
© 2015 Carnegie Mellon University

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Increase Adoption of
Secure Coding Standards
Dan Plakosh

2
SEI Research Review 2015
October 7–8, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Copyright 2015 Carnegie Mellon University
This material is based upon work funded and supported by the Department of Defense under Contract
No. FA8721-05-C-0003 with Carnegie Mellon University for the operation of the Software Engineering
Institute, a federally funded research and development center.
Any opinions, findings and conclusions or recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the United States Department of Defense.
NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING
INSTITUTE MATERIAL IS FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY
MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER
INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR
MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL.
CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH
RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.
This material has been approved for public release and unlimited distribution except as restricted below.
This material was prepared for the exclusive use of SEI Research Review and may not be used for any
other purpose without the written consent of permission@sei.cmu.edu.
Carnegie Mellon® and CERT® are registered marks of Carnegie Mellon University.
DM-0002771

3
SEI Research Review 2015
October 7–8, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

• Fundamentals: Prescriptive Rules
• Maintain the C rules
• New computation models: threads
• Major language updates: C++

• Reducing friction of adoption
• Improving analyst productivity
• Immediate feedback and correction
• Catching more violations

• Summary

Outline

4
SEI Research Review 2015
October 7–8, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

• Specific, prescriptive advice for
programmers, checkers and IDEs

• Collected wisdom of programmers
and tools vendors

• Fed by community wiki started
in Spring 2006

• 1,576 registered contributors
• Basis for ISO Standard

• Continuously updated to reflect best
practices and language evolution

Fundamentals: C Coding Rules

5
SEI Research Review 2015
October 7–8, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Fundamentals: Expanding Coverage

Major language updates for
C++

• 24 new rules in FY15 specifying C++
weaknesses

• 60 existing C++ rules updated in FY15

New and updated rules published on
http://www.cert.org/secure-
coding/publications/secure-coding-
enewsletter.cfm

New computation model:
C threads

• 9 unspecified behaviors representing
programming weaknesses in two broad
categories
• Inter-thread communication
• Thread-specific storage

Example: the tss_create function which
creates thread-specific storage and assigns a
destructor but does not specify when the
destructor is called.

6
SEI Research Review 2015
October 7–8, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Improve expert review
productivity by focusing on
high priority violations

Filter select secure coding rule
violations

• Eliminate irrelevant
diagnostics

• Convert to common CERT
Secure Coding rule
labeling

Provide single view into code
and all diagnostics
Maintain record of decisions

Adoption: Improving Analyst Productivity

7
SEI Research Review 2015
October 7–8, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Moving rules into IDE improves application of
secure coding

• Early feedback corrects errors on introduction
• Exceptions are understood in context
• Exceptions can be marked as resolved to eliminate

redundant consideration

Clang static analyzer (C based languages)
• Widely used open source front end for popular compilers

and IDEs
• Checkers available now in “Top-of-Tree” by early adopters
• Expect to be generally available in Clang’s yearly release

FindBugs (Java)
• Integrated into Eclipse and Jdeveloper

Adoption: Immediate Feedback

8
SEI Research Review 2015
October 7–8, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

• Checking C/C++ rule violations
• Exception
• Function return
• Evaluation ordering / side effects

• Checking Java rule violations
• Override
• I/O

Adoption: Catching More Violations Thru Checkers

Increase adoption
through automated
checkers of rule
violations

Example:
byte data;
while ((data = (byte) in.read()) != -1) {

// ...
}

• Constructor
• Assertion

Example:
int a = 14;
int b = sizeof(a++);
std::cout << a << ", " << b << std::endl;
a is still 14 after b has been initialized

9
SEI Research Review 2015
October 7–8, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Summary
• Maintained C Coding rules - updated to reflect

best practices and language evolution
• Developed 25 new rules for C++ and updated

60 existing C++ rules
• Developed a web application to improve

analyst productivity
• Introducing checking earlier in the

development process
 developed checkers for clang and FindBugs

	Increase Adoption of Secure Coding Standards
	Slide Number 2
	Outline
	Slide Number 4
	Fundamentals: Expanding Coverage
	Slide Number 6
	Slide Number 7
	Adoption: Catching More Violations Thru Checkers
	Summary

