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Performance Examples
The IRS system – finally
started to use in 2005

• 5 years of delays
• costs exploded to $2 B

FBI system killed
• 3 years of work
• $150 M
• 5 CIOs, 9 program

managers

Britain’s child-support project
• a year late
• $844 M
• didn’t pay 50% of cases
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Transportation
Automobiles

• Mercedes Benz – batteries,
windows, temperature

• Bendix Brakes
• Ford Explorer

Boeing 777
• Malaysian Airlines
• Singapore
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This Is No Joke!
These are not new problems.

• CONFIRM system 20 years ago
• Cancelled after 3 ½ years and $125 M

How long will society tolerate such performance?

Do we want government controls?
• Methods standards and approval?
• Pre-shipment reviews?
• Legislated warranties?

We had better solve our own problems or others will solve
them for us.
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Sir Francis Bacon
“He who will not apply new
remedies must expect new
evils.”
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Challenges of the Future
Our priorities must change.
Systems are now

• larger
• distributed
• integrated
• pervasive
• critical

The methods of the past are
not suitable today.

In the future, they could be
dangerous!
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Systems Development Phases
Phase I – Feasibility

• after World War II
• mid 1960s

Phase II – Manageability
• early to mid 1960s
• feasibility - lower priority
• still continuing

Phase III – Quality
• now
• manageability - lower priority
• priorities: safety, security, privacy, usability, etc.
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Process Criteria
A superior process must meet three criteria.

• work effectively for the smallest and largest programs
• consistently produce superior results
• be recognized as producing superior results

The current generally-used processes
• do not consistently work for small projects
• rarely work effectively for large projects
• produce inconsistent and often poor-quality results
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Superior Results
A superior process must consistently
deliver products on schedule and for
their committed costs.

It must routinely deliver high-quality
products.
• functions
• properties
• defects

It must dynamically respond to
changing needs.
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Systems Properties – 1
Systems have emergent properties.
• Emergent properties are produced by synergies among

the system’s components.
• No single component supplies any emergent property.

Example emergent properties
• performance
• reliability
• safety
• security
• usability
• maintainability
• installability
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Systems Properties – 2
The quality of an emergent property is determined by the
• worst-quality component
• lowest-performing component
• least-reliable component
• least usable component
• least secure component

Therefore, a superior process must
• identify all poor-quality components
• fix all poor-quality components
• improve all poor-quality components
• prevent all poor-quality work
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The Scale-Up Problem
As systems become larger
• they become more complex
• their development is more challenging
• their management is more difficult
• new problems emerge at the systems level
• component problems are magnified at higher levels

Therefore, a superior process must
• prevent all poor-quality work
• guide the work at all levels
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Tolstoy: Anna Karenina
“Happy families are all alike;
every unhappy family is
unhappy in its own way.”
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The Common Strategy
The most common strategy:

• If it isn’t broken – don’t fix it.

This strategy has four problems.
• Processes  break in an infinite number of ways.
• Fixing one problem will not fix the next.
• These random fixes do not fix causes.
• The process is not consistently or measurably

improved.
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The CMMI Strategy
The only effective answer is a strategy that is

• cohesive
• comprehensive
• based on sound principles

This is the logic for CMMI.

It has gaps.
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Scalability
Scalability is fundamental.

Developers now typically
use the same practices for

• a 1,000 LOC application
• a 1,000 LOC module for

a 1,000,000 system

Examples from other fields.
• boat building
• building construction
• accounting



© 2006 by Carnegie Mellon University 18

Scalability Requirements
For a process to be scalable, every key aspect must scale
up and down.

• practices
• measures
• quality management

Therefore, the work at every level must
• be based on precise and detailed plans
• produce high-quality products
• be based on measured, statistically usable, and

auditable data, not
- after-the-fact reports
- third-party estimates
- guesses
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Meeting Schedules
Fred Brooks: “Schedules
slip a day at a time.”
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A Process Principle
To consistently maintain costs and schedules, the one-day
slips must be recovered the next day. If not

• the delays will compound
• the commitments will become unmanageable

With current common practices, schedule slips cannot be
detected until projects are weeks or months late.

Then it is generally too late to recover.
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System Schedules
For large-scale integrated-systems-development
programs

• Any subsystem delay will delay the system.
• Any component delay will delay the subsystem and

system.
• Any project delay will delay the component,

subsystem, and system.
• Any team delay will delay the project, component,

subsystem, and system.
• Any developer delay will delay the team, project,

component, subsystem, and system.
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Program Management
To manage large programs, every
system level must be managed.

• subsystems
• components
• projects
• teams
• developers

Therefore, to consistently produce quality products on
schedule and for planned costs, every developer must

• consistently produce quality products
• predictably meet schedules
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Process Requirements
For a process to meet these needs, it must

• properly manage the knowledge work
• manage costs and schedules
• manage quality
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Knowledge Work - 1
The first rule for managing knowledge work is to recognize
that you can’t manage it.

The knowledge workers must manage their own work.

The second rule for managing knowledge work is that the
teams and developers must
• know how to manage themselves
• negotiate their commitments with management
• manage with data
• own their own work
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Knowledge Work - 2
To manage themselves,
developers must

• use personal processes
• follow personal plans
• measure, track, and

report status
• measure and manage

quality
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Knowledge Work - 3
To follow a defined, planned, measured, and quality-
controlled process, developers must

• work on self-directed teams
• define their own processes and plans
• negotiate their own commitments
• be competently led and coached
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Cost and Schedule
There is no secret to meeting cost and schedule
commitments.

In every field, only four things are required.
• The developers estimate and plan their own work.
• Everyone precisely and regularly tracks and reports

status and progress.
• Schedule delays are addressed every day.
• When requirements change, everyone

- revises their plans
- renegotiates their commitments
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Quality Management - 1
To successfully manage quality, the development process
must be based on four facts.

• The longer a defect remains in a product, the more it
costs to find and fix it.

• No test can find more than a fraction of the defects in a
product.

• The larger and more complex the product, the smaller
this faction will be.

• To get a high-quality product out of test, you must put a
high-quality product into test.
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Quality Management - 2
A quality process must strive to find and fix all defects
before test entry.

To do this, the process must
• have multiple early defect-removal steps
• measure product quality at every step
• measure process quality at every step
• make and follow personal and team quality plans
• regularly track product and process quality
• use testing to

- verify product quality
- gather quality data

• promptly correct quality deviations from plan
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A Superior Process
The TSP helps organizations to
• control costs
• improve product quality
• reduce cycle time

Software developers like the TSP because it
• shows them how to manage their own work
• improves their productivity
• enables them to consistently meet commitments
• improves their quality of life
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Process Results
Some of the best known organizations introducing the
TSP are

ABB
AIS
Bechtel-Bettis
Boeing
DFAS
EDS-SDRC
Erickson
Honeywell
Intuit
Kaiser

Lockheed
Microsoft
NASA Langley
NCR Teradata
Northrop Grumman
Oracle
Teradyne
USAF: Hill AFB
USN: NAVAIR
Xerox
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  The AIS Corporation
Schedule Deviation Control Chart 
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Code Complete

SIT UAT

Go-Live

TSP SAVINGS
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Team Development
Team performance improves with experience. In 4
releases, one team
• delivered on time
• increased productivity by 81%

Defect Data - Five Releases of the Same Product
Non-TSP TSP TSP TSP TSP

Release number 1 2 3 4 5
Defects/1000 LOC
   System Test 13.3 2.5 0.8 1.0 0.1
   Acceptance Test 0.8 0.0 0.0 0.0 0.0
   Customer Production 1.2 0.2 0.0 0.0 0.0
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An Industrial Study
A comparison of the performance of 80 traditional
development teams with 15 first-time TSP teams

Non-TSP Projects TSP Projects
Released on Time 42% 66%
Average Days Late 25 6
Mean Schedule Error 10% 1%
Test Defects/KLOC 19.5 12.8
Production Defects/KLOC 1.8 0.5
Sample Size 80 15
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Conclusions
These principles have been proven with CMMI and TSP
and are being piloted for systems engineering with TSPI.

The critical challenge is to get people to work this way.

Consistently superior knowledge work must include the
following elements – at all levels.
• well-defined and consistently practiced principles of

personal performance
• teambuilding and empowerment

- ownership and commitment
- leadership and coaching

• organizational support and institutionalization
• quantitative performance measurement and appraisal
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For More Information
Visit the PSP/TSP Web site

http://www.sei.cmu.edu/tsp/

Contact an SEI partner
http://www.sei.cmu.edu/collaborating/partners/trans.part.psp.html

Contact SEI customer relations
Phone, voice mail, and on-demand FAX: 412/268-5800
E-mail: customer-relations@sei.cmu.edu

See the books
Winning with Software, by Watts Humphrey, Addison-Wesley, 2002
TSP: Leading a Development Team, by Watts Humphrey, Addison-
Wesley, 2006
TSP: Coaching Development Teams, by Watts Humphrey, Addison-
Wesley, 2006
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