
Enterprise Data Storage and Analysis on

Tim Barr
January 15, 2015

Agenda

• Challenges in Big Data Analytics
• Why many Hadoop deployments under deliver
• What is Apache Spark
• Spark Core, SQL, Streaming, MLlib, and GraphX
• Graphs for CyberAnalytics
• Hybrid Spark Architecture
• Why you should love Scala
• Q&A

2

Challenges in Big Data Analytics

3

Emergence of Latency-Sensitive Analytics

Re
sp

on
se

 ti
m

e
fr

am
es

<30ms

30ms

10min

>10min
• summarization
• aggregation
• indexing
• ETL

Hadoop today

Higher performance and more
innovative use of memory-
storage hierarchies and
interconnects required here

Low-Latency Hadoop tomorrow

• streaming data
• tweets
• event logs
• IoT
• SQL/ad hoc queries
• BI
• visualization
• exploration

Batch Pe
rf

or
m

an
ce

 o
pt

im
iz

at
io

ns

4

Focus on Analytic Productivity
Time to Value Is the Key Performance Metric

Stand up big data clusters

• Sizing
• Provisioning
• Configuration
• Tuning
• Workload management
• Move into production

Move data
• Copy, load, replication
• Multiple data sources
• Fighting data gravity

Data prep

• Cleansing
• Merge data
• Apply schema

Analyze
• Multiple frameworks
• Analytics pipeline

ReduceShuffleMap

Job run time is a fraction of the total Time to Value

Apply results
• Scoring
• Reports
• Apply to next stage

5

Integrated Advanced Analytics

• In the real-world, advanced analytics needs multiple, integrated toolsets

• These toolsets require very different computing demands

Batch Analytics

Basic profiling Statistics Machine Learning StreamingData Prep

Iterative Analytics Interactive queries

Every record in a
dataset once

Same Subset of records
several times

Different subsets each
time

6

6

Why many Hadoop Deployments Under Deliver
• Data scientists are critical, but in short supply

• Shortage of big data tools

• Complexity of the MapReduce programming environment

• Cost of Analytic value currently too high

• MapReduce performance does not allow the analyst to follow his/her
nose

• Spark is often installed on existing under powered Hadoop clusters
leading to undesirable performance

7

Hadoop: Great Promise but with Challenges

“Hadoop is hard to set up, use, and maintain. In and of itself, grid computing
is difficult, and Hadoop doesn’t make it any easier. Hadoop is still maturing from a
developer’s standpoint, let alone from the standpoint of a business user. Because
only savvy Silicon Valley engineers can derive value Hadoop, it’s not going to
make inroads into larger organizations without a lot of handholding and
professional services.”

Mike Driscoll, CEO of Metamarkets

8

Forbes Article: How to Avoid a Hadoop Hangover

http://www.forbes.com/sites/danwoods/2012/07/27/how-to-avoid-a-hadoop-hangover/

http://www.forbes.com/sites/danwoods/2012/07/27/how-to-avoid-a-hadoop-hangover/

Hadoop: Perception versus Reality

Hadoop widely perceived as high potential,
not yet high value, but that’s about to change…

• Synonymous with Big Data and openness
• Capable of huge scale with ad-hoc infrastructure

Current Perception of Hadoop

• Many experimenting
• Much expertise in Warehousing – little beyond that
• Data Scientist bottleneck – performance not yet an issue

Current Reality of Hadoop

• Industry Momentum – Universities, Govt., Private firms, etc.
• More Users – Beyond Data scientists, Domain Scientists,

analysts, etc.
• More Complexity – Multi-layered files, complex algorithms, etc.

Current Trajectory of Hadoop

9

What is Spark?
• Distributed data analytics engine, generalizing MapReduce
• Core engine, with streaming, SQL, machine learning, and graph

processing modules
• Program in Python, Scala, and/or Java

10

Spark - Resilient Distributed Dataset (RDD)
• Distributed collection of objects
• Benefits of RDDs?

• RDDs exist in-memory
• Built via parallel transformations (map, filter, …)
• RDDs are automatically rebuilt on failure

There are two ways to create RDDs:
• Parallelizing an existing collection in your driver program
• Referencing a dataset in an external storage system, such as a shared filesystem,

HDFS, HBase, or any data source offering a Hadoop InputFormat.

11

Benefits of a Unified Platform

• No copying or ETL of data between systems
• Combine processing types in one program
• Code reuse
• One system to learn
• One system to maintain

12

Spark SQL
• Unified data access with with SchemaRDDs
• Tables are a representation of (Schema + Data) = SchemaRDD
• Hive Compatibility
• Standard Connectivity via ODBC and/or JDBC

13

Spark Streaming

• Spark Streaming expresses streams as a series of RDDs over time
• Combine streaming with batch and interactive queries
• Stateful and Fault Tolerant

RDDRDDRDDRDDRDDRDD

Time

14

Spark Streaming – Inputs/Outputs

15

Spark Machine Learning
• Iterative computation
• Vectors, Matrices = RDD[Vector]

Current MLlib 1.1 Algorithms

• linear SVM and logistic regression
• classification and regression tree
• k-means clustering
• recommendation via alternating least squares
• singular value decomposition
• linear regression with L1- and L2-regularization
• multinomial naive Bayes
• basic statistics
• feature transformations

16

Spark GraphX
• Unifies graphs with RDDs of edges and vertices
• View the same data as both graphs and collections
• Custom iterative graph algorithms via Pregel API

Current GraphX Algorithms

• PageRank
• Connected components
• Label propagation
• SVD++
• Strongly connected components
• Triangle count

17

Graphs enable discovery
• It’s called a network! – represent that information in the more

natural and appropriate format
• Graphs are optimized to show the relationships present in

metadata
• “fail fast, fail cheap” – choose a graph engine that supports rapid

hypothesis testing
• Returning answers before the analyst forgets why he asked

them, this enables the investigative discovery flow
• Using this framework, analysts can more easily and more quickly

find unusual things – this matters significantly when there is the
constant threat of new unusual things

• When all focus is no longer on dealing with the known, there is
bandwidth for discovery

• When all data can be analyzed in a holistic manner, new patterns
and relationships can be seen

Use the graph as a pre-merged perspective of all the available data sets
Applying Graphs to CyberAnalytics

18

Example mature cyber-security questions
• Who hacked us? What did they touch in our network? Where else did they go?
• What unknown botnets are we hosting?
• What are the vulnerabilities in our network configuration?
• Who are the key influencers in the company / on the network?
• What’s weird that’s happening on the network?

Proven graph algorithms help answer these questions
• Subgraph identification
• Alias identification
• Shortest-path identification
• Common-node identification
• Clustering / community identification
• Graph-based cyber-security discovery environment

Analytic tradecraft and algorithms mature together
• General questions require swiss army knives
• Specific, well-understood questions use exacto knives

Using Graph Analysis to Identify Patterns

19

Spark System Requirements
Storage Systems
It is important to place it as close to this system as possible. If at all possible, run Spark
on the same nodes as HDFS. The simplest way is to set up a Spark standalone mode
cluster on the same nodes, and configure Spark and Hadoop’s memory and CPU usage to
avoid interference

Local Disks
While Spark can perform a lot of its computation in memory, it still uses local disks to
store data that doesn’t fit in RAM, as well as to preserve intermediate output between
stages. We recommend having 4-8 disks per node, configured without RAID

https://spark.apache.org/docs/latest/hardware-provisioning.html
20

https://spark.apache.org/docs/latest/hardware-provisioning.html

Spark System Requirements (continued)
Memory
Spark runs well with anywhere from 8 GB to hundreds of gigabytes of memory per machine. In
all cases, we recommend allocating only at most 75% of the memory for Spark; leave the rest
for the operating system and buffer cache.

Network
When the data is in memory, a lot of Spark applications are network-bound. Using a 10 Gigabit
or higher network is the best way to make these applications faster. This is especially true for
“distributed reduce” applications such as group-bys, reduce-bys, and SQL joins.

CPU Cores
Spark scales well to tens of CPU cores per machine because it performs minimal sharing
between threads. You should likely provision at least 8-16 cores per machine.

https://spark.apache.org/docs/latest/hardware-provisioning.html

https://spark.apache.org/docs/latest/hardware-provisioning.html

Benefits of HDFS
Scale-Out Architecture: Add servers to increase capacity
High Availability: Serve mission-critical workflows and applications
Fault Tolerance: Automatically and seamlessly recover from failures
Flexible Access: Multiple and open frameworks for serialization and file system mounts
Load Balancing: Place data intelligently for maximum efficiency and utilization
Configurable Replication: Multiple copies of each file provide data protection and
computational performance

22

HDFS Sequence Files
A Sequence file is a data structure for binary
key-value pairs. it can be used as a common
format to transfer data between
MapReduce jobs. Another important
advantage of a sequence file is that it can
be used as an archive to pack smaller files.

Hybrid Spark Architecture

23

Apache Spark should…

• be complimentary to your existing
architecture

• enhance existing system capabilities

• assume some of the analytic
workload

• handle archive storage

Spark Performance

24

Active Open Source CommunityIn-Memory Performance

Order of Magnitude
Graph Performance

Performance – Spark wins Daytona Gray Sort 100TB Benchmark

They used Spark and sorted 100TB of data using 206 EC2 i2.8xlarge machines in 23 minutes. The
previous world record was 72 minutes, set by a Hadoop MapReduce cluster of 2100 nodes. This
means that Spark sorted the same data 3X faster using 10X fewer machines. All the sorting took
place on disk (HDFS), without using Spark’s in-memory cache.

Outperforming large Hadoop MapReduce clusters on sorting not only validates the vision and work
done by the Spark community, but also demonstrates that Spark is fulfilling its promise to serve as a
faster and more scalable engine for data processing of all sizes.

https://spark.apache.org/news/spark-wins-daytona-gray-sort-100tb-benchmark.html
25

https://spark.apache.org/news/spark-wins-daytona-gray-sort-100tb-benchmark.html

Why you should love Scala
(If you don’t already)

26

Word Count Example – Spark Scala

val file = spark.textFile("hdfs://...")
val counts = file.flatMap(line => line.split(" "))

.map(word => (word, 1))

.reduceByKey(_ + _)
counts.saveAsTextFile("hdfs://...")

27

Word Count Example – MapReduce
import java.io.IOException;
import java.util.StringTokenizer;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.FileSplit;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;

28

Word Count Example – MapReduce (continued)
public class WordCount {

public static class TokenizerMapper extends
Mapper<Object, Text, Text, IntWritable> {

private final static IntWritable one = new IntWritable(1);
private Text word = new Text();

public void map(Object key, Text value, Context context)
throws IOException, InterruptedException {
StringTokenizer itr = new StringTokenizer(value.toString());
while (itr.hasMoreTokens()) {

word.set(itr.nextToken());
context.write(word, one);

}29

Word Count Example – MapReduce (continued)
}

public static class IntSumReducer extends
Reducer<Text, IntWritable, Text, IntWritable> {

private IntWritable result = new IntWritable();

public void reduce(Text key, Iterable<IntWritable> values,
Context context) throws IOException, InterruptedException {

int sum = 0;
for (IntWritable val : values) {

sum += val.get();
}
result.set(sum);
context.write(key, result);

30

Word Count Example – MapReduce (continued)
}

}

public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
String[] otherArgs = new GenericOptionsParser(conf, args)

.getRemainingArgs();

Job job = new Job(conf, "word count");

job.setJarByClass(WordCount.class);

job.setMapperClass(TokenizerMapper.class);
job.setCombinerClass(IntSumReducer.class);
job.setReducerClass(IntSumReducer.class);31

Word Count Example – MapReduce (continued)
job.setOutputKeyClass(Text.class);

job.setOutputValueClass(IntWritable.class);

FileInputFormat.addInputPath(job, new Path(otherArgs[0]));
FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));

System.exit(job.waitForCompletion(true) ? 0 : 1);
}

}

5 Lines of Spark Scala Code vs. 57 Lines of MapReduce Code

32

Useful Resources
Apache Spark
https://spark.apache.org/

Spark Summit 2014
http://spark-summit.org/2014

Apache Spark Reference Card
http://refcardz.dzone.com/refcardz/apache-spark

Apache Spark Meetups
http://spark.meetup.com/

33

https://spark.apache.org/
http://spark-summit.org/2014
http://refcardz.dzone.com/refcardz/apache-spark
http://spark.meetup.com/

Thank You!
Questions?

34

	Enterprise Data Storage and Analysis on
	Agenda
	Challenges in Big Data Analytics
	Emergence of Latency-Sensitive Analytics
	Focus on Analytic Productivity
	Integrated Advanced Analytics
	Why many Hadoop Deployments Under Deliver
	Hadoop: Great Promise but with Challenges
	Hadoop: Perception versus Reality
	What is Spark?
	Spark - Resilient Distributed Dataset (RDD)
	Benefits of a Unified Platform
	Spark SQL
	Spark Streaming
	Spark Streaming – Inputs/Outputs
	Spark Machine Learning
	Spark GraphX
	Applying Graphs to CyberAnalytics
	Using Graph Analysis to Identify Patterns
	Spark System Requirements
	Spark System Requirements (continued)
	Benefits of HDFS
	Hybrid Spark Architecture
	Spark Performance
	Performance – Spark wins Daytona Gray Sort 100TB Benchmark
	Why you should love Scala�(If you don’t already)
	Word Count Example – Spark Scala
	Word Count Example – MapReduce
	Word Count Example – MapReduce (continued)
	Word Count Example – MapReduce (continued)
	Word Count Example – MapReduce (continued)
	Word Count Example – MapReduce (continued)
	Useful Resources
	Thank You!�Questions?

