
© Davis and Maccherone 1

Automated Unit Testing
and the TSP

presented by

Noopur Davis
and

Larry Maccherone

TSP Symposium
September 2007

© Davis and Maccherone 2

Outline

� Background

� Changes to TSP

� Results from TSP teams

� Industry results

� Research topics

© Davis and Maccherone 3

Unit Testing (UT)

IEEE definition of unit testing

Testing of individual

� hardware or software units

� or groups of related units

Common understanding of unit testing

� done by developers

� done on very small units of code

� goal is to ensure that isolated units of work are
functioning correctly

© Davis and Maccherone 4

Automated Unit Testing (AUT)

Automates the task of unit testing

� tests are usually written in the same
language as production code.

Tests are written to exercise units of code

� in procedural languages, these could be
functions and procedures

� in object-oriented languages, these are
frequently methods and classes.

© Davis and Maccherone 5

Test Driven Development
(TDD)

� What is TDD?

� A strategy for software development where you write
the tests before writing any production code

� You expect the tests to fail the first time they are run

� Tests serve as requirements or design artifacts

� Force one to think about functionality and API before
thinking about implementation

� TDD requires automated unit testing, but...

� Not everyone doing automated unit testing is doing TDD

© Davis and Maccherone 6

Why the Buzz?

� Most Agile methods strongly support
automated unit tests, and some explicitly call
out for TDD.

� Neither AUT nor TDD are new
� The Agile community, in their own words, has

“rediscovered” these

� “It is desirable to develop the tests before you
write the code”. A Discipline for Software
Engineering, page 370

© Davis and Maccherone 7

Testing Frameworks

Automated unit tests are supported by testing
frameworks that help with

� setup and teardown

� method and class-level testing

� family of assertions and generation of exceptions

� ability to extend the framework

The most popular family of frameworks is the x-Unit
family (junit, nunit, cunit, phpunit, flexunit, etc..)

© Davis and Maccherone 8

Junit Example
// derived from example provided by Frank P. Coyle, PhD (http://engr.smu.edu/~coyle)

public class LibraryTest extends TestCase {

private Library library;

public void setUp() throws Exception {

library = new Library();

library.addBook(new Book("Cosmos", "Carl Sagan"));

library.addBook(new Book("Contact", "Carl Sagan"));

library.addBook(new Book(“Contact", “Jena Malone"));

}

public void tearDown() { library = null; }

public void testGetBooksByTitle() {

Vector books = library.getBooksByTitle(“Contact");

assertEquals("wrong number of books found", 2, books.size());

}

public void testGetBooksByAuthor() {

Vector books = library.getBooksByAuthor("Carl Sagan");

assertEquals("2 books not found", 2, books.size());

}

// Junit also provides assertTrue, assertFalse, assertNull, and a few more

}

© Davis and Maccherone 9

Adding AUT to TSP

� Considerations for

� Process framework

� Planning framework

� Quality framework

� Measurement framework

© Davis and Maccherone 10

Operational Details

Automated unit-tests are written along with
production code in very tight increments

1. Write a couple of lines of production code*

2. Write a couple of lines of test code

3. Build and execute (most testing frameworks do
this automatically)

4. Refactor both test and code if needed

5. Repeat

*for TDD, the order would be 2, 3, 1, 3, 4, 5

© Davis and Maccherone 11

AUTs and Builds

AUTs must almost always be coupled with a
build system that automatically builds and
executes all unit tests (regression)

– Continuous builds

– Multiple builds a day

© Davis and Maccherone 12

Process Considerations

Design

Design Review

Design Inspection

Code

Code Review

Code Inspection

Unit Test

Design

Design Review

Design Inspection

Code

Code Review

Code Inspection

Unit Test

Design

Design Review

Design Inspection

Production + Unit
Test Code

Production + Unit
Test Code Review

Production + Unit
Test Code
Inspection

Build/UT

“Out of the box” TSP

TSP with AUT

© Davis and Maccherone 13

TSP Teams Data - LOC

Name Prod. LOC UT LOC UT Loc/Prod LOC

Subsystem 1 1388 2126 1.53

Subsystem 2 1634 940 0.58

Subsystem 3 1863 1208 0.65

Subsystem 4 2009 1794 0.89

Subsystem 5 2667 781 0.29

Subsystem 6 3022 1442 0.48

Subsystem 7 3520 1851 0.53

Subsystem 8 4789 2197 0.46

Subsystem 9 7609 6125 0.80

Subsystem 10 12990 8481 0.65

Subsystem 11 17490 16233 0.93

Subsystem 12 55602 72269 1.30

Average 0.76

Max 1.53

Min 0.29

© Davis and Maccherone 14

TSP Teams Data - Coverage

Conditionals Statements Methods Total

Subsystem 1 97.6% 98.3% 100% 98.2%

Subsystem 2 50% 84.6% 95.3% 84.9%

Subsystem 3 66.9% 88.6% 91.5% 83.9%

Subsystem 4 62% 75.7% 89.6% 76%

Subsystem 5 40.7% 65.9% 80.5% 66.2%

Subsystem 6 66.6% 77% 83.5% 76.4%

Subsystem 7 60% 67.4% 63.9% 66%

Subsystem 8 66.7% 72.2% 100% 73.1%

Subsystem 9 76.7% 80.2% 100% 81.2%

© Davis and Maccherone 15

Industry Data – Microsoft TDD
Case Study1

Windows MSN

Test LOC/Source LOC 0.66 0.89

Block coverage 79% 88%

Development time

(person months)

24 46

Team size 2 12

Decrease in Defects/LOC 38% 24%

Increase in dev time 25-35% 15%

© Davis and Maccherone 16

Industry Data – IBM Case
Study2

Test LOC/Prod LOC

Device driver 1 .54

Device driver 2 .09

Device driver 3 .59

Device driver 4 .22

Device driver 5 .76

Device driver 6 .63

Device driver 7 .88

Device driver 8 1.12

Device driver 9 .13

Device driver 10 .43

© Davis and Maccherone 17

Results

� For TSP teams, the results as measured by
improved system test defect density are
inconclusive
� The results are the “best in class” for TSP teams

� They are not significantly better than other best in class
teams that are not using AUT.

� The largest set of industry results from 19 case
studies, controlled experiments, simulation, and
artifact analysis shows*
� Productivity decreased by 19% (-27% to 90%)

� Quality improved by 25%

*Some data is based on “perception”

© Davis and Maccherone 18

Lessons Learned

� Almost all serious testing efforts end up extending
the test framework

� Not all tests can be automated

� Create a new test whenever a defect is detected
that escaped the test suite

� Must have testable designs

� Hard to add to legacy

� AUTs result in “better” APIs, help document the
code better, and do seem to help in code
maintenance.

© Davis and Maccherone 19

Planning Considerations

Size estimation

� Rule of thumb: plan to write as much unit test code as production code

Productivity

� Rule of thumb: unit test code is about 4 times faster to write than
production code

� Plan for chunks of time to

� Setup and learn test frameworks

� Integrate AUTs into build system

� Major re-factoring of tests every few iterations

Time-in-phase distribution

� Increase time in code phase

� Decrease time in unit test phase

Code coverage

� Most teams are aiming for 80%

How can we get more empirical than “rules of thumb”? Larry will talk about this next.

© Davis and Maccherone 20

TSP
Measurement Information Model

� Base measures:
� Size, time, defects (, and schedule)

� Derived measures:
� Simple ratios: defects/KLOC, LOC/hr, defect

removal rates, etc.
� Others: A/FR, Defect removal leverage, PQI, etc.

� Indicators/information product:
� CR more efficient than UT at removing defects
� Enough time spent on team inspection
� Will (not) finish by planned completion date

© Davis and Maccherone 21

Current TSP Information Model

� Historically effective
� Encourages culture of review/inspection

� Earned value tracking provides industry best progress
feedback

� Adaptable to
� Changes in process definition

� Product as well as non-product activities

� Limitations with respect to emerging technology
� Time spent writing automated unit tests should not be

considered “failure”

� Awkward or even misleading cost of quality formula
� No ROI for future benefit

© Davis and Maccherone 22

Unanswered Questions

� Project questions:
� Cost/benefit of automated unit testing?
� Effectiveness (or ineffectiveness) of automated code analysis?

� How much automated unit testing and analysis to do?

� Value of refactoring?

� Reduce other appraisal activities in the presence of these? How
much?

� Process questions:
� New base measures needed? Or are simple bucketing and

tagging changes sufficient?

� What derived measures and indicators are necessary?

� Do these proposed changes accommodate other new practices
and technologies that are on the horizon?

© Davis and Maccherone 23

Delayed Gratification

� Currently cost/benefit in TSP is only hinted at
� Defects removed per time exerted in the current

iteration

� A true ROI for defect prevention activities would
compare two effort flows the same way we’d
compare two cash flows in Economics 101.

Now

200

500

‘08 ‘09 ‘10

200 200

Now

Vs.

© Davis and Maccherone 24

Comparing Effort Flows

Version 1

Design

Reviews

Prod. Code

Test Code

Unit test

Other

Version 2 Version N...

Version 1 Version 2 Version N...
Vs.

© Davis and Maccherone 25

Relationships

Time invested in this Should save time in
this

Design Code

Design Fixing future defects

Review/inspection activities Fixing future defects

Writing automated unit tests Fixing future defects

Creating custom analysis rules Fixing future defects

Writing automated unit tests

and custom analysis rules

Refactoring

���� The Agile message

Refactoring Adding new features

© Davis and Maccherone 26

How to Conduct Experiments?

1. Controlled experiment(s)
� Have two groups (or more) develop the same thing in

iterations. One with AUT, one without.

2. Longitudinally in a single project
� Treat different parts of the code (but of same type) as

separate efforts

� Track effort in future iterations modifying or consuming
those parts

� This will require a very high level of traceability and
automated data gathering from SCM, IDE, Build tools,
etc.

© Davis and Maccherone 27

Questions We Hope to Answer

� Production:Test code ratio:
� What is the “ideal” ratio? 3:1? 1:1?

� Does it matter what type of part you are building?

� How do “time value of effort” calculations change the
picture?

� Is “ideal” different when Quality (as opposed to long-
term cost/benefit) is of paramount concern?

� Coverage:
� What is ideal coverage? 80%? Higher?

� What characteristics indicate the need for higher or
lower coverage?

© Davis and Maccherone 28

Looking Ahead

� Automated gathering of data from IDEs, build tools,
unit test output, analysis tool output

� Configurable tagging and historical relationship
calculation

� Perspectives
� Q: Do you count test writing as “Coding” or as “Testing” or

what?
� A: Count it as “Coding” if the current iteration is for writing

tests. Count it as a Cost of Quality activity from the
perspective of the entire project.

� Easy to use tools for teams to do flexible ex-post-
facto analysis

© Davis and Maccherone 29

References

1. T. Bhat and N. Nagappan, "Evaluating the efficacy
of test-driven development: industrial case studies"
ACM/IEEE international symposium on empirical
software engineering, Rio de Janeiro, Brazil, 2006,
pp. 356 – 363

2. Sanchez, Williams, and Maximilien, “On the
Sustained Use of a Test-Driven Development
Practice at IBM”, Agile 2007 Conference,
Washington, D.C.

3. R. Jeffries and G. Melnik, “TDD: The Art of
Fearless Programming”, IEEE Software, May/June
2007

© Davis and Maccherone 30

Contact

Noopur Davis

� nd@sei.cmu.edu

� ndavis@davissys.com

Larry Maccherone

� LMaccherone@cmu.edu

� Larry@Maccherone.com

