

Pittsburgh, PA 15213-3890

First TSP Symposium 2006

Impact of Individual Performance to Organization

A Strategic Integration of PSP, TSP, and CMMI

Yoshihiro Akiyama, SEI Affiliate, IBM Japan Ltd. & Kaitatsu Co.,. Ltd. Jim Over, Jim McHale, Anita Carleton, Software Engineering Institute, Carnegie Mellon University

September 18th, 2006

Contents

- What is Difficult
- Input to Simulation based on PSP/TSP process
- Simulation Definition Individual to Project
- Measures
- Project Type & Findings
- Simulation Definition Project to Organization
- Spectrum of Organization Type and Findings
- Observation of the Elastic Parameter PSP data
- A Promising Improvement Approach for Organization
- Overall Picture: Individual, Project, and Organization
- Summary

What is difficult at Organization Level

Organizational Performance ~©` Project/Performance 3 Individual Performance

Direct measures associated with individual and project are not linked to define and control its quality and process performance objectives.

How do you ensure that organizational performance is managed?

© 2006 by Carnegie Mellon University

First TSP Symposium 2006

Purpose of this presentation

Based on the PSP and TSP process,

- Show an example of how process performance is influenced (linked) by individual to project and organization, where the strategic integration is desired,
- Find a promising approach to improve organizational performance.

NOTE: Toward CMMI

Carnegie Mellon Softwaters Enhanced; in the distributed of the lower yield or rate.

Input to Simulation

Input/assumption:

- PSP and TSP processes are used,
- TSP development life cycle is followed.
- Need statements results in 15 pages of requirements,
- Team size is four engineers: Person 1 - 3: assigned fully for full life cycle, Person 4: assigned from REQ inspection phase.

Project Life Cycle

The TSP phase definition is used for practical project life cycle.

Life Cycle Definition with phase time duration

Simulation Definition: Individual to Project

Individual's process data are mostly defined by PSP and TSP workbook.

Project data is mostly defined by TSP workbook.

Project assumes four-day launch.

Carnegie Mellon Software Engineering Institute

Team Measures related to Individual (1)

QualGuide (TSP Support Tool)

Aeasure	Goal	Comments
Percent Defect Free (PDF)		
Compile	> 10%	
Unit Test	> 50%	
Integration Test	> 70%	
System Test	> 90%	
Defects/KLOC:		
Total defects injected	75-150	If not PSP trained, use 100 to 200.
Compile	< 10	All defects
Unit Test	< 5	All major defects (in source LOC)
Integration Test	< 0.5	All major defects (in source LOC)
System Test	< 0.2	All major defects (in source LOC)
Defect Ratios		
Detailed design review defects Junit test defects	> 2.0	All major defects (in source LOC)
Code review defects/compile defects	× 2.0	All major defects (in source LOC)
Development Time Ratios		
Requirements inspection/requirements time	× 0.25	Elicitation in requirements time
High-level design inspection/high-level design time	> 0.5	Design work only, not studies
Detailed design/coding time	> 1.00	
Detailed design review/detailed design time	> 0.5	
Code review/code time	> 0.5	
Review and Inspection Rates		
Requirements pages/hour	× 2	Single-spaced text pages
High-level design pages/hour	× 5	Formatted design logic
Detailed design text lines/hour	< 100	Pseudocode ~ equal to 3 LOC
Code LOC/hour	< 200	Logical LOC
Defect Injection and Removal Rates		
Requirements defects injected/hour	0.25	Only major defects
Requirements inspection detects removed/hour	0.5	Only major detects
High-level design defects injected/hour	0.25	Only major detects
High-level design inspection defects removed/hour	0.5	Only major detects
Detailed design defects injected/hour	0.75	Only design defects
Detailed design review defects removed/hour	1.5	Only design defects
Detailed design inspection detects removed/hour	0.5	Only design defects
Code defects injected/hour	2	All defects
Code review defects removed/hour	4	All defects in source LOC
Compile delects injected/hour	0.3	Any detects
Code inspection detects removedmour	1 0.007	All defects in source LOC
Unit test detects injectedmour	0.061	Any detects
Team regularments inspections		hist sounding addressed some onto
Design requirements inspections	- 70%	Lising state analysis, trace tables
Code reviews and inspections	~ 70%	Using state analysis, trace tables
Compliana	~ 50%	Obly 16 of evolution defects
Linit test, of 5 or loss deferted/LOC	~ 00%	For high deforted/LOC - 50,75%
Intervation and system test, at < 1.0 defectel/2.0.0	~ 90.90	For high defected/LOC - 30-75%
Accontance test, at s 1.0 defected(LOC	- 65%	For high defects/ALOC - 30%
Before romaile	>75%	Assuming sound design methods
Before unit test	> 24%	Assuming logic checks in projews
Before integration test	> 97 5%	For small products 1 defect may
Before system test	> 99%	For small products, 1 defect may
A & NATSP hotsustings (PlanGuida) QualQuida (Pro-	wit /Terr	/Poles /Goals /SIMP /SIMO /SIME

© 2006 by Carnegie Mellon University

First TSP Symposium 2006

Carnegie Mellon Software Engineering Institute

Project Characterization - Measures (1)

	Measure Analysi Constraints on alloc	btod ti	me	-				Ref. TSP Qua	Guide
	Defects/KLOC			nax –	Min	lax			
	Defect Ratio	N							
	Development Time Ratios	SR	-			+			
	Review and Inspection Ratios	Î.							
	Reg. pages/Hour	2			ID				
	HLD pages/Hour				LN				
	DLD review text lines/Hr	100			110				
	Code Review LOC/Hour 🛛 💋	200			220				
	Defect injection and Removal Rates					2			
	Req. defects injected/Hour	0.25			0.33	5	1.3	Rate 30% high	
	Req. defects insp. remvd/Hour	0.5			0.35	S	0.7	Rate 30% low	
	HLD defects injected/Hour	0.25			0.33	ice Rate	1.3	Inject defects more	
	HLD defects insp. remvd/Hour	0.5			0.35		0.7	Remove defects less	
	DLD defects injected/Hour	0.75			0.98		1.3	Inject defects more	
Process	DLD review defects remvd/Hour 🔒	1.5			1.05	a	0.7	Remove defects less	
management	DLD defects insp. remvd/Hour	0.5	S		0.35	È	0.7	Inject defects more	
management	Code defects injected/Hour	2	Р Р		2.60	Ê	1.3	Inject defects more	
activities	Code review defects remvd/Hour 🛛 🦉	4	<u>va</u>		1.60	a	0.4	Remove defects less	
	Compile defect injected/Hour	0.3	5		0.39	≷	1.3	Inject defects more	
	Compile defect removed/Hour	10	et		7.00	2	<u>2</u> 0.7	Inject defects more	
	Code Inspection defects rmvd/Hour	1	E		0.70	_	0.7	Remove defects less	
	Unit Test defects injected/Hour	0.07	ar		0.09		1.3	Inject defects more	
	Unit Test defects removed/Hour	2	2		2.00	_	1	Inject defects less	
	Phase Yields		S						
Quality	Team req. inspection	0.7				_			
management	Design Reviews and inspections	0.7			0.35	<u>R</u>	0.5	20% lower yield	
antivities	Code review and inspections	0.7			0.35	┛	0.5	20% lower yield	
activities	Compiling	0.5			0.35	elo	0.5	50% lower yield	
	UT - at 5 or less defects/KLOC 💡	0.9			0.25	۶.	0.5	50% lower yield	
	<u>Π and ST - at <1.0 defects/KLOC</u>	0.8			0.45	e	0.5	60% lower yield	
	Acceptance test - at 1.0 def./KLOC 🕰	10.65	1			Š			
	Before compilation	SY	_	_	IV	4			
	Before unit test	0.00	-		L 1	4			
2006 by Carnegie	Before IT	0.98		-		_			
Love by Gameyie	Before ST	0.99				_			
					I I				

Project Type

 Characterized by process disciplines, where we use TSP and PSP process disciplines.

Project Type	Description
SYSR	PSP/TSP disciples followed. Project focuses the yield (quality) and the activity rates are appropriate, e.g., not too fast and not too slow, according to the TSP process parameters
SYLR	The quality is focused but the activity rates are not appropriate. Consistent engineering activity is recognized but not much on the work rates.
SYLR-1	Same as SYLR but the third member spends two times longer to remove one defect, compared to the other members.
LYSR	Less focus on the quality but the activity rates are focused.
LYLR	Less focus on the quality and also the activity rates are not appropriate.
LYLR-zero yield until Cl	Zero yield is assigned from HLD review through code inspection to LY-LR

Findings – Project Management Tradeoff

Green segments show review and inspection.

Blue box show the time duration from the unit test through the system test.

- If the review & inspection time is longer, the test time becomes shorter.
- The lifecycle time of a SYLR type project is longer than that of a LYSR type project.

Findings – Project TCO including Field Support

Grey boxes show the cost needed to fix field defects.

Field support cost of the SY* type project is negligible, i.e., very small.
Field support cost of the LY* type project is <u>not</u> negligible, i.e., not small.

Simulation Definition: Project to Organization

© 2006 by Carnegie Mellon University

First TSP Symposium 2006

Spectrum of Organization Type

Organization Type	Description	Amplification of (Yield, activity rates) to the SY-SR data
SY-SR	Organization with projects of fully TSP/PSP trained teams	(1.0, 1.0)
SY-LR	Organization of projects with the same yield level but 30% lower or higher activity rates to SY-SR (e.g., higher defect injection rates or lower defect removal rates)	(1, 1.3 or 0.7)
LY-SR	Organization of projects with lower yield level but the same activity rates	(0.5, 1.0)
LY-LR	Lower yields and lower rates (e.g., amplified 30% higher or lower to the TSP parameters)	(0.5, 1.3 0r 0.7)
SY-LR-1	Same yield level and lower rates (e.g., higher injection rates or lower removal rates) + one person has one half of the yields for code review, unit test, integ. test and system test	(1.0/one half for one person, 0.5)
LY-LR zero yield up to code insp.	Zero yield is assigned from HLD review through code inspection to LY-LR	(0.5/0.0 for HLD review - code inspection, 0.5)

© 2006 by Carnegie Mellon University

First TSP Symposium 2006

Findings – Organization's Performance

Assumptions:

- The work product sizes are same across projects examined.
- The project price is same to all projects and given such that the LYSR type project has the profit of about 9% of the price.
- The project price does not include the field support.
- The cost rate of the project members are equally given.
- The project price is spread over the project life cycle.
- The organization's performance is calculated for nine month long.

Findings – SYSR Organization

- The profit is steadily increasing
- Day rate of profit shows stable and large smooth variations on when projects start or phase out.
- About 23% of profit is expected steadily

Findings – SYLR Organization

- The patterns of the day rates and to-dates are similar to SYSR.
- About 17% profit is expected steadily.

Findings – LYSR Organization

To Dates

- Variation on the rates of the cost, therefore, the profit is larger.
- About 9% profit is achieved but the variation is significant.
- The organization has risk on making profit (9%.)
- The TCO becomes negative.

Findings – LYLR Organization

Day Rates

To Dates

- The day rate of the profit is lower than the profit of SYSR projects.
- About 7.6% profit of project is achieved.
- The TCO becomes negative.

Findings – LYLR zero yield Organization

- The Day Rate Profit is *negative value*, e.g., the cost is higher than the price.
- To Date profit increases negatively larger but <u>not visible</u> because of no review or inspection activities are missing.

Findings – Total Cost of Ownership

Below is the table showing the TCO information of the organization:

	Price	Cost	Profit	Field Support	тсо	Net Results
SYSR	\$124,842	\$93,613	\$31,228	\$79	\$93,691	\$31,149
SYLR	\$124,842	\$102,700	\$22,141	\$108	\$102,808	\$22,033
LYSR	\$124,842	\$113,492	\$11,349	\$113,492	\$138,168	-\$13,327
LYLR	\$124,842	\$115,386	\$9,455	\$115,386	\$149,241	-\$24,400
LY-LR zero yield up to code insp.	\$124,842	\$134,871	-\$10,030	\$89,875	\$224,746	-\$99,905

• SYSR and SYLR organization can only make TCO profit.

- <u>LYSR and LYLR organization</u> may make profit at the project completion, however, the TCO will eventually be in **red**.
- If you don't identify and fix defects before compile, such a project might be classified as the "LYLR zero yield up to code inspection" type.

Finding -Why high quality project finishes earlier (1)

(Schedule) Elasticity = Total time/PT=1+RT/PT

Average elasticity =Total time/ Total pure time

© 2006 by Carnegie Mellon University

Finding -Why high quality project finishes earlier (2)

The yield management is the key for SY type organization.

High yield (70% or higher) is achieved if

- the max elasticity is in the range 1.0 1.5, and,
- the average elasticity is in the range 1.0 1.2Respectively.

We call this as the *yield-elasticity rule* and the next slide supports the rule:

Observation of the Elasticity - PSP Data

Max elasticity <1.5 and Average elasticity <1.2 should give high yield performance to be credited.

PGM Yield MAX ELS AV ELS 100 1 1 2 100 1 3 100 1 4 0 1.13333 1.01905 5 1.14286 1.02793 OI. 100 1.15385 6 1.02198 100 1.2 1.02857 7 8 100 1.21739 1.03106 9 100 1.22222 1.04015 1.5 1.09048 66.6667 10 1.5 1.16753 11 80| 12 60 1.27143 1.9 13 62.5 2 1.25283 14 46.1538 21 1.26967 15 2.25 1.30556 0l 16 2.5 36.3636 1.36786 17 66.6667 3 1.60484 18 Ol. 3.14286 1.30612 19 3.17391 1.43888 OI. 20 40 l 3.21951 1.35279 3.28571 21 40 l 1.17294 22 50 l 3.33333 1.48889 23 3.5 1.35714 0 3.5 1.49433 24 20 25 50 l 3.66667 1.40136 26 0 4.28571 1.46939 27 O 4.47619 1.50534 28 40 5 1.65714 29 O 1.71429 61 30 33.3333 1.8617 6. 31 66.6667 81 2.10431 32 O. 20.6667 3.68637 33 33.3333 52 8.37415

© 2006 by Carnegie Mellon University

First TSP Symposium 2006

What is the promising improvement approach for organization

From the study so far:

- The project cost is not much different across the SY and LY type organizations.
- The TCO measure must be picked up regardless the field cost is paid by project organization or customer.
- The key parameter for low TCO is the yield that can be applied to project and project members (individuals.)

A promising approach for organizational improvement is to establish the SY nature of <u>every</u> project it manages and therefore of <u>every</u> individuals to be capable to produce work product at high quality. Neither SR nor LR nature is critical.

Overall Picture: Individual, Project, and Organization

Unit	Activities	Character.	Process or Process Model	Measurement	Measures
Organizat ion	Profit, Managing Cost / Resources etc	Manage Cost, Resource, and Profit	CMMI ce	Goal Driven SW Measurement	Profit Summed Cost Resource
Project Team	Managing Cust./Sponsor and team Team Building	Team Level PQM and Communication	Peridet Nodet TSP	TSP Measurement Framework	Summed Sizes Workloads Ranges Cost Quality
Individual	Activity Manage. Small tasks And PQM	Individual Level PQM	PSP	PSP Measurement Framework	Size Workload Range Cost Quality

PQM = Productivity and Quality Management. © 2006 by Carnegie Mellon University Process Performance Model Applies..... First TSP Symposium 2006

Summary

- Direct measures of individual process such as the pure work time and rework time or defects injected and removed, are essentially linked to the quality performance of the project and organization.
- Organizational performance is consistently improved by the SY nature, where every individual of the organization manages high yields or the adequate elasticity.
- TCO problem will be resolved to result in the win-win situation for project and its customer.