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• Fundamentals: Prescriptive Rules
• Maintain the C rules
• New computation models: threads
• Major language updates: C++

• Reducing friction of adoption
• Improving analyst productivity
• Immediate feedback and correction
• Catching more violations

• Summary

Outline
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• Specific, prescriptive advice for 
programmers, checkers and IDEs

• Collected wisdom of programmers 
and tools vendors

• Fed by community wiki started 
in Spring 2006

• 1,576 registered contributors
• Basis for ISO Standard

• Continuously updated to reflect best 
practices and language evolution

Fundamentals: C Coding Rules
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Fundamentals: Expanding Coverage

Major language updates for
C++

• 24 new rules in FY15 specifying C++ 
weaknesses

• 60 existing C++ rules updated in FY15

New and updated rules published on 
http://www.cert.org/secure-
coding/publications/secure-coding-
enewsletter.cfm

New computation model: 
C threads

• 9 unspecified behaviors representing 
programming weaknesses in two broad 
categories
• Inter-thread communication
• Thread-specific storage 

Example: the tss_create function which 
creates thread-specific storage and assigns a 
destructor but does not specify when the 
destructor is called.
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Improve expert review 
productivity by focusing on 
high priority violations

Filter select secure coding rule 
violations

• Eliminate irrelevant 
diagnostics

• Convert to common CERT 
Secure Coding rule 
labeling

Provide single view into code 
and all diagnostics
Maintain record of decisions

Adoption: Improving Analyst Productivity
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Moving rules into IDE improves application of 
secure coding

• Early feedback corrects errors on introduction
• Exceptions are understood in context
• Exceptions can be marked as resolved to eliminate 

redundant consideration

Clang static analyzer (C based languages)
• Widely used open source front end for popular compilers 

and IDEs
• Checkers available now in “Top-of-Tree” by early adopters
• Expect to be generally available in Clang’s yearly release

FindBugs (Java)
• Integrated into Eclipse and Jdeveloper

Adoption: Immediate Feedback
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• Checking C/C++ rule violations
• Exception
• Function return
• Evaluation ordering / side effects

• Checking Java rule violations
• Override
• I/O

Adoption: Catching More Violations Thru Checkers

Increase adoption 
through automated 
checkers of rule 
violations

Example:
byte data;
while ((data = (byte) in.read()) != -1) {

// ...
}

• Constructor
• Assertion

Example:
int a = 14;
int b = sizeof(a++);
std::cout << a << ", " << b << std::endl;
a is still 14 after b has been initialized 
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Summary
• Maintained C Coding rules - updated to reflect 

best practices and language evolution
• Developed 25 new rules for C++ and updated 

60 existing C++ rules
• Developed a web application to improve 

analyst productivity
• Introducing checking earlier in the 

development process 
 developed checkers for clang and FindBugs
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