
© 2015 Carnegie Mellon University

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Improving Software
Sustainability Through
Data-Driven Technical
Debt Management
Ipek Ozkaya
October 7, 2015

2
SEI Research Review 2015
October 7–8, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Copyright 2015 Carnegie Mellon University

This material is based upon work funded and supported by the Department of Defense under Contract
No. FA8721-05-C-0003 with Carnegie Mellon University for the operation of the Software Engineering
Institute, a federally funded research and development center.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING
INSTITUTE MATERIAL IS FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY
MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER
INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR
MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL.
CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH
RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

This material has been approved for public release and unlimited distribution except as restricted below.

This material may be reproduced in its entirety, without modification, and freely distributed in written or
electronic form without requesting formal permission. Permission is required for any other use. Requests
for permission should be directed to the Software Engineering Institute at permission@sei.cmu.edu.

DM-0002839

3
SEI Research Review 2015
October 7–8, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

We define technical debt as a software design issue that:
• Exists in an executable system artifact, such as code,

build scripts, automated test suites;
• Is traced to several locations in the system, implying

ripple effects of impact of change;
• Has a quantifiable effect on system attributes of interest

to developers, such as increasing number of defects,
negative change in maintainability and code quality
indicators are symptoms of technical debt.
• We initially focus on detecting indicators in the form

of violating known architectural pattern and
maintainability rules to trace such symptoms

What is Technical Debt?

4
SEI Research Review 2015
October 7–8, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

“We have a model-view controller framework. Over time we
violated the simple rules of this framework and had to retrofit
later many functionality”

Modifiability violation, pattern conformance

“There were two modules highly coupled that should have
been designed for from the beginning”

Modifiability violation, pattern conformance

“A simple API call turned into a nightmare <due to not
following guidelines>”

Framework, pattern conformance

What is Technical Debt: Examples

5
SEI Research Review 2015
October 7–8, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

DoD Perspective of the Problem

4321

5

1. time technical debt is incurred

2. time technical debt is recognized

3. time to plan and re-architect

4. time until debt is actually paid-off

5. continuous monitoring

Contractor
intentionally
or unintentionally
incurs debt

Contractor
recognizes, but
does not declare
or fix the debt

An optimal time
to rearchitect or
refactor the
system passes

By the time the
government owns the
system the
accumulation of
detection and redo is
very expensive

Ideal where
technical debt is
used strategically
and declare at
acquisition time

“Contractor developed our software tool and delivered the
code to the government for maintenance. The code was

poorly designed and documented therefore there was a very
long learning curve to make quality changes. We continue

to band aid over 1 million lines of code under the
maintenance contract. As time goes by, the tool becomes

more bloated and harder to repair.”

Our goal is to enable better sustainment decision
making through
• identifying indicators that signify major contributors to

technical debt

• analyzing data sets to build correlations between these
indicators and project measures, such as defect and
change proneness

6
SEI Research Review 2015
October 7–8, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

• RQ1: What do our stakeholders care about? Which issues would
benefit from being tagged as technical debt?

• RQ2: Can we detect indicators of design issues that result in technical
debt?

• RQ3: What are the data needs for correlation?
• Once we detect them can we map them to externally visible measures (e.g.,

change proneness and defects)?

Research Questions

Datasets
Project
artifacts

Source
code

Plug-In Analyzers

(e.g. FindBugs,
CheckStyles)

SEI Plug-in Eclipse IDE

TD Dashboard

7
SEI Research Review 2015
October 7–8, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Which Issues Would
Benefit from Being
Tagged as Technical
Debt?

8
SEI Research Review 2015
October 7–8, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

RQ1: What Do Stakeholders Care About?

Org Type # Surveys out
/ received

A Defense
Contractor 3,500 / 248

B
Global
automation,
power robotics

15,000 / 1511

C
Government
development/
research lab

200 / 73

D DoD
sustainment 35 / 29

Total 1861

Collaborated with two global
development organizations and two
government development and
sustainment labs to answer:
• Is there a commonly shared

definition of technical debt among
professional software engineers?

• Are issues with architectural
elements among the most significant
sources of technical debt?

• Are there practices and tools for
managing technical debt?

9
SEI Research Review 2015
October 7–8, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Findings – 1

Technical debt is just not an abstract metaphor!
Bad architectural choices rated as the top contributor to technical debt, followed by
overly complex code and inadequate testing. 56% of the respondents ranked
architecture among their top 3 pain points.

10
SEI Research Review 2015
October 7–8, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

75% of respondents said that
dealing with the consequences
of technical debt has
consumed a painful chunk of
project resources.

Findings – 2

Current tools do not capture the
key areas of accumulating problems
in technical debt.

11
SEI Research Review 2015
October 7–8, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Significance
• First of its kind broad, practice-based study with impact on research,

government, and industry.
• The finding that bad architecture choices are most significant

contributor to debt is influencing other’s research.
• Enabling us to create engagement where we conduct detailed artifact

analysis with two of our collaborators.

Publications
“Measure it? Manage it? Ignore it? Software Practitioners and
Technical Debt” N. Ernst, S. Bellomo, I. Ozkaya, R. Nord, I. Gorton, FSE 2015
ACM SIGSOFT Distinguished Paper Award

Results

12
SEI Research Review 2015
October 7–8, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Can We Detect Indicators
of Design Issues that
Result in Technical Debt?

13
SEI Research Review 2015
October 7–8, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

What code and design indicators can be repeatably discovered that
correlate with project measures that allow us to manage technical debt?

• combines static code analysis, architectural abstractions, empirical field studies, and
conceptual correlation modeling to test qualitative causal assumptions.

RQ2: Can We Detect Indicators of Design Issues?

4321

ti
tj

1. technical debt is incurred
2. technical debt is recognized
3. plan and re-architect
4. debt is actually paid-off
5. continuous monitoring

detection

5

visualization

14
SEI Research Review 2015
October 7–8, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Any tool for experimentation should
• have a low threshold of entry for organizations
• be easy to extend by others

Selected SonarQube as our prototype environment
• Pros

• API that we and others can extend
• built-in analysis frameworks for code analysis to extend with rules

• Cons
• incorporates an existing technical debt measurement framework that

is code quality level and not validated. This results in confusion

*Previously had analyzed Cast, Lattix and Structure101. Ran experiments with SonarQube and research prototype from Drexel
University, Titan

Tool Support Detection

15
SEI Research Review 2015
October 7–8, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Initial results on analyzing sample project (Connect version 4.4)
point to architecture root cause of technical debt.

• Files that have the most modularity issues make up 16% of the
overall system

• These files on the other hand represent a substantial percentage
of the bugs

- Looking at StartDate 6/20/12 EndDate 9/15/13,
Files represent 84% of the bugs,

- Looking at StartDate 9/16/13 EndDate 12/8/14,
Files represent 47% of the bugs,

• A reduction in issues may imply a major refactoring.

Findings – Detecting Modularity Detection

16
SEI Research Review 2015
October 7–8, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Significance
• Focuses typical code detection techniques on architecturally

significant design issues
• Starts building the validation environment

Publication
“A Case Study in Locating the Architectural Roots of Technical Debt,” R.
Kazman, Y. Cai, R. Mo, Q. Feng, L. Xiao, S. Haziyev, V. Fedak, A.Shapochka,
ICSE 2015, (Florence, Italy), May 2015.

“Hotspot Patterns: The Formal Definition and Automatic Detection of Architecture
Smells,” R. Mo, Y. Cai, R. Kazman, L. Xiao, WICSA 2015, (Montreal, Canada),
May 2015.

Results Detection

17
SEI Research Review 2015
October 7–8, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

What Are the Data Needs
for Correlation?

18
SEI Research Review 2015
October 7–8, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

RQ3: Data Needs for Correlation

What are the data needs? Based on our practice studies:

Closer look into the dependent variables show that additional
effort is either spent on defects/issues or propagating changes.

Independent examples Analysis inputs Outputs/
Dependent variables

Replicated functionality code clones $$$

Functionality depending on in-
house algorithm

dependencies $$$

Coupling between two modules dependencies $$$

Code doesn’t need to be
developed at safety criticality level

dependencies/
designated criticality

$$$

High stress test scenario
generated major failure

complexity $$$

Datasets

19
SEI Research Review 2015
October 7–8, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Data Test Beds – 1

DoD relevant communication terminal
Qualitative: knowledge about major refactorings over program
lifetime, and assessments from acquisition team and contractor,
access to the SEI team
Quantitatively:

• Outcomes that show when technical debt was increasing vs.
“bought down”? (e.g., defect proneness, change proneness, cost
of change)

• Early indicators of technical debt growth (e.g., deviation from good
system design principles, deviation from reference architecture)

• Internal to the SEI, history of 2006-2011 period including some
versions of code, project performance metrics (defects, PDR/CDR
analysis results).

Datasets

20
SEI Research Review 2015
October 7–8, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Data Test Beds – 2

Government open source health IT exchange
Qualitative: architecture evaluation (ATAM) results from 2011, access
to the development team, specific issues the team tagged as technical
debt, documentations
Quantitatively:
• Jira data (commits, check-ins and check-outs over 10 releases)
• Issues data base
• Code repository in GitHub

Datasets

21
SEI Research Review 2015
October 7–8, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Analyzing Connect Data from Jira and GitHub

How are issues distributed across releases:
• Version 3.3 has an order of magnitude more issues

Version 3.3

22
SEI Research Review 2015
October 7–8, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Analyzing Connect Data from Jira and GitHub

Which files are affected by what types of issues:
• Classifying files based on issues can help understand the impact

of change
Log4jHibernateSecure SMTP

23
SEI Research Review 2015
October 7–8, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Analyzing Connect Data from Jira and GitHub

24
SEI Research Review 2015
October 7–8, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Research and Transition

Extensions to the open source technical debt model and tooling to
include other key quality attributes concerns, e.g. security, architectural
technical debt management tooling

Relationship of technical debt management and testing

Extensions to the data sets of rules for detecting likely sources of
technical debt, along with correlations to cost to fix, cost to implement
a new feature, and defects with other case studies

Courses and case studies, published data sets

25
SEI Research Review 2015
October 7–8, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Team

SEI Team Members
• Ipek Ozkaya, PhD, SSD
• Rod Nord, PhD, SSD
• Stephany Bellomo, MSc., SSD
• Neil Ernst, PhD, SSD
• Ian Gorton, PhD, SSD
• Rick Kazman, PhD, SSD
• Forrest Shull, PhD, SSD/ERO
• Harry Levinson, SSD/CTS

Research Collaborators
• Philippe Kruchten, PhD, Univ. of British

Columbia, funded
• Raghu Sangwan, PhD, Penn State,

funded
• Managing Technical Debt research

community, inf. Sharing
• Industry, DoD, and tool vendor partners

26
SEI Research Review 2015
October 7–8, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Contact Information

Ipek Ozkaya
Principal Researcher
SSD/SEAP
Telephone: +1 412 268 3551
Email: ozkaya@sei.cmu.edu

U.S. Mail
Software Engineering Institute
Customer Relations
4500 Fifth Avenue
Pittsburgh, PA 15213-2612
USA

mailto:ozkaya@sei.cmu.edu

	Improving Software Sustainability Through Data-Driven Technical Debt Management
	Slide Number 2
	What is Technical Debt?
	What is Technical Debt: Examples
	DoD Perspective of the Problem
	Research Questions
	Slide Number 7
	RQ1: What Do Stakeholders Care About?
	Findings – 1
	Findings – 2
	Results
	Slide Number 12
	RQ2: Can We Detect Indicators of Design Issues?
	Tool Support
	Findings – Detecting Modularity
	Results
	Slide Number 17
	RQ3: Data Needs for Correlation
	Data Test Beds – 1		
	Data Test Beds – 2
	Analyzing Connect Data from Jira and GitHub
	Analyzing Connect Data from Jira and GitHub
	Analyzing Connect Data from Jira and GitHub
	Research and Transition
	Team
	Contact Information

