Graph Algorithms on

Future Architectures
Scott McMillan, PhD

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

o © 2015 Carnegie Mellon University
=4 SOftwaI‘e Englneerlng |nStItUte Carnegie Me]lOIl UniVeI'Sity Distribution Statement A: Approved for Public Release;

Distribution is Unlimited

Copyright 2015 Carnegie Mellon University

This material is based upon work funded and supported by the Department of Defense under Contract
No. FA8721-05-C-0003 with Carnegie Mellon University for the operation of the Software Engineering
Institute, a federally funded research and development center.

Any opinions, findings and conclusions or recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the United States Department of Defense.

References herein to any specific commercial product, process, or service by trade name, trade mark,
manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or
favoring by Carnegie Mellon University or its Software Engineering Institute.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING
INSTITUTE MATERIAL IS FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY
MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER
INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR
MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL.
CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH
RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

This material has been approved for public release and unlimited distribution except as restricted below.

This material may be reproduced in its entirety, without modification, and freely distributed in written or
electronic form without requesting formal permission. Permission is required for any other use. Requests
for permission should be directed to the Software Engineering Institute at permission@sei.cmu.edu.

DM-0002857

SEI Research Review 2015
October 7-8, 2015

=— Software Engineering Institute | Carnegie Mellon University © 2015 Carnegie Mellon Universiy 2

Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Graph Algorithms on Future Architectures

Fast, efficient graph analysis is important and pervasive.
Heterogeneous hardware is eeming here.

We have built a library that helps developers use both.

Research question: Can a set of primitives and
operations be defined that will separate the concerns
between graph analytic application development and the
Increasing complexity of the underlying hardware?

Release library as open source.

SEI Research Review 2015
October 7-8, 2015

== Software Engineering Institute ‘ Carnegie Mellon University © 2015 Camegie Mellon Universiy 3

Dis ement A: Approved for Public Release;

Schedule/ltems/Contents

Motivation
. Graph Algorithms

- Heterogeneous High Performance
Computing (HHPC)

The Separation of Concerns
. Library Architecture

- GraphBLAS API
Example and Results
Future Work

% Software Engineering Institute | Carnegie Mellon University

Schedule/ltems/Contents

Motivation
. Graph Algorithms

- Heterogeneous High Performance
Computing (HHPC)

SEI Research Review 2015
October 7-8, 2015

=— Software Engineering Institute | Carnegie Mellon University © 2015 Carnegie Mellon Universiy >

Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Graph Analysis is Important and Pervasive.
Reminder: Graphs

to vertex

123 456 7
X X

from vertex
N OO UV D WN =
x
x
X

% Software Engineering Institute | Carnegie Mellon University

Graph Analysis is Important and Pervasive.

Shortest Path

Community Detection Cost Minimization
Max Flow

United States Interstate Highway System
APT Detection in Computer Networks, C3E, 2013

Connected Components

PageRank
- Clusterin
Centrality J
Malware Distribution Networks Revert graph showing editor conflict on the
Social Networks “Cyprus dispute” Wikipedia page, 2015

SEI Research Review 2015
October 7-8, 2015

=— Software Engineering Institute | Carnegie Mellon University © 2015 Carnegie Mellon Universiy 7

Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Graph Analysis is Important and Pervasive
(and Difficult).

Graph data typically lacks “locality” and cannot be easily
partitioned into isolated sub-graphs or sub-problems.

This makes it difficult to distribute computations on graphs over
multiple or many processors.

Two major implications
* Small computation to communication ratio
* Unpredictability of data access

The Challenge of Primitives: Develop a Middleware for Large-
Scale Graph Analytics

From the computer systems perspective, it would be very helpful to
identify a set of primitive algorithmic tools that

1) provide a framework to express concisely a broad scope of
computations;
2) allow programming at the appropriate level of abstraction; and

3) are applicable over a wide range of platforms, hiding
architecture-specific details from the users.

The Graph 500 effort may be helpful in this regard
-- Frontiers in Massive Data Analysis, NRC, 2013.

SEl Research Review 2015
October 7-8, 2015

Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

== Software Engineering Institute | Carnegie Mellon University © 2015 Camegie Mellon Universiy 8

Graph Analysis is Important and Pervasive
(and Difficult).

Executive Order

Creating a National Strategic Computing Initiative (NSCI)
Objectives

1) Accelerating delivery of an exascale computing system....

2) “Increasing coherence between the technology base used for modeling
and simulation and that used for data analytic computing.”

3) Path for future HPC systems in the post-Moore’s Law era.

4y Addressing relevant factors such as...foundational algorithms and
software...

5) Developing enduring public-private collaboration to ensure that the
benefits of the research and development advances are, to the greatest
extent, shared between the United States Government and
industrial and academic sectors.

--President Barack Obama, July 29, 2015.

SEI Research Review 2015
October 7-8, 2015

=— Software Engineering Institute | Carnegie Mellon University © 2015 Camegie Mellon Universi 9

Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Graph Algorithms on Future Architectures

ﬁast, efficient graph analysis is important and pervasive.
Heterogeneous hardware is eeming here.

We have built a library that helps developers use both.

Research question: Can a set of primitives and
operations be defined that will separate the concerns
between graph analytic application development and the
Increasing complexity of the underlying hardware?

Release library as open source.

SEI Research Review 2015
October 7-8, 2015

== Software Engineering Institute ‘ Carnegie Mellon University © 2015 Carnegie Mellon Universiy 10

Dis ement A: Approved for Public Release;

Heterogeneous Hardware is Ceming Here.

Qur
Hardware

Focus:
GPU

Intel's Xeon Phi accelerator holds on to
top spot; NVIDIA's GPUs are #2

A8 processer boasts a multicore CPU,

multicore GPU, and motion processor

Herb Sutter, Microsoft Research, 2011

SEI Research Review 2015
October 7-8, 2015

== Software Engineering Institute Carnegie Mellon University © 2015 Carnegie Mellon Universiy 11

Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Why We Need Libraries and Frameworks to
Exploit Parallel Hardware Architectures

“Future growth in computing performance will \

have to come from software parallelism that can o
exploit hardware parallelism. <fipd ot Bograsinlig
Programs will need to be expressed by dividing COMPUTING PERFORMANCE

work into multiple computations that execute on Game Over or

separate processors and that communicate Next Level?

infrequently or, better yet, not at all.”

“The sudden shift from single-core to multiple- bt et S
core processor chips requires a dramatic
change in programming”

NATIONAL RESEARCH COUNCIL

Simplifying the task of parallel programming
requires software abstractions that provide
powerful mechanisms for synchronization, load oo
balance, communication, and locality ... while
hiding the underlying details.

The Future of Computing Performance
National Research Council of the National
Academies

SEI Research Review 2015
October 7-8, 2015

== Software Engineering Institute Carnegie Mellon University © 2015 Carnegie Mellon Universiy 12

Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Graph Algorithms on Future Architectures

ﬁast, efficient graph analysis is important and pervasive.
ﬁeterogeneous hardware is eeming here.

We have built a library that helps developers use both.

Research question: Can a set of primitives and
operations be defined that will separate the concerns
between graph analytic application development and the
Increasing complexity of the underlying hardware?

Release library as open source.

SEl Researc h Review 2015
October 7-8, 2015

== Software Engineering Institute ‘ Carnegie Mellon University © 2015 Carnegie Mellon Universiy 13

Dis ement A: Approved for Public Release;

Schedule/ltems/Contents

Motivation
Graph Algorithms

Heterogeneous High Performance
Computing (HHPC)

The Separation of Concerns

. Library Architecture

- GraphBLAS API
Example and Results
Future Work

% Software Engineering Institute | Carnegie Mellon University

Separation of Concerns

Graph Expertise

Separation of Concerns

Hardware Expertise

Research question: Can a set of primitives and operations be defined
that will separate the concerns between graph analytic application
development and the increasing complexity of the underlying hardware?

— Software Engineering Institute | Carnegie Mellon University

Home page: http://graphblas.org

Motivation for Approach

Standards for Graph Algorithm Primitives

Tim Mattson (Intel Corporation). David Bader (Georgia Institute of Technology). Jon Berry (Sandia National
Laboratory). Aydin Buluc (Lawrence Berkeley National Laboratory). Jack Dongarra (University of Tennessee).
Christos Faloutsos (Carnegie Melon University). John Feo (Pacific Northwest National Laboratory). John Gilbert
(University of California at Santa Barbara), Joseph Gonzalez (Umiversity of California at Berkeley). Bruce
Hendrickson (Sandia National Laboratory). Jeremy Kepner (Massachusetts Institute of Technology). Charles
Leiserson (Massachusetts Institute of Technology). Andrew Lumsdaine (Indiana University). David Padua (University
of Illinois at Urbana-Champaign). Stephen Poole (Oak Ridge National Laboratory). Steve Reinhardt (Cray
Corporation), Mike Stonebraker (Massachusetts Institute of Technology). Steve Wallach (Convey Corporation).
Andrew Yoo (Lawrence Livermore National Laboratory)

“It is our view that the state of the art in constructing a large collection of graph
algorithms in terms of linear algebraic operations is mature enough to support
the emergence of a standard set of primitive building blocks. This paper is a
position paper defining the problem and announcing our intention to launch
an open effort to define this standard.”

Presented at the IEEE High Performance Extreme Computing Conference. Waltham, MA, Sept. 2013.

SEI Research Review 2015
October 7-8, 2015

== Software Engineering Institute Carnegie Mellon University © 2015 Carnegie Mellon Universiy 16

Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Our Collaborators: Indiana University

SEI Research Review 2015
October 7-8, 2015

== Software Engineering Institute Carnegie Mellon University © 2015 Carnegie Mellon Universiy 17

Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Software Architecture

Graph Analytic Applications

Graph Algorithms

Separation of Concerns

Graph Primitives (tuned for hardware)

Hardware Architecture

Software Engineering Institute | Carnegie Mellon University

Components of this Research

Separation of Concerns (inspired by linear algebra)
- GraphBLAS movement within the graph analytics research community
Defines a programming interface base on semi-ring algebra
- Similar to BLAS interface defined in the 1970s for Scientific Computing

Graph Analytic Applications Numerical Applications

Graph Algorithms LINPACK/*LAPACK

paration of Concerns

GraphBLAS BLAS
(tuned for hardware) (tuned for hardware)
Hardware Architecture Hardware Architecture

SEI Research Review 2015
October 7-8, 2015
© 2015 Carnegie Mellon University 19

= SOftWare Eng Ineerlng Instltute Cal‘llegle le']_lﬂll [h]l“‘vel'SIty Distribution Statement A: Approved for Public Release;

Distribution is Unlimited

Mathematics of Big Data

Semi-ring algebra defines
the properties of the math
to be performed.

SEI Research Review 2015

October 782015

— Software Engineering Institute | Carnegie Mellon University © 2015 Camegie Mellon Universi

ed for Public Relea

GraphBLAS Operations (as of 9/17/15)

BuildMatrix Build a sparse matrix from row, column, value tuples
ExtractTuples Extract the row, column, value tuples from a sparse matrix

MxM, MxV, VXM Perform sparse matrix multiplication (e.g., BFS traversal)

Extract Extract a sub-matrix from a larger matrix (e.g., sub-graph
selection)

Assign Assign to a sub-matrix of a larger matrix (e.g., sub-graph
assignment)

EwiseAdd, Element-wise addition and multiplication of matrices (e.g.,

EwiseMult graph union, intersection)

Apply Apply unary function to each element of matrix (e.g., edge
weight modification)

Reduce Reduce along columns or rows of matrices (vertex degree)

Transpose Swaps the rows and columns of a sparse matrix (e.g., reverse

directed edges)

Key primitive data type: the sparse matrix

SEl Researc h Review 2015
r7—

% Software Engineering Institute ‘ Carnegie Mellon University

Sparse Matrices Represent Graphs

to vertex

123 456 7
X X

from vertex
N O UV D WN =
x
P
b

SEI Research Review 2015
October 7-8, 2015

== Software Engineering Institute Carnegie Mellon University © 2015 Carnegie Mellon Universiy 22

Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Sparse Matrices: Efficient Storage Formats

. Storage data structures is an active area
of research.

.- Efficient structures are tied intimately to
memory architecture.

- Example: Compressed Sparse Row
(CSR) use O(V) and O(E) dense arrays
that help with multi-level cache

to vertex hierarchies:
123 456 7

I CEX3 N5 6 7
7
: C ZElAHE
x —
L3 X : 2|4 (5|8|9|10]13
> 4| x X X TN NN —
E . R R SRR
o X ~N N . e
9—6 X ‘ \ ~~
3 « EIEd s 3 3+ s
7 X X X

%% Software Engineering Institute | Carnegie Mellon University

GraphBLAS Algorithms

“Classes” of algorithms built on GraphBLAS operations:
. Traversals: Breadth-First Search (BFS)

. Shortest Path/Cost Minimization (SSSP)

- Community Detection/Clustering

. Connected Components

.« (Minimum) Spanning Tree

. Maximum Flow

- PageRank

- Metrics: diameter, betweenness centrality, triangle counting, etc.

SEI Research Review 2015
October 7-8, 2015

== Software Engineering Institute | Carnegie Mellon University © 2015 Carnegie Mellon Universiy 24

Dis ement A: Approved for Public Release;

Software Library Release

Graph Algorithms

Separation of Concerns

g Graph Primitives (tuned for GPU hardware)

Open-source release: Scheduled for November 2015

SEI Research Review 2015
October 7-8, 2015

== Software Engineering Institute ‘ Carnegie Mellon University © 2015 Camegie Mellon Universiy 25

Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Schedule/ltems/Contents

Example and Results

SEI Research Review 2015
October 7-8, 2015

== Software Engineering Institute Carnegie Mellon University © 2015 Camegie Mellon Universi 26

Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Example

Breadth-first search in five GraphBLAS calls

void bfs(SparseMatrix const &graph, // sparse adjacency matrix
WavefrontVector wavefront, // called with root (row vector)
LevelVector &level)
{
visited = wavefront;
level _val = 0;
while (lwavefront.empty())
{
// traverse one level from current wavefront
wavefront = VxM(wavefront, graph, LogicalSemiring);
// compute which from the next level have NOT been visited before
not_visited = Apply(visited, LogicalNot);
wavefront = EWiseMult(not_visited, wavefront, LogicalAnd);
// Assign the level to all newly visited vertices
level _val++;
level += EwiseMult(wavefront, level_val, Mutiply);
// Update the visited list
visited = EwiseAdd(visited, wavefront, LogicalOr);
¥
by

SEI Research Review 2015
October 7-8, 2015

=— Software Engineering Institute | Carnegie Mellon University © 2015 Carnegie Mellon Universiy 27

Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Example

Breadth-first search in three GraphBLAS calls with masks

void bfs(SparseMatrix const &graph, // sparse adjacency matrix
WavefrontVector wavefront, // called with root (row vector)
LevelVector &level)

{

visited = wavefront;
level _val = 0;

while (lwavefront.empty())

{
// traverse one level from current wavefront
wavefront = VxM(wavefront, graph, LogicalSemiring, mask=Not(visited));
// Assign the level to all newly visited vertices
level _val++;
level += EwiseMult(wavefront, level_val, Mutiply);
// Update the visited list
visited = EwiseAdd(visited, wavefront, LogicalOr);
¥

SEI Research Review 2015
October 7-8, 2015

© 2015 Carnegie Mellon University 28

= SOftWare Engineering InStitUte Ca‘l-llegie RI{'HO]] [TI]jV(‘l'Sit‘V Distribution Statement A: Approved for Public Release;

Distribution is Unlimited

Results from the Hardware API Level

Reminder:
our Hardware
Focus: GPU

Intel's Xeon Phi accelerator holds on to
top spot; NVIDIA's GPUs are #2

A8 processer boasts a multicore CPU,

multicore GPU and motion processor Herb Sutter, Microsoft Research, 2011

SEI Research Review 2015
October 7-8, 2015

== Software Engineering Institute Carnegie Mellon University © 2015 Carnegie Mellon Universiy 29

Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Results (=250 lines of GPU code using Dynamic Parallelism)

__device__ _ forceinline__ bool warp_cull(int neighborid)

vo e __shared__ uint32_t scratch[WARP_SIZE][128];
uint16_t warpid=threadldx.x / (WARP_SIZE);
i ghborid&127;

uint32_t hasl
scratchlvarpid] [hash] = neighbor

if (retrieved
scratch[wary
if (scratch[warpid][hash] = threadldx.x) {

[hash] = threadldx.x;

return true;

3
return false;
3
__device__ __forceinline__ void warp_reap(uint32_t parent, uint32_t neighbors, uusi::Edgevalue* e, gafa::BitMap * g, int *parentMap){
__shared__ uint32_t comm[WARP_SIZE][3];
__shared__ Edgevalue* evs[WARP_SIZE];
uint16_t lan hreadldx.x & (WARP_SIZE-1);
uintl6_t wary hreadldx.x / (WARP_SIZE);
while(__any(neighbors)) {
//per warp: one write will succeed
if (neighbors) { comm[warpid][0]=laneid; }
//winner descr:
if (comm[warpid][0] laneid) {
comm[warpid][1] = neighbors;
comm[warpid][2] = parent;
evs[warpid] = e;
if ((Uint64_t)e == 1 || (uint64_t)e==2) {
printf("not right at thread %d, neighbors=¥d, code %d\n",parent,neighbors,e);
blkSyncQ;
neighbors=0;
¥
while(comm[warpid][11){
if(comm[warpid][1] >= 32)(
Edgevalue *edgevalue=evs[war
int32_t node=edgevalue[laneid].dst;
//if not marked in parentmap, and not in queue:
= gafa::get_bitmap_value_at(q,node) &&
atomicGet(parentMap,node)) {
gafa::set_bitmap_value_at(q, node, 1);
atomi cExch(parenthap+node, comm[warpid] [21);
//increment edgevalue pol
evs[warpid]+=32;
3
else if(laneid<comm[warpid][11){
comm[warpid][1]=
uusi::Edgevalue *edgevalue=evs[war
int32_t node=edgevalue[laneid].dst;
//if not marked in parentmap, and not in queue:
afa::get_bitmap_value_at(q,node) &&
cGet(parentiap,node)){
et_bitmap_value_at(q, node, 1);
atomi cExch(parenthap+node, comm[warpid] [21) 5
3
3
3
3
3

//very simple kernel for now.
__global__ void kernel1(uus
int idx

:GPUNode* nodes, uint32_t size, gafa::BitMap * ql, gafa::BitMap *
threadldx.x+blockDim.x*blockldx.x;
__shared__ uusi: :EdgeValue* leftovers[1024]:
—_shared__ uint32_t leftover_size[1024];
//fillshmemaddrs:
leftover_size[threadldx.x
leftovers[threadldx.x] = (uu
if(idx<size){
if(gafa::get_bitmap_value_at(ql,idx) & atomicGet(parenthap, idx)
uint32_t edges=nodes[idx] .neighbors;
if(edges>=KERNEL_TH){
//get remainder:
int b,t;
gafa: :get_threads_blocks(edges,&b,&t,1024);
kernel2<<<b, t>>>(idx,edges,nodes[idx],q2,parenthap);

g2, int *parenthap){

:EdgeValue*)0x3;

- {

else{
Ieftovers[threadldx.x]=nodes[idx].ev;
leftover_size[threadldx.x]=nodes[idx] .neighbors;

3
7/set not-processed threads
else {

Ieftover_size[threadldx.x
Ieftovers[threadidx.x]=(uusi
} M/end of size limit

Edgevalue®)2;

gé Software Engineering Institute | Carnegie Mellon University

//set out-of-bounds threads® noofedges

else{
leftover_size[threadldx.x]
leftovers[threadldx.x

__syncthreadsQ);
warp_reap(idx, leftover_size[threadldx.x], leftovers[threadldx.x], g2, parentMap);

//do all the visits in kernel2: use parentmap as visited map
__global__ void kernel2(uint32_t parent, uint32_t size, uusi
t idx = threadldx.x+blockDim.x*blockldx.x;
if (idx < size) {
uint32_t node=e.ev[idx].dst;
//if not marked in parentmap, and not in queue:
afa::get_bitmap_value_at(q,node) && -

:GPUNode e, gafa

omicGet(parentiiap, node))

et_bitmap_value at(q node, 1)

¥

template <typename Int>
__global__ void pm(gaf

ithap *data, Int size) {

for(int +{
prlntf("%d ' gafa: -get_bitmap_value_at(data, i));
blksyncQ:

B

int64_t* run_bfs(uusi::GPUGraph n, int source){

t *parenthap, - parentMapih;
ql = gafa::new_device_bitmap(n.getNodes());
qz_gafa,,new device_bitmap(n.getNodes());
gafa: :get_threads_blocks(n.getNodes() , &b, &t,1024) ;
cudaMemset((void*)(ql)+(uint8_t)(source/8),(0x01 << (source % 8)),1);
cuMal loc(&parentiap,n.getNodes)* (sizeof (int)));
cuMalloc(&count_d,4) ;
gafa: :set_value_d(parentMap,-1,n.getNodes());
cuCopy(parentMap+source,&source, 4,h2d) ;
gafa: :setChildLimit(256000);
printf('blocks=%d, threads=%d\n",b, t);
devsyncQ);
ticO;
whi le(count1=0){
iF(kn2){
kernell<<<b,t>>>(n.getGraph(), n.getNodes(), ql, q2, parentMap);
devsyncQ:
gafa: :zero(ql,bitmapSize(n.getNodes()));
gafa: :zero(count_d,1);
or_reduction<<<b, t>>>(q2, (uint32_t)bitmapSize(n.getNodes()) ,count_d);
devsyncQ:
cuCopy(&count,count_d,4,d2h);
devsyncQ;
Ki+;

else{
kernell<<<b,t>>>(n.getGraph(), n.getNodes(), 42, ql, parentMap);
devsyncQ;

ero(q2,bitmapSize(n.getNodes()));

ero(count_d,1);

or_reductions<<<b, t>>>(ql, (uint32_t)bitmapSize(n.getNodes()) ,count_d);
devsyncQ;

cuCopy(&count,count_d,4,d2h);

devsyncQ;

Ki+;

mer: %f s, or %F ms\n",uus
t*)mal loc(4*n.getNodes());
nt64_t*)mal loc(8*n.getNodes());

elapsed_time,uusi

lapsed_time*1000);

devsyncQ;
cuCopy(parentMap_h,parentMap,sizeof(int)*n.getNodes(),d2h);

devsyncQ);
for(uint32_t i<n.getNodes(); i++){
pm[il=parentMap_h[i]:

//dump parent map:
gafa: :dump_array_to_t
cudaFree(parentMap) ;
cudaFree(count_d);
cudaFree(q1);
cudaFree(q2);
free(parentMap_h);
return pm;

le(parentiap, n.gethodes(Q), “pmdump.txt’);

SEI Research Review 2015
October 7-8, 2015

Distribution is Unlimited

itMap * q,

int *parentMap){

© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;

Results: GPU Dynamic Parallelism (DP)

Over 1 billion
traversed edges -
per second (TEPS)

P. Zhang, et al.,, “Dynamic Parallelism for Simple and Efficient GPU Graph Algorithms,” to appear in
5th IEEE Workshop on Irregular Applications: Architectures and Algorithms, Nov 2015.

SEI Research Review 2015
October 7-8, 2015

== Software Engineering Institute Carnegie Mellon University © 2015 Carnegie Mellon Universiy 31

Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Previous Results: Performance, Complexity, and
Cost

1,000,000,000

100,000,000 Single GPU, CSR

10,000,000 :
Single CPU, CSR

1,000,000
[|
Single CPU, List

Performance, Traversed Edges per sec. (TEPS)

100,000
1x 1.1x 1.2x 1.3x 1.4x 1.5x 1.6x 1.7x
SLOC, Relative to "Single CPU, List"

SEI Research Review 2015
October 7-8, 2015

== Software Engineering Institute ‘ Carnegie Mellon University © 2015 Camegie Mellon Universi 32

Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Results: Performance, Complexity, and Cost

10,000,000,000
)
i
= Single GPU, DP-CSR
8 1,000,000,000 .
wv
S
(]
o °
m -
&, 100,000,000 Single GPU, CSR
©
Ll
©
)
e
Y 10,000,000 L
e Single CPU, CSR
|_
@
9
c
© 1,000,000
S |
o Single CPU, List
o
| &9
()
a.

100,000

1x 1.2x 1.4x 1.6x 1.8x 2X

SLOC, Relative to "Single CPU, List"

SEI Research Review 2015
October 7-8, 2015

== Software Engineering Institute ‘ Carnegie Mellon University © 2015 Camegie Mellon Universi 33

Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Results: Performance, Complexity, and Cost

10,000,000,000
()
a | (<$5K)
= $300K Single GPU, DP-CSR
o 1,000,000,000 () ®
a Multi-CPU, BLAS
o ¢ 100c
o . o (~$3K)
g;n 100,000,000 $ 25¢ Single GPU, CSR
e ®
L
g # 1c
4
¢ 10,000,000 0
© Single CPU, CSR
|_
Q
(&)
c
© 1,000,000
& [|
o Single CPU, List
T
Q
a

100,000
1x 1.2x 1.4x 1.6x 1.8x 2X

SLOC, Relative to "Single CPU, List"

SEI Research Review 2015
October 7-8, 2015

== Software Engineering Institute ‘ Carnegie Mellon University © 2015 Camegie Mellon Universi 34

Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Schedule/ltems/Contents

Future Work

SEI Research Review 2015
October 7-8, 2015

== Software Engineering Institute Carnegie Mellon University © 2015 Camegie Mellon Universi 35

Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Future Work: Performance, Complexity, and Cost

10,000,000,000 :_ E— ':

n &)
a. 1 o |1 |
= - le GPU, DP-CSR
~ | © |€
3 1,000,000,000 o— =
v | © 1 Multi-CPU, BLAS
@ =
% | & l/ \. ~ |
& 100,000,000 | — | g Single GPU, CSR
o 1 QO | ®

@)
< I =5 | -
¢ 10,000,000 | |
I‘_& —_—— Slngle CPU, CSR
Q
(&)
c
© 1,000,000
= LI .
o Single CPU, List
G
| .
Q
a.

100,000
0.2x 0.4x 0.6x 0.8x 1x 1.2x 1.4x 1.6x 1.8x 2X

SLOC, Relative to "Single CPU, List"

SEI Research Review 2015
October 7-8, 2015

== Software Engineering Institute ‘ Carnegie Mellon University © 2015 Camegie Mellon Universiy 36

Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Motivation

Future Work

Complete the GraphBLAS API Specification

. We are working on the C++ Reference Implementation.
Collaborations with special purpose hardware developers
. FPGA designers at MIT/LL

- 3D memory architectures at CMU

Incorporating Sparse Solvers

. Spectral clustering

. Principal component analysis

% Software Engineering Institute | Carnegie Mellon University

Contact Information

Scott McMillan

Senior Member of Technical Staff
SEI Emerging Technology Center

Telephone: +1 412-268-5156
Email: smcmillan@sei.cmu.edu

Web
www.sel.cmu.edu
www.sei.cmu.edu/contact.cfm

U.S. Mall

Software Engineering Institute
Customer Relations

4500 Fifth Avenue

Pittsburgh, PA 15213-2612
USA

Customer Relations
Email: info@sei.cmu.edu

Telephone: +1 412-268-5800
SEI Phone: +1 412-268-5800
SEI Fax: +1 412-268-6257

_ - L] - L] . . Cto . .
—=— Software Engineering Institute | Carnegie Mellon University © 201 ellon University

r
ent A: Approved for Public Release;

38

mailto:ebwerner@sei.cmu.edu

BACKUPS?

SEI Research Review 2015
October 7-8, 2015

Software Engineering Institute | Carnegie Mellon University © 2015 Carnegie Mellon University 39

Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Concepts in this Research
Inspired by Linear Algebra

Numerical Applications Graph Analytic Applications

Graph Programming Interface

LINPACK/*LAPACK .
Interface (algorithms)
BLAS . GraphBLAS + Sparse Solvers
Abstraction
(tuned for hardware) (tuned for hardware)
Hardware Architecture Hardware Architecture
Text here

SEI Research Review 2015
October 7-8, 2015

== Software Engineering Institute Carnegie Mellon University © 2015 Carnegie Mellon Universiy g

Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Clustering

SEI Research Review 2015
October 7-8, 2015

Software Engineering Institute | Carnegie Mellon University © 2015 Carnegie Mellon University 41

Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Results: Performance, Complexity, and Cost

2k

1,000,000,000 :__:
£ - 3
a. Multi-CPU, BLAS 100 oy
= (-$300K) * ¢ O
O ® 49c i@
Q I R
v 100,000,000 oggc Slngleg?:g, CS
OhJ 4c ()
o
8 ®ic
oo
Ne)
LLl
= 10,000,000 T
A Single CPU, CSR
o
>
(1]
| .
-
] 1,000,000
5 =
(1] .)
= Single CPU, List
| .
)
G
| .
()]
[«

100,000
1x 1.1x 1.2x 1.3x 1.4x 1.5x 1.6x 1.7x

SLOC, Relative to "Single CPU, List"

SEI Research Review 2015
October 7-8, 2015

== Software Engineering Institute ‘ Carnegie Mellon University © 2015 Camegie Mellon Universi 42

Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

	Graph Algorithms on Future Architectures
	Slide Number 2
	Graph Algorithms on Future Architectures
	Schedule/Items/Contents
	Schedule/Items/Contents
	Slide Number 6
	Graph Analysis is Important and Pervasive.
	Slide Number 8
	Slide Number 9
	Graph Algorithms on Future Architectures
	Slide Number 11
	Slide Number 12
	Graph Algorithms on Future Architectures
	Schedule/Items/Contents
	Separation of Concerns
	Motivation for Approach	
	Our Collaborators: Indiana University
	Software Architecture
	Components of this Research
	Mathematics of Big Data
	GraphBLAS Operations (as of 9/17/15)
	Sparse Matrices Represent Graphs
	Sparse Matrices: Efficient Storage Formats
	GraphBLAS Algorithms
	Software Library Release
	Schedule/Items/Contents
	Example
	Example
	Results from the Hardware API Level
	Results (~250 lines of GPU code using Dynamic Parallelism)
	Results: GPU Dynamic Parallelism (DP)
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Schedule/Items/Contents
	Slide Number 36
	Future Work
	Slide Number 38
	BACKUPS?
	Concepts in this Research
	Clustering
	Slide Number 42

