
Berin Babcock-McConnell
Saurabh Gupta

Jonathan Hartje
Marsha Pomeroy-Huff

Shigeru Sasao
Sidharth Surana

1

Agenda
� Introduction

� The Project

� Spring Semester

Summer Semester� Summer Semester

� Conclusion

2

1. Introduction
� A student group in the Master of Software Engineering

program at Carnegie Mellon University

� Tasked to build software to autonomously control a
robot for a real-world industry projectrobot for a real-world industry project

� The team was having difficulty creating a project plan
which could effectively track their progress

� The team decided to try TSP, and this is the story of
their success…

3

2. The Project

4

What is the MSE program?
� The Master of Software Engineering (MSE) degree is a 16-

month graduate program offered at Carnegie Mellon
University.

� Five core courses
Models of Software Systems� Models of Software Systems

� Methods: Deciding What to Design

� Managing Software Development

� Analysis of Software Artifacts

� Architectures of Software Systems

� Electives

� Studio project

5

What is the Studio project?
� Actual industrial software engineering project

provided by corporate sponsors

� Runs continuously throughout the duration of the
MSE programMSE program

� Supportive environment to practice software
engineering craft

� Cornerstone of the MSE program

6

Establish Project Scope/Requirements

Studio Project Timeline

Fall 08

Implementation

Architecture

7

Summer 09

Spring 09

Team VdashNeg
� Berin Babcock-McConnell

� Saurabh Gupta

� Jonathan Hartje

� Shigeru Sasao

8

� Shigeru Sasao

� Sidharth Surana

The Mentors
� Grace Lewis

� Marsha Pomeroy-Huff

� Certified TSP Coach

9

The Project
� Use PACC Starter Kit to create software

that controls an SRV-1 robot

� The mission: search and destroy

while following a laid out path

� The software must be analyzable for performance
and behavior

� Academic or industrial example of successful
PACC utilization for system development

10

SRV-1 Surveyor Robot
� 500MHz Analog

Devices Blackfin
processor (BF537)

� Omnivision

11

� Omnivision
(OV9655) 1.3
Megapixel digital
camera

� 2 laser pointers for
ranging

� Controlled via 802.11G
wireless ethernet

� Predictable Assembly from Certifiable
Components

� PACC Starter Kit (PSK) – developed by the SEI

PSK is a reference implementation designed to

PACC

� PSK is a reference implementation designed to
illustrate “predictability by construction” (PbC)

� Power of analysis through formally defining states
and architectural constructs within the software

12

CCL
� Represents the software in the form of state charts

13

CCL cont’d
� Defines the architecture of the system in the

software

14

Reasoning Frameworks
� CCL supports syntactic annotations for static

analysis:
� Performance analysis based on Generalized

Rate Monotonic Analysis (GRMA)Rate Monotonic Analysis (GRMA)
� Aperiodic tasks
� Preemption by priority

� Behavior analysis
� Model checking using Linear Temporal

Logic

15

3. Why we used TSP

16

Problems We Encountered
� Planning and Tracking

� Inability to map team goals and milestones to tasks

� Granularity of tasks

� Incomplete Software Process� Incomplete Software Process

� We were using the Arcitechture-Centric Design
Methodology (ACDM), but this is only for design

� Team selected different techniques learned from the
Management of Software Development course

� The techniques were not cohesive

� So, we decided to try TSP.

17

The Benefits of Using TSP
� Risk Management

� Organization

� Planning and Tracking

Quality Control� Quality Control

� Weekly Meetings

� TSP provided a cohesive package, which showed how
the multiple techniques fit together.

18

Process Review (Planning)

19

Process Review

(Problem Definition)

20

4. Spring Semester

21

Focus for the Spring
� System architecture

� Experimenting with the Technologies

� Physical measurements w/ SRV-1

Reasoning framework annotations in CCL� Reasoning framework annotations in CCL

� Image processing experiments

� Predictability scenarios

22

Architecture (Dynamic View)

23

Data flows from left to right

Image Filter Expanded

24
Data flows from left to right

Image Filters in Action…
World from the SRV-1 eye

25

Robot Eye � ColorFilter

Image Filters in Action…

26

Robot Eye � ColorFilter � GrayscaleFilter

Image Filters in Action…

27

Robot Eye � ColorFilter � GrayscaleFilter � BlobFilter

Image Filters in Action…

28 28

Robot Eye � ColorFilter � GrayscaleFilter � BlobFilter � ShapeFilter

Image Filters in Action…

29

Image Filter
Robot Eye � ColorFilter � GrayscaleFilter � BlobFilter � ShapeFilter � COGFilter

Image Filters in Action…

30

Spring 2009

31

Spring 2009

32

20

30

40

50

60

70

80

90
H

o
u

rs
Actual vs Planned Hours

Sum of Plan Hours

0

10

20

Categories

Sum of Plan Hours

Sum of Actual

33

5. Summer Semester

34

Focus for the Summer Semester
� Iteration 1 (5/18 - 6/7)

� Support libraries
� Finalize predictability scenarios and artifact updates

� Iteration 2 (6/8 - 6/28)
� Image filter components� Image filter components
� Complete base system with basic state control

� Iteration 3 (6/29 - 7/19)
� Complete final state control implementation
� Finalize test cases for system verification

� Iteration 4 (7/20-8/7)
� Final code freeze. Focus remaining efforts on critical fixes
� Deliver final system to clients and execute D-Day test plan

35

The Matrix

Component DLD DR DINSP CODE CR CINSP UT

Initial Main sid sid bb

NetBytes

ToBytes shig jh shig bb sid

Bytes

ToString shig sid shig bb jh

Send sid sg sid bb jh

36

The Matrix

Component DLD DR DINSP CODE CR CINSP UT

Initial Main sid sid bb

NetBytes

ToBytes shig jh shig bb sid

Bytes

ToString shig sid shig bb jh

Send sid sg sid bb jh

37

The Matrix

Component DLD DR DINSP CODE CR CINSP UT

Initial Main sid sid bb

NetBytes

ToBytes shig jh shig bb sid

Bytes

ToString shig sid shig bb jh

Send sid sg sid bb jh

38

Summer 2009

39

Summer 2009

40

Improving Our Estimates
� In iteration 1 & 2, the team overestimated by over 110%

� Used data from iteration 1 & 2 to construct a parametric model

F(y) = 3.49 + 0.0387x
R2 = 80%

41

R2 = 80%

Improving Our Estimates
Actual

COG To Cmd 34.8

UI 13

State Control 83.9

Main 13.6

42

Ad-hoc PROBE

Main 13.6

MRE

COG To Cmd 18.97 0.454885

UI 15.1 0.161538

State Control 80.89 0.035876

Main 15.1 0.110294

MMRE 19.06%

MRE

COG To Cmd 51.15 0.469828

UI 20 0.538462

State Control 135 0.609058

Main 20 0.470588

MMRE 52.20%

Summer 2009

43

Summer 2009

44

Quality Metrics

Development Time Ratios Plan Actual

REQ Inspection / Requirements 0.00 0.00

HLD Inspection / High-Level Design 0.00 0.00

Detailed Design / Code 1.44 2.17

DLD Review / Detailed Design 0.58 0.16

Code Review / Code 0.46 0.27

Quality Metrics
Defects Injected Defects Removed Phase Yields

Actual Actual% Actual Actual% Actual

Planning 0 0.0% 0 0.0% 0%

Requirements 0 0.0% 0 0.0% 0%

System Test Plan 0 0.0% 0 0.0% 0%

REQ Inspection 0 0.0% 0 0.0% 0%

High-Level Design 0 0.0% 0 0.0% 0%

Integration Test Plan 0 0.0% 0 0.0% 0%

HLD Inspection 0 0.0% 0 0.0% 0%HLD Inspection 0 0.0% 0 0.0% 0%

Detailed Design 52 65.0% 0 0.0% 0%

DLD Review 0 0.0% 29 36.3% 56%

Test Development 0 0.0% 0 0.0% 0%

DLD Inspection 0 0.0% 11 13.8% 48%

Code 28 35.0% 3 3.8% 8%

Code Review 0 0.0% 11 13.8% 30%

Compile 0 0.0% 0 0.0% 0%

Code Inspection 0 0.0% 12 15.0% 46%

Unit Test 0 0.0% 10 12.5% 71%

Build and Integration Test 0 0.0% 2 2.5% 50%

System Test 0 0.0% 2 2.5% 100%

Total Development Defects 80 100.0% 80 100.0%

Quality Metrics
Defects Removed Phase Yields

Actual Actual% Actual

Planning 0 0.0% 0%

Requirements 0 0.0% 0%

System Test Plan 0 0.0% 0%

REQ Inspection 0 0.0% 0%

High-Level Design 0 0.0% 0%

Integration Test Plan 0 0.0% 0%Integration Test Plan 0 0.0% 0%

HLD Inspection 0 0.0% 0%

Detailed Design 0 0.0% 0%

DLD Review 29 36.3% 56%

Test Development 0 0.0% 0%

DLD Inspection 11 13.8% 48%

Code 3 3.8% 8%

Code Review 11 13.8% 30%

Compile 0 0.0% 0%

Code Inspection 12 15.0% 46%

Unit Test 10 12.5% 71%

Build and Integration Test 2 2.5% 50%

System Test 2 2.5% 100%

Total Development Defects 80 100.0%

Conclusion
� Team delivered to their clients one week ahead of

schedule

� Only two defects found in system test, and no defects
reported by clients after deliveryreported by clients after delivery

� By contrast, other MSE teams spent an additional two
months in the fall 2009 semester on bug fixes and
enhancements

� We became better engineers

48

