
© 2015 Carnegie Mellon University

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Graph Algorithms on
Future Architectures
Scott McMillan, PhD

2
SEI Research Review 2015
October 7–8, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Copyright 2015 Carnegie Mellon University

This material is based upon work funded and supported by the Department of Defense under Contract
No. FA8721-05-C-0003 with Carnegie Mellon University for the operation of the Software Engineering
Institute, a federally funded research and development center.

Any opinions, findings and conclusions or recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the United States Department of Defense.

References herein to any specific commercial product, process, or service by trade name, trade mark,
manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or
favoring by Carnegie Mellon University or its Software Engineering Institute.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING
INSTITUTE MATERIAL IS FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY
MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER
INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR
MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL.
CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH
RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

This material has been approved for public release and unlimited distribution except as restricted below.

This material may be reproduced in its entirety, without modification, and freely distributed in written or
electronic form without requesting formal permission. Permission is required for any other use. Requests
for permission should be directed to the Software Engineering Institute at permission@sei.cmu.edu.

DM-0002857

3
SEI Research Review 2015
October 7–8, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Graph Algorithms on Future Architectures

Fast, efficient graph analysis is important and pervasive.

Heterogeneous hardware is coming here.

We have built a library that helps developers use both.

Research question: Can a set of primitives and
operations be defined that will separate the concerns
between graph analytic application development and the
increasing complexity of the underlying hardware?

Release library as open source.

4
SEI Research Review 2015
October 7–8, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Motivation
• Graph Algorithms

• Heterogeneous High Performance
Computing (HHPC)

The Separation of Concerns
• Library Architecture

• GraphBLAS API

Example and Results

Future Work

Schedule/Items/Contents

5
SEI Research Review 2015
October 7–8, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Motivation
• Graph Algorithms

• Heterogeneous High Performance
Computing (HHPC)

The Separation of Concerns
• Library Architecture

• GraphBLAS API

Example and Results

Future Work

Schedule/Items/Contents

6
SEI Research Review 2015
October 7–8, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Graph Analysis is Important and Pervasive.
Reminder: Graphs

x
x

x
x

x

x
x

x

x

x

x

x

1
2
3
4
5
6
7

1 2 3 4 5 6 7

1
2

2 4
5 7

3
4
5
6

6

3 4 5

1 3 7
6
3

7

x

to vertex

fro
m

 v
er

te
x

7
SEI Research Review 2015
October 7–8, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Graph Analysis is Important and Pervasive.

Revert graph showing editor conflict on the
“Cyprus dispute” Wikipedia page, 2015

United States Interstate Highway System

APT Detection in Computer Networks, C3E, 2013

Social Networks
Malware Distribution Networks

Community Detection
Shortest Path
Cost Minimization

Max Flow

Connected Components
PageRank

Centrality Clustering

8
SEI Research Review 2015
October 7–8, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

The Challenge of Primitives: Develop a Middleware for Large-
Scale Graph Analytics
From the computer systems perspective, it would be very helpful to
identify a set of primitive algorithmic tools that

1) provide a framework to express concisely a broad scope of
computations;

2) allow programming at the appropriate level of abstraction; and
3) are applicable over a wide range of platforms, hiding

architecture-specific details from the users.
The Graph 500 effort may be helpful in this regard
-- Frontiers in Massive Data Analysis, NRC, 2013.

Funded by the National Security Agency under
contract number NSA H98230-09-C-0407

Graph data typically lacks “locality” and cannot be easily
partitioned into isolated sub-graphs or sub-problems.
This makes it difficult to distribute computations on graphs over
multiple or many processors.

Two major implications
• Small computation to communication ratio
• Unpredictability of data access

Graph Analysis is Important and Pervasive
(and Difficult).

9
SEI Research Review 2015
October 7–8, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

The Challenge of Primitives: Develop a Middleware for Large-
Scale Graph Analytics
From the computer systems perspective, it would be very helpful to
identify a set of primitive algorithmic tools that

1) provide a framework to express concisely a broad scope of
computations;

2) allow programming at the appropriate level of abstraction; and
3) are applicable over a wide range of platforms, hiding

architecture-specific details from the users.
The Graph 500 effort may be helpful in this regard
-- Frontiers in Massive Data Analysis, NRC, 2013.

Funded by the National Security Agency under
contract number NSA H98230-09-C-0407

Graph data typically lacks “locality” and cannot be easily
partitioned into isolated sub-graphs or sub-problems.
This makes it difficult to distribute computations on graphs over
multiple or many processors.

Two major implications
• Small computation to communication ratio
• Unpredictability of data access

Executive Order
Creating a National Strategic Computing Initiative (NSCI)

Objectives
1) Accelerating delivery of an exascale computing system….
2) “Increasing coherence between the technology base used for modeling

and simulation and that used for data analytic computing.”
3) Path for future HPC systems in the post-Moore’s Law era.
4) Addressing relevant factors such as…foundational algorithms and

software…
5) Developing enduring public-private collaboration to ensure that the

benefits of the research and development advances are, to the greatest
extent, shared between the United States Government and
industrial and academic sectors.

--President Barack Obama, July 29, 2015.

Graph Analysis is Important and Pervasive
(and Difficult).

10
SEI Research Review 2015
October 7–8, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Graph Algorithms on Future Architectures

Fast, efficient graph analysis is important and pervasive.

Heterogeneous hardware is coming here.

We have built a library that helps developers use both.

Research question: Can a set of primitives and
operations be defined that will separate the concerns
between graph analytic application development and the
increasing complexity of the underlying hardware?

Release library as open source.

11
SEI Research Review 2015
October 7–8, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Herb Sutter, Microsoft Research, 2011

A8 processer boasts a multicore CPU,

multicore GPU, and motion processor

Heterogeneous Hardware is Coming Here.

Our
Hardware

Focus:
GPU

Intel's Xeon Phi accelerator holds on to
top spot; NVIDIA’s GPUs are #2

12
SEI Research Review 2015
October 7–8, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Why We Need Libraries and Frameworks to
Exploit Parallel Hardware Architectures

“The sudden shift from single-core to multiple-
core processor chips requires a dramatic
change in programming”

“Future growth in computing performance will
have to come from software parallelism that can
exploit hardware parallelism.

Programs will need to be expressed by dividing
work into multiple computations that execute on
separate processors and that communicate
infrequently or, better yet, not at all.”

Simplifying the task of parallel programming
requires software abstractions that provide
powerful mechanisms for synchronization, load
balance, communication, and locality … while
hiding the underlying details.

The Future of Computing Performance
National Research Council of the National
Academies

13
SEI Research Review 2015
October 7–8, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Graph Algorithms on Future Architectures

Fast, efficient graph analysis is important and pervasive.

Heterogeneous hardware is coming here.

We have built a library that helps developers use both.

Research question: Can a set of primitives and
operations be defined that will separate the concerns
between graph analytic application development and the
increasing complexity of the underlying hardware?

Release library as open source.

14
SEI Research Review 2015
October 7–8, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Motivation
• Graph Algorithms

• Heterogeneous High Performance
Computing (HHPC)

The Separation of Concerns
• Library Architecture

• GraphBLAS API

Example and Results

Future Work

Schedule/Items/Contents

15
SEI Research Review 2015
October 7–8, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Separation of Concerns

Graph Expertise

Hardware Expertise

Research question: Can a set of primitives and operations be defined
that will separate the concerns between graph analytic application
development and the increasing complexity of the underlying hardware?

Separation of Concerns

16
SEI Research Review 2015
October 7–8, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Motivation for Approach

“It is our view that the state of the art in constructing a large collection of graph
algorithms in terms of linear algebraic operations is mature enough to support
the emergence of a standard set of primitive building blocks. This paper is a
position paper defining the problem and announcing our intention to launch
an open effort to define this standard.”

Presented at the IEEE High Performance Extreme Computing Conference. Waltham, MA, Sept. 2013.

Home page: http://graphblas.org

17
SEI Research Review 2015
October 7–8, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Our Collaborators: Indiana University

18
SEI Research Review 2015
October 7–8, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Software Architecture

Graph Analytic Applications

Hardware Architecture

Graph Primitives (tuned for hardware)

Graph Algorithms

Separation of Concerns

19
SEI Research Review 2015
October 7–8, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Separation of Concerns (inspired by linear algebra)
• GraphBLAS movement within the graph analytics research community
• Defines a programming interface base on semi-ring algebra
• Similar to BLAS interface defined in the 1970s for Scientific Computing

Components of this Research

Numerical Applications

Hardware Architecture

BLAS
(tuned for hardware)

LINPACK/*LAPACK

Graph Analytic Applications

Hardware Architecture

GraphBLAS
(tuned for hardware)

Graph Algorithms

Separation of Concerns

20
SEI Research Review 2015
October 7–8, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Jeremy Kepner and Hayden Jensen, Mathematics of Big Data:
Spreadsheets, Databases, Matrices, and Graphs, MIT Press, 2016

Mathematics of Big Data

Semi-ring algebra defines
the properties of the math
to be performed.

Mathematics of Big Data: Spreadsheets, Databases, Matrices,
and Graphs, Jeremy Kepner & Hayden Jansen, MIT Press, 2016

21
SEI Research Review 2015
October 7–8, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Function Name Description
BuildMatrix Build a sparse matrix from row, column, value tuples

ExtractTuples Extract the row, column, value tuples from a sparse matrix

MxM, MxV, VxM Perform sparse matrix multiplication (e.g., BFS traversal)

Extract Extract a sub-matrix from a larger matrix (e.g., sub-graph
selection)

Assign Assign to a sub-matrix of a larger matrix (e.g., sub-graph
assignment)

EwiseAdd,
EwiseMult

Element-wise addition and multiplication of matrices (e.g.,
graph union, intersection)

Apply Apply unary function to each element of matrix (e.g., edge
weight modification)

Reduce Reduce along columns or rows of matrices (vertex degree)

Transpose Swaps the rows and columns of a sparse matrix (e.g., reverse
directed edges)

GraphBLAS Operations (as of 9/17/15)

Key primitive data type: the sparse matrix

22
SEI Research Review 2015
October 7–8, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Sparse Matrices Represent Graphs

x
x

x
x

x

x
x

x

x

x

x

x

1
2
3
4
5
6
7

1 2 3 4 5 6 7

1
2

2 4
5 7

3
4
5
6

6

3 4 5

1 3 7
6
3

7

x

to vertex

fro
m

 v
er

te
x

23
SEI Research Review 2015
October 7–8, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Sparse Matrices: Efficient Storage Formats
• Storage data structures is an active area

of research.
• Efficient structures are tied intimately to

memory architecture.
• Example: Compressed Sparse Row

(CSR) use O(V) and O(E) dense arrays
that help with multi-level cache
hierarchies:

1 2 3 4 5 6 7

2 4 5 7 6 1 3 7 6 3 3 4 5

2 4 5 8 9 10 130x
x

x
x

x

x
x

x

x

x

x

x

1
2
3
4
5
6
7

1 2 3 4 5 6 7

1
2

2 4
5 7

3
4
5
6

6

3 4 5

1 3 7
6
3

7

x

to vertex

fro
m

 v
er

te
x

24
SEI Research Review 2015
October 7–8, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

“Classes” of algorithms built on GraphBLAS operations:
• Traversals: Breadth-First Search (BFS)
• Shortest Path/Cost Minimization (SSSP)
• Community Detection/Clustering
• Connected Components
• (Minimum) Spanning Tree
• Maximum Flow
• PageRank
• Metrics: diameter, betweenness centrality, triangle counting, etc.

GraphBLAS Algorithms

25
SEI Research Review 2015
October 7–8, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Software Library Release

Graph Analytic Applications

Hardware Architecture

Graph Primitives (tuned for GPU hardware)

Graph Algorithms

Separation of Concerns

Open-source release: Scheduled for November 2015

26
SEI Research Review 2015
October 7–8, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Motivation
• Graph Algorithms

• Heterogeneous High Performance
Computing (HHPC)

The Separation of Concerns
• Library Architecture

• GraphBLAS API

Example and Results

Future Work

Schedule/Items/Contents

27
SEI Research Review 2015
October 7–8, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Breadth-first search in five GraphBLAS calls

void bfs(SparseMatrix const &graph, // sparse adjacency matrix
WavefrontVector wavefront, // called with root (row vector)
LevelVector &level)

{
visited = wavefront;
level_val = 0;

while (!wavefront.empty())
{

// traverse one level from current wavefront
wavefront = VxM(wavefront, graph, LogicalSemiring);

// compute which from the next level have NOT been visited before
not_visited = Apply(visited, LogicalNot);
wavefront = EWiseMult(not_visited, wavefront, LogicalAnd);

// Assign the level to all newly visited vertices
level_val++;
level += EwiseMult(wavefront, level_val, Mutiply);

// Update the visited list
visited = EwiseAdd(visited, wavefront, LogicalOr);

}
}

Example

28
SEI Research Review 2015
October 7–8, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Breadth-first search in three GraphBLAS calls with masks

void bfs(SparseMatrix const &graph, // sparse adjacency matrix
WavefrontVector wavefront, // called with root (row vector)
LevelVector &level)

{
visited = wavefront;
level_val = 0;

while (!wavefront.empty())
{

// traverse one level from current wavefront
wavefront = VxM(wavefront, graph, LogicalSemiring, mask=Not(visited));

// Assign the level to all newly visited vertices
level_val++;
level += EwiseMult(wavefront, level_val, Mutiply);

// Update the visited list
visited = EwiseAdd(visited, wavefront, LogicalOr);

}
}

Example

29
SEI Research Review 2015
October 7–8, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Herb Sutter, Microsoft Research, 2011

A8 processer boasts a multicore CPU,

multicore GPU and motion processor

Reminder:
our Hardware
Focus: GPU

Results from the Hardware API Level

Intel's Xeon Phi accelerator holds on to
top spot; NVIDIA’s GPUs are #2

30
SEI Research Review 2015
October 7–8, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Results (~250 lines of GPU code using Dynamic Parallelism)
__device__ __forceinline__ bool warp_cull(int neighborid)
{

volatile __shared__ uint32_t scratch[WARP_SIZE][128];
uint16_t warpid=threadIdx.x / (WARP_SIZE);
uint32_t hash=neighborid&127;
scratch[warpid][hash] = neighborid;
uint32_t retrieved=scratch[warpid][hash];
if (retrieved == neighborid){

scratch[warpid][hash] = threadIdx.x;
if (scratch[warpid][hash] != threadIdx.x) {

return true;
}

}
return false;

}

__device__ __forceinline__ void warp_reap(uint32_t parent, uint32_t neighbors, uusi::EdgeValue* e, gafa::BitMap * q, int *parentMap){
__shared__ uint32_t comm[WARP_SIZE][3];
__shared__ uusi::EdgeValue* evs[WARP_SIZE];
uint16_t laneid=threadIdx.x & (WARP_SIZE-1);
uint16_t warpid=threadIdx.x / (WARP_SIZE);
while(__any(neighbors)) {

//per warp: one write will succeed
if (neighbors) { comm[warpid][0]=laneid; }

//winner descr:
if (comm[warpid][0] == laneid) {

comm[warpid][1] = neighbors;
comm[warpid][2] = parent;
evs[warpid] = e;
if ((uint64_t)e == 1 || (uint64_t)e==2) {

printf("not right at thread %d, neighbors=%d, code %d\n",parent,neighbors,e);
blkSync();

}
neighbors=0;

}
while(comm[warpid][1]){

if(comm[warpid][1] >= 32){
comm[warpid][1]-=32;
uusi::EdgeValue *edgevalue=evs[warpid];
uint32_t node=edgevalue[laneid].dst;
//if not marked in parentmap, and not in queue:
if (1 != gafa::get_bitmap_value_at(q,node) &&

-1 == atomicGet(parentMap,node)) {
gafa::set_bitmap_value_at(q, node, 1);
atomicExch(parentMap+node,comm[warpid][2]);

}
//increment edgevalue pointer:
evs[warpid]+=32;

}
else if(laneid<comm[warpid][1]){

comm[warpid][1]=0;
uusi::EdgeValue *edgevalue=evs[warpid];
uint32_t node=edgevalue[laneid].dst;
//if not marked in parentmap, and not in queue:
if (1!=gafa::get_bitmap_value_at(q,node) &&

-1==atomicGet(parentMap,node)){
gafa::set_bitmap_value_at(q, node, 1);
atomicExch(parentMap+node,comm[warpid][2]);

}
}

}
}

}

//very simple kernel for now.
__global__ void kernel1(uusi::GPUNode* nodes, uint32_t size, gafa::BitMap * q1, gafa::BitMap * q2, int *parentMap){

int idx = threadIdx.x+blockDim.x*blockIdx.x;
__shared__ uusi::EdgeValue* leftovers[1024];
__shared__ uint32_t leftover_size[1024];
//fillshmemaddrs:
leftover_size[threadIdx.x]=0;
leftovers[threadIdx.x] = (uusi::EdgeValue*)0x3;
if(idx<size){

if(gafa::get_bitmap_value_at(q1,idx) && atomicGet(parentMap,idx)!=-1) {
uint32_t edges=nodes[idx].neighbors;
if(edges>=KERNEL_TH){

//get remainder:
int b,t;
gafa::get_threads_blocks(edges,&b,&t,1024);
kernel2<<<b,t>>>(idx,edges,nodes[idx],q2,parentMap);

}
else{

leftovers[threadIdx.x]=nodes[idx].ev;
leftover_size[threadIdx.x]=nodes[idx].neighbors;

}
}
//set not-processed threads
else {

leftover_size[threadIdx.x]=0;
leftovers[threadIdx.x]=(uusi::EdgeValue*)2;

} }//end of size limit

//set out-of-bounds threads‘ noofedges
else{

leftover_size[threadIdx.x]=0;
leftovers[threadIdx.x]=(uusi::EdgeValue*)1;

}
__syncthreads();
warp_reap(idx, leftover_size[threadIdx.x], leftovers[threadIdx.x], q2, parentMap);

}

//do all the visits in kernel2: use parentmap as visited map
__global__ void kernel2(uint32_t parent, uint32_t size, uusi::GPUNode e, gafa::BitMap * q, int *parentMap){

int idx = threadIdx.x+blockDim.x*blockIdx.x;
if (idx < size) {

uint32_t node=e.ev[idx].dst;
//if not marked in parentmap, and not in queue:
if (1!=gafa::get_bitmap_value_at(q,node) && -1==atomicGet(parentMap,node))
{

gafa::set_bitmap_value_at(q, node, 1);
atomicExch(parentMap+node,parent);

}
}

}

template <typename Int>
__global__ void pm(gafa::BitMap *data, Int size) {

for(int i=0;i<size;i++){
printf("%d ",gafa::get_bitmap_value_at(data,i));
blkSync();

}
}

int64_t* run_bfs(uusi::GPUGraph n, int source){
gafa::set_max_tpb();
gafa::BitMap *q1,*q2;
int t,b,count=1, k=0;
uint32_t *count_d;
int *parentMap, *parentMap_h;
q1 = gafa::new_device_bitmap(n.getNodes());
q2=gafa::new_device_bitmap(n.getNodes());
gafa::get_threads_blocks(n.getNodes(),&b,&t,1024);
cudaMemset((void*)(q1)+(uint8_t)(source/8),(0x01 << (source % 8)),1);
cuMalloc(&parentMap,n.getNodes()*(sizeof(int)));
cuMalloc(&count_d,4);
gafa::set_value_d(parentMap,-1,n.getNodes());
cuCopy(parentMap+source,&source,4,h2d);
gafa::setChildLimit(256000);
printf("blocks=%d,threads=%d\n",b,t);
devSync();
tic();
while(count!=0){

if(k%2){
kernel1<<<b,t>>>(n.getGraph(), n.getNodes(), q1, q2, parentMap);
devSync();
gafa::zero(q1,bitmapSize(n.getNodes()));
gafa::zero(count_d,1);
or_reduction<<<b,t>>>(q2,(uint32_t)bitmapSize(n.getNodes()),count_d);
devSync();
cuCopy(&count,count_d,4,d2h);
devSync();
k++;

}
else{

kernel1<<<b,t>>>(n.getGraph(), n.getNodes(), q2, q1, parentMap);
devSync();
gafa::zero(q2,bitmapSize(n.getNodes()));
gafa::zero(count_d,1);
or_reduction<<<b,t>>>(q1,(uint32_t)bitmapSize(n.getNodes()),count_d);
devSync();
cuCopy(&count,count_d,4,d2h);
devSync();
k++;

}
}
uusi::elapsed_time=toc();
printf("g500 timer: %f s, or %f ms\n",uusi::elapsed_time,uusi::elapsed_time*1000);
parentMap_h=(int*)malloc(4*n.getNodes());
int64_t *pm=(int64_t*)malloc(8*n.getNodes());
devSync();
cuCopy(parentMap_h,parentMap,sizeof(int)*n.getNodes(),d2h);
devSync();
for(uint32_t i=0;i<n.getNodes();i++){

pm[i]=parentMap_h[i];
}
//dump parent map:
gafa::dump_array_to_file(parentMap, n.getNodes(), "pmdump.txt");
cudaFree(parentMap);
cudaFree(count_d);
cudaFree(q1);
cudaFree(q2);
free(parentMap_h);
return pm;

}

31
SEI Research Review 2015
October 7–8, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Results: GPU Dynamic Parallelism (DP)

P. Zhang, et al.,, “Dynamic Parallelism for Simple and Efficient GPU Graph Algorithms,” to appear in
5th IEEE Workshop on Irregular Applications: Architectures and Algorithms, Nov 2015.

Over 1 billion
traversed edges
per second (TEPs)

32
SEI Research Review 2015
October 7–8, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Previous Results: Performance, Complexity, and
Cost

100,000

1,000,000

10,000,000

100,000,000

1,000,000,000

1x 1.1x 1.2x 1.3x 1.4x 1.5x 1.6x 1.7x

Pe
rf

or
m

an
ce

, T
ra

ve
rs

ed
 E

dg
es

 p
er

 se
c.

 (T
EP

S)

SLOC, Relative to "Single CPU, List"

Single CPU, List

Single CPU, CSR

Single GPU, CSR

33
SEI Research Review 2015
October 7–8, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

100,000

1,000,000

10,000,000

100,000,000

1,000,000,000

10,000,000,000

1x 1.2x 1.4x 1.6x 1.8x 2x

Pe
rf

or
m

an
ce

, T
ra

ve
rs

ed
 E

dg
es

 p
er

 se
c.

 (T
EP

S)

SLOC, Relative to "Single CPU, List"

Results: Performance, Complexity, and Cost

Single CPU, List

Single CPU, CSR

Single GPU, CSR

Single GPU, DP-CSR

34
SEI Research Review 2015
October 7–8, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Results: Performance, Complexity, and Cost

100,000

1,000,000

10,000,000

100,000,000

1,000,000,000

10,000,000,000

1x 1.2x 1.4x 1.6x 1.8x 2x

Pe
rf

or
m

an
ce

, T
ra

ve
rs

ed
 E

dg
es

 p
er

 se
c.

 (T
EP

S)

SLOC, Relative to "Single CPU, List"

Multi-CPU, BLAS

1c

25c

100c

Single CPU, List

Single CPU, CSR

Single GPU, CSR

Single GPU, DP-CSR

(~$3K)

(~$300K)

(<$5K)

35
SEI Research Review 2015
October 7–8, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Motivation
• Graph Algorithms

• Heterogeneous High Performance
Computing (HHPC)

The Separation of Concerns
• Library Architecture

• GraphBLAS API

Example and Results

Future Work

Schedule/Items/Contents

36
SEI Research Review 2015
October 7–8, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Future Work: Performance, Complexity, and Cost

Multi-CPU, BLAS

Single CPU, List

Single CPU, CSR

Single GPU, CSR

Single GPU, DP-CSR

100,000

1,000,000

10,000,000

100,000,000

1,000,000,000

10,000,000,000

0.2x 0.4x 0.6x 0.8x 1x 1.2x 1.4x 1.6x 1.8x 2x

Pe
rf

or
m

an
ce

, T
ra

ve
rs

ed
 E

dg
es

 p
er

 se
c.

 (T
EP

S)

SLOC, Relative to "Single CPU, List"

Ta
rg

et
 P

er
fo

rm
an

ce

37
SEI Research Review 2015
October 7–8, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Complete the GraphBLAS API Specification
• We are working on the C++ Reference Implementation.
Collaborations with special purpose hardware developers
• FPGA designers at MIT/LL
• 3D memory architectures at CMU
Incorporating Sparse Solvers
• Spectral clustering
• Principal component analysis

Future Work
Motivation

38
SEI Research Review 2015
October 7–8, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Scott McMillan
Senior Member of Technical Staff
SEI Emerging Technology Center
Telephone: +1 412-268-5156
Email: smcmillan@sei.cmu.edu

U.S. Mail
Software Engineering Institute
Customer Relations
4500 Fifth Avenue
Pittsburgh, PA 15213-2612
USA

Web
www.sei.cmu.edu
www.sei.cmu.edu/contact.cfm

Customer Relations
Email: info@sei.cmu.edu
Telephone: +1 412-268-5800
SEI Phone: +1 412-268-5800
SEI Fax: +1 412-268-6257

Contact Information

mailto:ebwerner@sei.cmu.edu

39
SEI Research Review 2015
October 7–8, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

BACKUPS?

40
SEI Research Review 2015
October 7–8, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Text here

Concepts in this Research
Inspired by Linear Algebra

Numerical Applications

Hardware Architecture

BLAS

(tuned for hardware)

LINPACK/*LAPACK

Graph Analytic Applications

Hardware Architecture

GraphBLAS + Sparse Solvers

(tuned for hardware)

Graph Programming Interface

(algorithms)Interface

Abstraction

41
SEI Research Review 2015
October 7–8, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Clustering

42
SEI Research Review 2015
October 7–8, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Results: Performance, Complexity, and Cost

100,000

1,000,000

10,000,000

100,000,000

1,000,000,000

1x 1.1x 1.2x 1.3x 1.4x 1.5x 1.6x 1.7x

Pe
rf

or
m

an
ce

, T
ra

ve
rs

ed
 E

dg
es

 p
er

 se
c.

 (T
EP

S)

SLOC, Relative to "Single CPU, List"

Single CPU, List

Single CPU, CSR

Single GPU, CSR

Multi-CPU, BLAS

1c

4c
9c
25c
49c

100c

(~$3K)

(~$300K)

	Graph Algorithms on Future Architectures
	Slide Number 2
	Graph Algorithms on Future Architectures
	Schedule/Items/Contents
	Schedule/Items/Contents
	Slide Number 6
	Graph Analysis is Important and Pervasive.
	Slide Number 8
	Slide Number 9
	Graph Algorithms on Future Architectures
	Slide Number 11
	Slide Number 12
	Graph Algorithms on Future Architectures
	Schedule/Items/Contents
	Separation of Concerns
	Motivation for Approach	
	Our Collaborators: Indiana University
	Software Architecture
	Components of this Research
	Mathematics of Big Data
	GraphBLAS Operations (as of 9/17/15)
	Sparse Matrices Represent Graphs
	Sparse Matrices: Efficient Storage Formats
	GraphBLAS Algorithms
	Software Library Release
	Schedule/Items/Contents
	Example
	Example
	Results from the Hardware API Level
	Results (~250 lines of GPU code using Dynamic Parallelism)
	Results: GPU Dynamic Parallelism (DP)
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Schedule/Items/Contents
	Slide Number 36
	Future Work
	Slide Number 38
	BACKUPS?
	Concepts in this Research
	Clustering
	Slide Number 42

