
page 1

Sponsored by the U.S. Department of Defense © 2005 by Carnegie Mellon University

Watts S. Humphrey

The Software Engineering Institute

Carnegie Mellon University

Scaling Up the
Process

© 2006 by Carnegie Mellon University 2

Agenda
Development Performance

Future Challenges

Current Problems

Scalability

Process Principles and Requirements

A Superior Process

© 2006 by Carnegie Mellon University 3

Performance Examples
The IRS system – finally
started to use in 2005

• 5 years of delays
• costs exploded to $2 B

FBI system killed
• 3 years of work
• $150 M
• 5 CIOs, 9 program

managers

Britain’s child-support project
• a year late
• $844 M
• didn’t pay 50% of cases

© 2006 by Carnegie Mellon University 4

Transportation
Automobiles

• Mercedes Benz – batteries,
windows, temperature

• Bendix Brakes
• Ford Explorer

Boeing 777
• Malaysian Airlines
• Singapore

© 2006 by Carnegie Mellon University 5

This Is No Joke!
These are not new problems.

• CONFIRM system 20 years ago
• Cancelled after 3 ½ years and $125 M

How long will society tolerate such performance?

Do we want government controls?
• Methods standards and approval?
• Pre-shipment reviews?
• Legislated warranties?

We had better solve our own problems or others will solve
them for us.

© 2006 by Carnegie Mellon University 6

Sir Francis Bacon
“He who will not apply new
remedies must expect new
evils.”

© 2006 by Carnegie Mellon University 7

Challenges of the Future
Our priorities must change.
Systems are now

• larger
• distributed
• integrated
• pervasive
• critical

The methods of the past are
not suitable today.

In the future, they could be
dangerous!

© 2006 by Carnegie Mellon University 8

Systems Development Phases
Phase I – Feasibility

• after World War II
• mid 1960s

Phase II – Manageability
• early to mid 1960s
• feasibility - lower priority
• still continuing

Phase III – Quality
• now
• manageability - lower priority
• priorities: safety, security, privacy, usability, etc.

© 2006 by Carnegie Mellon University 9

Process Criteria
A superior process must meet three criteria.

• work effectively for the smallest and largest programs
• consistently produce superior results
• be recognized as producing superior results

The current generally-used processes
• do not consistently work for small projects
• rarely work effectively for large projects
• produce inconsistent and often poor-quality results

© 2006 by Carnegie Mellon University 10

Superior Results
A superior process must consistently
deliver products on schedule and for
their committed costs.

It must routinely deliver high-quality
products.
• functions
• properties
• defects

It must dynamically respond to
changing needs.

© 2006 by Carnegie Mellon University 11

Systems Properties – 1
Systems have emergent properties.
• Emergent properties are produced by synergies among

the system’s components.
• No single component supplies any emergent property.

Example emergent properties
• performance
• reliability
• safety
• security
• usability
• maintainability
• installability

© 2006 by Carnegie Mellon University 12

Systems Properties – 2
The quality of an emergent property is determined by the
• worst-quality component
• lowest-performing component
• least-reliable component
• least usable component
• least secure component

Therefore, a superior process must
• identify all poor-quality components
• fix all poor-quality components
• improve all poor-quality components
• prevent all poor-quality work

© 2006 by Carnegie Mellon University 13

The Scale-Up Problem
As systems become larger
• they become more complex
• their development is more challenging
• their management is more difficult
• new problems emerge at the systems level
• component problems are magnified at higher levels

Therefore, a superior process must
• prevent all poor-quality work
• guide the work at all levels

© 2006 by Carnegie Mellon University 14

Tolstoy: Anna Karenina
“Happy families are all alike;
every unhappy family is
unhappy in its own way.”

© 2006 by Carnegie Mellon University 15

The Common Strategy
The most common strategy:

• If it isn’t broken – don’t fix it.

This strategy has four problems.
• Processes break in an infinite number of ways.
• Fixing one problem will not fix the next.
• These random fixes do not fix causes.
• The process is not consistently or measurably

improved.

© 2006 by Carnegie Mellon University 16

The CMMI Strategy
The only effective answer is a strategy that is

• cohesive
• comprehensive
• based on sound principles

This is the logic for CMMI.

It has gaps.

© 2006 by Carnegie Mellon University 17

Scalability
Scalability is fundamental.

Developers now typically
use the same practices for

• a 1,000 LOC application
• a 1,000 LOC module for

a 1,000,000 system

Examples from other fields.
• boat building
• building construction
• accounting

© 2006 by Carnegie Mellon University 18

Scalability Requirements
For a process to be scalable, every key aspect must scale
up and down.

• practices
• measures
• quality management

Therefore, the work at every level must
• be based on precise and detailed plans
• produce high-quality products
• be based on measured, statistically usable, and

auditable data, not
- after-the-fact reports
- third-party estimates
- guesses

© 2006 by Carnegie Mellon University 19

Meeting Schedules
Fred Brooks: “Schedules
slip a day at a time.”

© 2006 by Carnegie Mellon University 20

A Process Principle
To consistently maintain costs and schedules, the one-day
slips must be recovered the next day. If not

• the delays will compound
• the commitments will become unmanageable

With current common practices, schedule slips cannot be
detected until projects are weeks or months late.

Then it is generally too late to recover.

© 2006 by Carnegie Mellon University 21

System Schedules
For large-scale integrated-systems-development
programs

• Any subsystem delay will delay the system.
• Any component delay will delay the subsystem and

system.
• Any project delay will delay the component,

subsystem, and system.
• Any team delay will delay the project, component,

subsystem, and system.
• Any developer delay will delay the team, project,

component, subsystem, and system.

© 2006 by Carnegie Mellon University 22

Program Management
To manage large programs, every
system level must be managed.

• subsystems
• components
• projects
• teams
• developers

Therefore, to consistently produce quality products on
schedule and for planned costs, every developer must

• consistently produce quality products
• predictably meet schedules

© 2006 by Carnegie Mellon University 23

Process Requirements
For a process to meet these needs, it must

• properly manage the knowledge work
• manage costs and schedules
• manage quality

© 2006 by Carnegie Mellon University 24

Knowledge Work - 1
The first rule for managing knowledge work is to recognize
that you can’t manage it.

The knowledge workers must manage their own work.

The second rule for managing knowledge work is that the
teams and developers must
• know how to manage themselves
• negotiate their commitments with management
• manage with data
• own their own work

© 2006 by Carnegie Mellon University 25

Knowledge Work - 2
To manage themselves,
developers must

• use personal processes
• follow personal plans
• measure, track, and

report status
• measure and manage

quality

© 2006 by Carnegie Mellon University 26

Knowledge Work - 3
To follow a defined, planned, measured, and quality-
controlled process, developers must

• work on self-directed teams
• define their own processes and plans
• negotiate their own commitments
• be competently led and coached

© 2006 by Carnegie Mellon University 27

Cost and Schedule
There is no secret to meeting cost and schedule
commitments.

In every field, only four things are required.
• The developers estimate and plan their own work.
• Everyone precisely and regularly tracks and reports

status and progress.
• Schedule delays are addressed every day.
• When requirements change, everyone

- revises their plans
- renegotiates their commitments

© 2006 by Carnegie Mellon University 28

Quality Management - 1
To successfully manage quality, the development process
must be based on four facts.

• The longer a defect remains in a product, the more it
costs to find and fix it.

• No test can find more than a fraction of the defects in a
product.

• The larger and more complex the product, the smaller
this faction will be.

• To get a high-quality product out of test, you must put a
high-quality product into test.

© 2006 by Carnegie Mellon University 29

Quality Management - 2
A quality process must strive to find and fix all defects
before test entry.

To do this, the process must
• have multiple early defect-removal steps
• measure product quality at every step
• measure process quality at every step
• make and follow personal and team quality plans
• regularly track product and process quality
• use testing to

- verify product quality
- gather quality data

• promptly correct quality deviations from plan

© 2006 by Carnegie Mellon University 30

A Superior Process
The TSP helps organizations to
• control costs
• improve product quality
• reduce cycle time

Software developers like the TSP because it
• shows them how to manage their own work
• improves their productivity
• enables them to consistently meet commitments
• improves their quality of life

© 2006 by Carnegie Mellon University 31

Process Results
Some of the best known organizations introducing the
TSP are

ABB
AIS
Bechtel-Bettis
Boeing
DFAS
EDS-SDRC
Erickson
Honeywell
Intuit
Kaiser

Lockheed
Microsoft
NASA Langley
NCR Teradata
Northrop Grumman
Oracle
Teradyne
USAF: Hill AFB
USN: NAVAIR
Xerox

© 2006 by Carnegie Mellon University 32

 The AIS Corporation
Schedule Deviation Control Chart

-150
-100

-50
0

50
100
150
200
250
300
350

01/88
01/89

01/90
01/91

01/92
01/93

01/94
01/95

01/96
01/97

01/98

Date of Project Start

%
 D

ev
ia

ti
o

n

Individual Data Points Mean Upper Natural Process Limit

Lower Natural Process Limit One Standard Deviation

Pre-CMM CMM TSP

© 2006 by Carnegie Mellon University 33

Code Complete

SIT UAT

Go-Live

TSP SAVINGS

© 2006 by Carnegie Mellon University 34

Team Development
Team performance improves with experience. In 4
releases, one team
• delivered on time
• increased productivity by 81%

Defect Data - Five Releases of the Same Product
Non-TSP TSP TSP TSP TSP

Release number 1 2 3 4 5
Defects/1000 LOC
 System Test 13.3 2.5 0.8 1.0 0.1
 Acceptance Test 0.8 0.0 0.0 0.0 0.0
 Customer Production 1.2 0.2 0.0 0.0 0.0

© 2006 by Carnegie Mellon University 35

An Industrial Study
A comparison of the performance of 80 traditional
development teams with 15 first-time TSP teams

Non-TSP Projects TSP Projects
Released on Time 42% 66%
Average Days Late 25 6
Mean Schedule Error 10% 1%
Test Defects/KLOC 19.5 12.8
Production Defects/KLOC 1.8 0.5
Sample Size 80 15

© 2006 by Carnegie Mellon University 36

Conclusions
These principles have been proven with CMMI and TSP
and are being piloted for systems engineering with TSPI.

The critical challenge is to get people to work this way.

Consistently superior knowledge work must include the
following elements – at all levels.
• well-defined and consistently practiced principles of

personal performance
• teambuilding and empowerment

- ownership and commitment
- leadership and coaching

• organizational support and institutionalization
• quantitative performance measurement and appraisal

© 2006 by Carnegie Mellon University 37

For More Information
Visit the PSP/TSP Web site

http://www.sei.cmu.edu/tsp/

Contact an SEI partner
http://www.sei.cmu.edu/collaborating/partners/trans.part.psp.html

Contact SEI customer relations
Phone, voice mail, and on-demand FAX: 412/268-5800
E-mail: customer-relations@sei.cmu.edu

See the books
Winning with Software, by Watts Humphrey, Addison-Wesley, 2002
TSP: Leading a Development Team, by Watts Humphrey, Addison-
Wesley, 2006
TSP: Coaching Development Teams, by Watts Humphrey, Addison-
Wesley, 2006

	Scaling Up the Process
	Agenda
	Performance Examples
	Transportation
	This Is No Joke!
	Sir Francis Bacon
	Challenges of the Future
	Systems Development Phases
	Process Criteria
	Superior Results
	Systems Properties – 1
	Systems Properties – 2
	The Scale- Up Problem
	Tolstoy: Anna Karenina
	The Common Strategy
	The CMMI Strategy
	Scalability
	Scalability Requirements
	Meeting Schedules
	A Process Principle
	System Schedules
	Program Management
	Process Requirements
	Knowledge Work - 1
	Knowledge Work - 2
	Knowledge Work - 3
	Cost and Schedule
	Quality Management - 1
	Quality Management - 2
	A Superior Process
	Process Results
	The AIS Corporation
	Chart
	Team Development
	An Industrial Study
	Conclusions
	For More Information

