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Graph Algorithms on Future Architectures

Fast, efficient graph analysis is important and pervasive.

Heterogeneous hardware is coming here.

We have built a library that helps developers use both.

Research question:  Can a set of primitives and 
operations be defined that will separate the concerns 
between graph analytic application development and the 
increasing complexity of the underlying hardware? 

Release library as open source.
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• GraphBLAS API
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Graph Analysis is Important and Pervasive.
Reminder: Graphs

x
x

x
x

x

x
x

x

x

x

x

x

1
2
3
4
5
6
7

1 2 3 4 5 6 7

1
2

2 4
5 7

3
4
5
6

6

3 4 5

1 3 7
6
3

7

x

to vertex

fro
m

 v
er

te
x



7
SEI Research Review 2015
October 7–8, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release; 
Distribution is Unlimited

Graph Analysis is Important and Pervasive.

Revert graph showing editor conflict on the 
“Cyprus dispute” Wikipedia page, 2015

United States Interstate Highway System

APT Detection in Computer Networks, C3E, 2013

Social Networks
Malware Distribution Networks

Community Detection
Shortest Path
Cost Minimization

Max Flow

Connected Components
PageRank

Centrality Clustering
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The Challenge of Primitives: Develop a Middleware for Large-
Scale Graph Analytics 
From the computer systems perspective, it would be very helpful to 
identify a set of primitive algorithmic tools that 

1) provide a framework to express concisely a broad scope of 
computations;

2) allow programming at the appropriate level of abstraction; and
3) are applicable over a wide range of platforms, hiding 

architecture-specific details from the users. 
The Graph 500 effort may be helpful in this regard
-- Frontiers in Massive Data Analysis, NRC, 2013.

Funded by the National Security Agency under 
contract number NSA H98230-09-C-0407

Graph data typically lacks “locality” and cannot be easily 
partitioned into isolated sub-graphs or sub-problems. 
This makes it difficult to distribute computations on graphs over 
multiple or many processors.

Two major implications 
• Small computation to communication ratio
• Unpredictability of data access

Graph Analysis is Important and Pervasive
(and Difficult).
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The Challenge of Primitives: Develop a Middleware for Large-
Scale Graph Analytics 
From the computer systems perspective, it would be very helpful to 
identify a set of primitive algorithmic tools that 

1) provide a framework to express concisely a broad scope of 
computations;

2) allow programming at the appropriate level of abstraction; and
3) are applicable over a wide range of platforms, hiding 

architecture-specific details from the users. 
The Graph 500 effort may be helpful in this regard
-- Frontiers in Massive Data Analysis, NRC, 2013.

Funded by the National Security Agency under 
contract number NSA H98230-09-C-0407

Graph data typically lacks “locality” and cannot be easily 
partitioned into isolated sub-graphs or sub-problems. 
This makes it difficult to distribute computations on graphs over 
multiple or many processors.

Two major implications 
• Small computation to communication ratio
• Unpredictability of data access

Executive Order
Creating a National Strategic Computing Initiative (NSCI)

Objectives
1) Accelerating delivery of an exascale computing system….
2) “Increasing coherence between the technology base used for modeling 

and simulation and that used for data analytic computing.”
3) Path for future HPC systems in the post-Moore’s Law era. 
4) Addressing relevant factors such as…foundational algorithms and 

software…
5) Developing enduring public-private collaboration to ensure that the 

benefits of the research and development advances are, to the greatest 
extent, shared between the United States Government and 
industrial and academic sectors.

--President Barack Obama, July 29, 2015.

Graph Analysis is Important and Pervasive
(and Difficult).
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Graph Algorithms on Future Architectures

Fast, efficient graph analysis is important and pervasive.

Heterogeneous hardware is coming here.

We have built a library that helps developers use both.

Research question:  Can a set of primitives and 
operations be defined that will separate the concerns 
between graph analytic application development and the 
increasing complexity of the underlying hardware? 



Release library as open source.
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Herb Sutter, Microsoft Research, 2011

A8 processer boasts a multicore CPU, 

multicore GPU, and motion processor 

Heterogeneous Hardware is Coming Here.

Our 
Hardware 

Focus: 
GPU

Intel's Xeon Phi accelerator holds on to 
top spot; NVIDIA’s GPUs are #2
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Why We Need Libraries and Frameworks to 
Exploit Parallel Hardware Architectures

“The sudden shift from single-core to multiple-
core processor chips requires a dramatic 
change in programming”

“Future growth in computing performance will 
have to come from software parallelism that can 
exploit hardware parallelism. 

Programs will need to be expressed by dividing 
work into multiple computations that execute on 
separate processors and that communicate 
infrequently or, better yet, not at all.”

Simplifying the task of parallel programming 
requires software abstractions that provide 
powerful mechanisms for synchronization, load 
balance, communication, and locality … while 
hiding the underlying details.

The Future of Computing Performance
National Research Council of the National 
Academies
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Graph Algorithms on Future Architectures

Fast, efficient graph analysis is important and pervasive.

Heterogeneous hardware is coming here.

We have built a library that helps developers use both.

Research question:  Can a set of primitives and 
operations be defined that will separate the concerns 
between graph analytic application development and the 
increasing complexity of the underlying hardware? 




Release library as open source.
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Separation of Concerns

Graph Expertise

Hardware Expertise

Research question:  Can a set of primitives and operations be defined 
that will separate the concerns between graph analytic application 
development and the increasing complexity of the underlying hardware? 

Separation of Concerns
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Motivation for Approach

“It is our view that the state of the art in constructing a large collection of graph 
algorithms in terms of linear algebraic operations is mature enough to support 
the emergence of a standard set of primitive building blocks. This paper is a 
position paper defining the problem and announcing our intention to launch 
an open effort to define this standard.”

Presented at the IEEE High Performance Extreme Computing Conference. Waltham, MA, Sept. 2013.

Home page: http://graphblas.org
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Our Collaborators: Indiana University
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Software Architecture

Graph Analytic Applications

Hardware Architecture

Graph Primitives (tuned for hardware)

Graph Algorithms

Separation of Concerns
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Separation of Concerns (inspired by linear algebra)
• GraphBLAS movement within the graph analytics research community
• Defines a programming interface base on semi-ring algebra
• Similar to BLAS interface defined in the 1970s for Scientific Computing

Components of this Research

Numerical Applications

Hardware Architecture

BLAS 
(tuned for hardware)

LINPACK/*LAPACK

Graph Analytic Applications

Hardware Architecture

GraphBLAS
(tuned for hardware)

Graph Algorithms

Separation of Concerns
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Jeremy Kepner and Hayden Jensen, Mathematics of Big Data: 
Spreadsheets, Databases, Matrices, and Graphs, MIT Press, 2016

Mathematics of Big Data

Semi-ring algebra defines 
the properties of the math 
to be performed.

Mathematics of Big Data: Spreadsheets, Databases, Matrices, 
and Graphs, Jeremy Kepner & Hayden Jansen, MIT Press, 2016
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Function Name Description
BuildMatrix Build a sparse matrix from row, column, value tuples

ExtractTuples Extract the row, column, value tuples from a sparse matrix

MxM, MxV, VxM Perform sparse matrix multiplication (e.g., BFS traversal)

Extract Extract a sub-matrix from a larger matrix (e.g., sub-graph 
selection)

Assign Assign to a sub-matrix of a larger matrix (e.g., sub-graph 
assignment)

EwiseAdd, 
EwiseMult

Element-wise addition and multiplication of matrices (e.g., 
graph union, intersection)

Apply Apply unary function to each element of matrix (e.g., edge 
weight modification)

Reduce Reduce along columns or rows of matrices (vertex degree)

Transpose Swaps the rows and columns of a sparse matrix (e.g., reverse 
directed edges)

GraphBLAS Operations (as of 9/17/15)

Key primitive data type: the sparse matrix
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Sparse Matrices Represent Graphs
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Sparse Matrices: Efficient Storage Formats
• Storage data structures is an active area 

of research.
• Efficient structures are tied intimately to 

memory architecture.
• Example: Compressed Sparse Row 

(CSR) use O(V) and O(E) dense arrays 
that help with multi-level cache 
hierarchies:
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“Classes” of algorithms built on GraphBLAS operations:
• Traversals: Breadth-First Search (BFS)
• Shortest Path/Cost Minimization (SSSP)
• Community Detection/Clustering
• Connected Components
• (Minimum) Spanning Tree
• Maximum Flow
• PageRank
• Metrics: diameter, betweenness centrality, triangle counting, etc.

GraphBLAS Algorithms
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Software Library Release

Graph Analytic Applications

Hardware Architecture

Graph Primitives (tuned for GPU hardware)

Graph Algorithms

Separation of Concerns

Open-source release: Scheduled for November 2015
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Motivation
• Graph Algorithms

• Heterogeneous High Performance 
Computing (HHPC)

The Separation of Concerns
• Library Architecture

• GraphBLAS API

Example and Results

Future Work

Schedule/Items/Contents
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Breadth-first search in five GraphBLAS calls

void bfs(SparseMatrix const &graph,          // sparse adjacency matrix
WavefrontVector wavefront,      // called with root (row vector)
LevelVector &level)

{
visited = wavefront;
level_val = 0;

while (!wavefront.empty())
{

// traverse one level from current wavefront
wavefront = VxM(wavefront, graph, LogicalSemiring);

// compute which from the next level have NOT been visited before
not_visited = Apply(visited, LogicalNot);
wavefront = EWiseMult(not_visited, wavefront, LogicalAnd);

// Assign the level to all newly visited vertices
level_val++;
level      += EwiseMult(wavefront, level_val, Mutiply);

// Update the visited list
visited     = EwiseAdd(visited, wavefront, LogicalOr);

}
}

Example
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Breadth-first search in three GraphBLAS calls with masks

void bfs(SparseMatrix const &graph,          // sparse adjacency matrix
WavefrontVector wavefront,      // called with root (row vector)
LevelVector &level)

{
visited = wavefront;
level_val = 0;

while (!wavefront.empty())
{

// traverse one level from current wavefront
wavefront = VxM(wavefront, graph, LogicalSemiring, mask=Not(visited));

// Assign the level to all newly visited vertices
level_val++;
level      += EwiseMult(wavefront, level_val, Mutiply);

// Update the visited list
visited     = EwiseAdd(visited, wavefront, LogicalOr);

}
}

Example
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Herb Sutter, Microsoft Research, 2011

A8 processer boasts a multicore CPU, 

multicore GPU and motion processor 

Reminder: 
our Hardware 
Focus: GPU

Results from the Hardware API Level

Intel's Xeon Phi accelerator holds on to 
top spot; NVIDIA’s GPUs are #2
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Results (~250 lines of GPU code using Dynamic Parallelism)
__device__ __forceinline__ bool warp_cull(int neighborid)
{

volatile __shared__ uint32_t scratch[WARP_SIZE][128];
uint16_t warpid=threadIdx.x / (WARP_SIZE);
uint32_t hash=neighborid&127;
scratch[warpid][hash] = neighborid;
uint32_t retrieved=scratch[warpid][hash];
if (retrieved == neighborid){

scratch[warpid][hash] = threadIdx.x;
if (scratch[warpid][hash] != threadIdx.x) {

return true;
}

}
return false;

}

__device__ __forceinline__ void warp_reap(uint32_t parent, uint32_t neighbors, uusi::EdgeValue* e, gafa::BitMap * q, int *parentMap){
__shared__ uint32_t comm[WARP_SIZE][3];
__shared__ uusi::EdgeValue* evs[WARP_SIZE];
uint16_t laneid=threadIdx.x & (WARP_SIZE-1);
uint16_t warpid=threadIdx.x / (WARP_SIZE);
while(__any(neighbors)) {

//per warp: one write will succeed
if (neighbors) { comm[warpid][0]=laneid; }

//winner descr:
if (comm[warpid][0] == laneid) {

comm[warpid][1] = neighbors;
comm[warpid][2] = parent;
evs[warpid] = e;
if ((uint64_t)e == 1 || (uint64_t)e==2) {

printf("not right at thread %d, neighbors=%d, code %d\n",parent,neighbors,e);
blkSync();

}
neighbors=0;

}
while(comm[warpid][1]){

if(comm[warpid][1] >= 32){
comm[warpid][1]-=32;
uusi::EdgeValue *edgevalue=evs[warpid];
uint32_t node=edgevalue[laneid].dst;
//if not marked in parentmap, and not in queue:
if (1 != gafa::get_bitmap_value_at(q,node) &&

-1 == atomicGet(parentMap,node)) {
gafa::set_bitmap_value_at(q, node, 1);
atomicExch(parentMap+node,comm[warpid][2]);

}
//increment edgevalue pointer:
evs[warpid]+=32;

}
else if(laneid<comm[warpid][1]){

comm[warpid][1]=0;
uusi::EdgeValue *edgevalue=evs[warpid];
uint32_t node=edgevalue[laneid].dst;
//if not marked in parentmap, and not in queue:
if (1!=gafa::get_bitmap_value_at(q,node) &&

-1==atomicGet(parentMap,node)){
gafa::set_bitmap_value_at(q, node, 1);
atomicExch(parentMap+node,comm[warpid][2]);

}
}

}
}

}

//very simple kernel for now.
__global__ void kernel1(uusi::GPUNode* nodes, uint32_t size, gafa::BitMap * q1, gafa::BitMap * q2, int *parentMap){

int idx = threadIdx.x+blockDim.x*blockIdx.x;
__shared__ uusi::EdgeValue* leftovers[1024];
__shared__ uint32_t leftover_size[1024];
//fillshmemaddrs:
leftover_size[threadIdx.x]=0;
leftovers[threadIdx.x] = (uusi::EdgeValue*)0x3;
if(idx<size){

if(gafa::get_bitmap_value_at(q1,idx) && atomicGet(parentMap,idx)!=-1) {
uint32_t edges=nodes[idx].neighbors;
if(edges>=KERNEL_TH){

//get remainder:
int b,t;
gafa::get_threads_blocks(edges,&b,&t,1024);
kernel2<<<b,t>>>(idx,edges,nodes[idx],q2,parentMap);

}
else{

leftovers[threadIdx.x]=nodes[idx].ev;
leftover_size[threadIdx.x]=nodes[idx].neighbors;

}
}
//set not-processed threads
else {

leftover_size[threadIdx.x]=0;
leftovers[threadIdx.x]=(uusi::EdgeValue*)2;

}    }//end of size limit

//set out-of-bounds threads‘ noofedges
else{

leftover_size[threadIdx.x]=0;
leftovers[threadIdx.x]=(uusi::EdgeValue*)1;

}
__syncthreads();
warp_reap(idx, leftover_size[threadIdx.x], leftovers[threadIdx.x], q2, parentMap);

}

//do all the visits in kernel2: use parentmap as visited map
__global__ void kernel2(uint32_t parent, uint32_t size, uusi::GPUNode e, gafa::BitMap * q, int *parentMap){

int idx = threadIdx.x+blockDim.x*blockIdx.x;
if (idx < size) {

uint32_t node=e.ev[idx].dst;
//if not marked in parentmap, and not in queue:
if (1!=gafa::get_bitmap_value_at(q,node) && -1==atomicGet(parentMap,node))
{

gafa::set_bitmap_value_at(q, node, 1);
atomicExch(parentMap+node,parent);

}
}

}

template <typename Int>
__global__ void pm(gafa::BitMap *data, Int size) {

for(int i=0;i<size;i++){
printf("%d ",gafa::get_bitmap_value_at(data,i));
blkSync();

}
}

int64_t* run_bfs(uusi::GPUGraph n, int source){
gafa::set_max_tpb();
gafa::BitMap *q1,*q2;
int t,b,count=1, k=0;
uint32_t *count_d;
int *parentMap, *parentMap_h;
q1 = gafa::new_device_bitmap(n.getNodes());
q2=gafa::new_device_bitmap(n.getNodes());
gafa::get_threads_blocks(n.getNodes(),&b,&t,1024);
cudaMemset((void*)(q1)+(uint8_t)(source/8),(0x01 << (source % 8)),1);
cuMalloc(&parentMap,n.getNodes()*(sizeof(int)));
cuMalloc(&count_d,4);
gafa::set_value_d(parentMap,-1,n.getNodes());
cuCopy(parentMap+source,&source,4,h2d);
gafa::setChildLimit(256000);
printf("blocks=%d,threads=%d\n",b,t);
devSync();
tic();
while(count!=0){

if(k%2){
kernel1<<<b,t>>>(n.getGraph(), n.getNodes(), q1, q2, parentMap);
devSync();
gafa::zero(q1,bitmapSize(n.getNodes()));
gafa::zero(count_d,1);
or_reduction<<<b,t>>>(q2,(uint32_t)bitmapSize(n.getNodes()),count_d);
devSync();
cuCopy(&count,count_d,4,d2h);
devSync();
k++;

}
else{

kernel1<<<b,t>>>(n.getGraph(), n.getNodes(), q2, q1, parentMap);
devSync();
gafa::zero(q2,bitmapSize(n.getNodes()));
gafa::zero(count_d,1);
or_reduction<<<b,t>>>(q1,(uint32_t)bitmapSize(n.getNodes()),count_d);
devSync();
cuCopy(&count,count_d,4,d2h);
devSync();
k++;

}
}
uusi::elapsed_time=toc();
printf("g500 timer: %f s, or %f ms\n",uusi::elapsed_time,uusi::elapsed_time*1000);
parentMap_h=(int*)malloc(4*n.getNodes());
int64_t *pm=(int64_t*)malloc(8*n.getNodes());
devSync();
cuCopy(parentMap_h,parentMap,sizeof(int)*n.getNodes(),d2h);
devSync();
for(uint32_t i=0;i<n.getNodes();i++){

pm[i]=parentMap_h[i];
}
//dump parent map:
gafa::dump_array_to_file(parentMap, n.getNodes(), "pmdump.txt");
cudaFree(parentMap);
cudaFree(count_d);
cudaFree(q1);
cudaFree(q2);
free(parentMap_h);
return pm;

}



31
SEI Research Review 2015
October 7–8, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release; 
Distribution is Unlimited

Results: GPU Dynamic Parallelism (DP)

P. Zhang, et al.,, “Dynamic Parallelism for Simple and Efficient GPU Graph Algorithms,” to appear in 
5th IEEE Workshop on Irregular Applications: Architectures and Algorithms, Nov 2015.

Over 1 billion
traversed edges 
per second (TEPs)
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Previous Results: Performance, Complexity, and 
Cost
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Results: Performance, Complexity, and Cost

Single CPU, List

Single CPU, CSR

Single GPU, CSR

Single GPU, DP-CSR



34
SEI Research Review 2015
October 7–8, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release; 
Distribution is Unlimited

Results: Performance, Complexity, and Cost
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Motivation
• Graph Algorithms

• Heterogeneous High Performance 
Computing (HHPC)

The Separation of Concerns
• Library Architecture

• GraphBLAS API

Example and Results

Future Work
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Future Work: Performance, Complexity, and Cost
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Complete the GraphBLAS API Specification
• We are working on the C++ Reference Implementation.
Collaborations with special purpose hardware developers
• FPGA designers at MIT/LL
• 3D memory architectures at CMU
Incorporating Sparse Solvers
• Spectral clustering
• Principal component analysis

Future Work
Motivation
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Text here

Concepts in this Research
Inspired by Linear Algebra

Numerical Applications

Hardware Architecture

BLAS 

(tuned for hardware)

LINPACK/*LAPACK

Graph Analytic Applications

Hardware Architecture

GraphBLAS + Sparse Solvers

(tuned for hardware)

Graph Programming Interface

(algorithms)Interface

Abstraction
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Results: Performance, Complexity, and Cost
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