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Embedded Systems are moving towards Model-
Based Engineering

A380 control and display system implemented with SCADE
Reduction of development costs as much as 57% for highest 
criticality levels

Software Complexity spans along the software lifecycle
Impacts development & maintenance activities 
Maintenance = 70% of Total Cost

Need for software complexity management
How to detect complexity in models?
How to improve model design?

Introduction and Background
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How to identify complexity in software models?
Application on functional (SCADE) and runtime (AADL) models
Reuse existing metrics vs. develop model-specific ones? 

Understand why/when/how users introduce complexity
Establish user vision of complexity
Tool support to detect and automatically avoid complexity

Estimate the cost of complexity for safety-critical systems
Impact on development and maintenance activities

SEI Approach for Software Complexity in Models
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Define inappropriate modeling patterns & complexity metrics
Runtime models (AADL): complexity in configuration 
and deployment
Functional models (SCADE): complexity in software 
implementation

Identify root causes of high complexity
Software re-use (aka copy/paste), data scope, etc.
How to address and fix it (e.g. re-factoring, resources allocation)

Application to existing models
Stepper Motor (Rolls-Royce/AEC)
Flight Control Guidance (SCADE)

Defining and Detecting Software Complexity
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Resources usage/dimension, configuration issue
Two inter-dependent subprograms deployed on 
different processors
Communication queues dimensions wrt timing requirements
Inconsistent timing requirements with connected component

Suggest architecture changes
Change deployment strategy (e.g. relocate a task)
Modify timing requirements/communication policy

Tested on industrial example
Discover timing issue from industrial models

Software Architecture Complexity (AADL)
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Software Functional Complexity (SCADE)

Tailor existing metrics to a modeling language
System States (cyclomatic)
Operators and Operands (Halstead)
Connectedness (Zage)

Develop new model-specific metrics
Data flow oriented (#operator, #output per flow)
Help to reason about the impact of a flow
Provide hints to re-architect the software architecture
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Part 1: Model Review and Tool Usage Critique
Existing model to review (elevator model)
Evaluate the modeling tool (SCADE)

Part 2: Model Design 
Implement a system (microwave) from a textual specification

Understand Model Complexity

Student Professional
No Experience Group 1 Group 2

Moderate Experience Group 3 Group 4
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Basic complexity issues are not understood
50% of participants have issues with data abstraction
50% of participants have issues with data scope

Appropriate training is key when transitioning to a 
MDE approach

25% of users experienced comprehension and 
understanding issues
80% of participants did not find any comments (and there 
were some!)

Experience level does not explain performance

Modeling Tool Experiment - Results
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Estimate Cost Savings
Overall impact of Model-Driven Engineering on software quality

Automatic production of certified code
Testing and Validation activities, 
especially for DO178-C
Software reuse and maintenance

Impact of Models Complexity
Limited in developments efforts
Significant in maintenance costs

Model-Driven Engineering
with managed complexity reduces up to 30% of total TCO

Adapted from incoming SEI technical report
“Evaluating and Mitigating Complexity in Software Models” 
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Impact of complexity management with Model-Driven 
Engineering

Costs savings of more than 30% on the total life cycle
Deliver better quality, faster at an affordable cost
Require appropriate training and understanding of modeling techniques 

Need to refine complexity metrics on models
Calibration on several models
Estimate potential savings per metrics

Transition and impact of SEI research
Release of tools, integration in modeling software
Research results published in an SEI technical report, blog and podcast
Benefits for other domains (e.g. medical, automotive, etc.)

Conclusion and Perspectives
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