
© 2015 Carnegie Mellon University

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Effective Reduction of Avoidable
Complexity in Embedded Systems
Dr. Julien Delange

2
SEI Research Review 2015
October 7–8, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Copyright 2015 Carnegie Mellon University

This material is based upon work funded and supported by the Department of Defense under Contract No. FA8721-05-C-
0003 with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research and
development center.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND,
EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF
FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE
MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO
FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

This material has been approved for public release and unlimited distribution except as restricted below.

This material may be reproduced in its entirety, without modification, and freely distributed in written or electronic form without
requesting formal permission. Permission is required for any other use. Requests for permission should be directed to the
Software Engineering Institute at permission@sei.cmu.edu.

Carnegie Mellon® is registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.

DM-0002716

3
SEI Research Review 2015
October 7–8, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Embedded Systems are moving towards Model-
Based Engineering

A380 control and display system implemented with SCADE
Reduction of development costs as much as 57% for highest
criticality levels

Software Complexity spans along the software lifecycle
Impacts development & maintenance activities
Maintenance = 70% of Total Cost

Need for software complexity management
How to detect complexity in models?
How to improve model design?

Introduction and Background

4
SEI Research Review 2015
October 7–8, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

How to identify complexity in software models?
Application on functional (SCADE) and runtime (AADL) models
Reuse existing metrics vs. develop model-specific ones?

Understand why/when/how users introduce complexity
Establish user vision of complexity
Tool support to detect and automatically avoid complexity

Estimate the cost of complexity for safety-critical systems
Impact on development and maintenance activities

SEI Approach for Software Complexity in Models

5
SEI Research Review 2015
October 7–8, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Define inappropriate modeling patterns & complexity metrics
Runtime models (AADL): complexity in configuration
and deployment
Functional models (SCADE): complexity in software
implementation

Identify root causes of high complexity
Software re-use (aka copy/paste), data scope, etc.
How to address and fix it (e.g. re-factoring, resources allocation)

Application to existing models
Stepper Motor (Rolls-Royce/AEC)
Flight Control Guidance (SCADE)

Defining and Detecting Software Complexity

6
SEI Research Review 2015
October 7–8, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Resources usage/dimension, configuration issue
Two inter-dependent subprograms deployed on
different processors
Communication queues dimensions wrt timing requirements
Inconsistent timing requirements with connected component

Suggest architecture changes
Change deployment strategy (e.g. relocate a task)
Modify timing requirements/communication policy

Tested on industrial example
Discover timing issue from industrial models

Software Architecture Complexity (AADL)

7
SEI Research Review 2015
October 7–8, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Software Functional Complexity (SCADE)

Tailor existing metrics to a modeling language
System States (cyclomatic)
Operators and Operands (Halstead)
Connectedness (Zage)

Develop new model-specific metrics
Data flow oriented (#operator, #output per flow)
Help to reason about the impact of a flow
Provide hints to re-architect the software architecture

8
SEI Research Review 2015
October 7–8, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Part 1: Model Review and Tool Usage Critique
Existing model to review (elevator model)
Evaluate the modeling tool (SCADE)

Part 2: Model Design
Implement a system (microwave) from a textual specification

Understand Model Complexity

Student Professional
No Experience Group 1 Group 2

Moderate Experience Group 3 Group 4

9
SEI Research Review 2015
October 7–8, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Basic complexity issues are not understood
50% of participants have issues with data abstraction
50% of participants have issues with data scope

Appropriate training is key when transitioning to a
MDE approach

25% of users experienced comprehension and
understanding issues
80% of participants did not find any comments (and there
were some!)

Experience level does not explain performance

Modeling Tool Experiment - Results

10
SEI Research Review 2015
October 7–8, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Estimate Cost Savings
Overall impact of Model-Driven Engineering on software quality

Automatic production of certified code
Testing and Validation activities,
especially for DO178-C
Software reuse and maintenance

Impact of Models Complexity
Limited in developments efforts
Significant in maintenance costs

Model-Driven Engineering
with managed complexity reduces up to 30% of total TCO

Adapted from incoming SEI technical report
“Evaluating and Mitigating Complexity in Software Models”

11
SEI Research Review 2015
October 7–8, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Impact of complexity management with Model-Driven
Engineering

Costs savings of more than 30% on the total life cycle
Deliver better quality, faster at an affordable cost
Require appropriate training and understanding of modeling techniques

Need to refine complexity metrics on models
Calibration on several models
Estimate potential savings per metrics

Transition and impact of SEI research
Release of tools, integration in modeling software
Research results published in an SEI technical report, blog and podcast
Benefits for other domains (e.g. medical, automotive, etc.)

Conclusion and Perspectives

12
SEI Research Review 2015
October 7–8, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Julien Delange
Member of the Technical Staff
Software Architecture Practice
Telephone: +1 412-268-9652
Email: jdelange@sei.cmu.edu

U.S. Mail
Software Engineering Institute
Customer Relations
4500 Fifth Avenue
Pittsburgh, PA 15213-2612
USA

Web
www.sei.cmu.edu
www.sei.cmu.edu/contact.cfm
https://github.com/cmu-sei/eraces

Customer Relations
Email: info@sei.cmu.edu
Telephone: +1 412-268-5800
SEI Phone: +1 412-268-5800
SEI Fax: +1 412-268-6257

Contact Information

mailto:jdelange@sei.cmu.edu
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/contact.cfm
https://github.com/cmu-sei/eraces

	Effective Reduction of Avoidable Complexity in Embedded Systems
	Slide Number 2
	Introduction and Background
	SEI Approach for Software Complexity in Models
	Defining and Detecting Software Complexity
	Software Architecture Complexity (AADL)
	Software Functional Complexity (SCADE)
	Understand Model Complexity
	Modeling Tool Experiment - Results
	Estimate Cost Savings
	Conclusion and Perspectives
	Contact Information
	Untitled

