. James Edmondson (CMU SEI)

2. Manuela Veloso (CMU CS)

3. Paul Scerri (CMU RI/Platypus LLC)

Challenges Future Work ConclusionIntroduction Challenges Results Future Work Conclusion

14
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Closing remarks
In this presentation, we’ve discussed scalability and adaptivity results of the GAMS
project

• An extensible framework called GAMS for distributed algorithms and platforms

• MAPE-based for predictable AI execution and interaction with platform sensors
and actuators

• Extensible algorithms that can be changed at runtime by users or even the
swarm itself

• Translation between coordinate systems for use with algorithms that need to
work in Cartesian, GPS or other reference frames

• Predictable execution and application of knowledge in the presence of threading,
multi-processing, networking, latency, and jamming

• High concentration on quality-of-service and realization of practical swarm
algorithms and platforms

Challenges Future Work ConclusionIntroduction Challenges Results Future Work Conclusion

15
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

FY 2015 Open Source Release
The algorithms, tools, and middleware created at
SEI are released via BSD-style licenses through
the following projects:

• Multi-Agent Distributed Adaptive Resource
Allocation (MADARA) for the distributed OS
layer: http://madara.sourceforge.net/

• Group Autonomy for Mobile Systems (GAMS)
for the algorithms and UIs:
http://jredmondson.github.io/gams/

• Model Checking for Distributed Applications
(MCDA) http://cps-sei.github.io/mcda/

• Drone-RK for the UAV device drivers:
http://www.drone-rk.org

• Contact: jredmondson@sei.cmu.edu

SEI Project Members

James Edmondson

David Kyle

CMU Project Members

Paul Scerri

Nate Brooks

Christopher Tomaszewski

Jason Blum

Cormac O’Meadhra

Vanderbilt Students

Anton Dukeman (CS)

Challenges Future Work ConclusionIntroduction Challenges Results Future Work Conclusion

http://madara.sourceforge.net/
http://jredmondson.github.io/gams/
http://cps-sei.github.io/mcda/
http://www.drone-rk.org/
mailto:jredmondson@sei.cmu.edu

© 2015 Carnegie Mellon University

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Backup Slides

17
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

What is Group Autonomy for Mobile
Systems?
An open-source middleware that provides
extensible algorithms and platforms, knowledge
sharing, timing, and control to distributed,
heterogeneous autonomous systems in potentially
disconnected, contested environments

What can GAMS do?
1. Allows one or more persons to control a

swarm of UAS in simulation or in the real-
world

2. Allows a distributed algorithm to be ran across
any supported platform

3. Supports advanced networking features such
as encryption, authentication, bandwidth
shaping, deadline filtering, rebroadcasting of
knowledge across a swarm, arbitrary filtering

4. Supports fine-grained control and predictable
execution and consistency

Introduction Challenges Results Future Work Conclusion

18
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

What algorithms are supported?

What platforms are supported?

Introduction Challenges Results Future Work Conclusion

Formation Coverage
Prioritized Region Coverage
Minimum Time Coverage
Serpentine Coverage
Waypoints
Formation Follow
Synchronized Formations
Convoy Shielding

VREP Boat
VREP Quadcopter
VREP Ant Robot
ROS Pioneer 3DX
Platypus LLC Lutra Boat

C++, Java, Android, Python
ARM, Intel

	Effecting Large-Scale Adaptive Swarms Through Intelligent Collaboration (ELASTIC)
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Challenge 1: Make distributed AI that is extensible, scalable and not hindered by disconnects
	Challenge 2: Move Distributed AI from simulation to reality
	Challenge 3: Make AI controllable to aid verification techniques
	Challenge 4: Change AI when the mission or environment changes
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Backup Slides
	Slide Number 17
	Slide Number 18

