Ogden Air Logistics Center

Making TSP Work at CMMI Level 5

David Webb – Hill Air Force Base Jim Van Buren – Draper Laboratory Dr. Eugene Miluk – SEI

TSP Symposium 2007

TSP Symposium 2007

Present a Case Study

- A CMMI® Level 5 Assessment
- Focusing on a Team Software Process (TSP)SM Team
- Provide Guidance for TSP Teams
 - Does TSP Guarantee CMMI Level 5?
 - How can TSP be used to support a CMMI Level 5 Assessment?
 - What did this team do to meet CMMI Level 5 objectives?

The audience should be familiar with the concepts of the TSP and the Personal Software Process (PSP)SM

[®]CMMI is a Registered Trademark of Carnegie Mellon University

SMTeam Software Process, TSP, Personal Software Process, and PSP are Service Marks of Carnegie Mellon University

- In the late 1980s and early 1990s the SEI developed the Capability Maturity Model (CMM) which captured organizational best practices for software development
- SEI Fellow, Watts Humphrey, decided to apply the underlying principles of the CMM to the software development practices of a single developer
- The result of this effort was the Personal Software Process (PSP), designed to be a <u>CMM level 5</u> process for individual software developers
- Humphrey then developed the Team Software Process (TSP) for the smallest operational unit in most organizations, the project team. TSP was designed to be a <u>CMM level 5</u> process for project teams.

Source: TSP and CMMI: A Brief History (http://www.sei.cmu.edu/tsp/history.html)

SEI's TSP to CMMI Mapping – 1

OGDEN AIR LOGISTICS CENTER

Source: James McHale and Daniel S. Wall Mapping TSP to CMMI (CMU/SEI-2004-TR-014)

TSP Symposium 2007

SEI's TSP to CMMI Mapping – 2

OGDEN AIR LOGISTICS CENTER

TSP Symposium 2007

SEI's TSP to CMMI Mapping – 3

OGDEN AIR LOGISTICS CENTER

TSP Symposium 2007

Large Cadre of Talented People:

- 700+ Civilian Personnel
- Average over 10 years technical experience
- Growing by ~50 PEs/Year

309 SMXG Process Improvement History

Focused on process improvement since 1991

- Assessed in 1998 to be Capability Maturity Model (CMM) - Level 5
- Earned AS9100 & ISO 9001 Registration in 2006
- Assessed in 2006 to be Capability Maturity Model Integration (CMMI) – Level 5

Focus Project: GTACS

OGDEN AIR LOGISTICS CENTER

CMMI Level 5

Focus Project for CMMI Assessment

CMMI: Capability Maturity Model Integration improves the organization's capability; management focus

TSP: Team Software Process improves team performance; team and product focus

PSP: Personal Software Process improves individual skills and discipline; personal focus

Ground Theater Air Control System (GTACS)

Modular Control Equipment (MCE) & Tactical Air Operations Modules (TAOM) create a ground-based computer network systems that coordinate radar and communications data signals. GTACS modules coordinate ground, airborne, and naval elements to plan, execute, and evaluate joint operations.

GTACS MCE Software Updates

 309 SMXG provides Module Control Equipment (MCE) software updates for:

- New Features:
 - Updates to MIL-STD Communications Protocols
 - User-Initiated Switch
 Action & Display Changes
 - Interfaces with New Weapons and Systems
- Defect Corrections:
 - Software Development Defects
 - Government Acceptance Test Defects
 - Field-discovered Problem Reports

GTACS Uses The Process Dashboard Tool to:

- support individuals and the team in using highmaturity processes for software development
- simplify the work involved in following a high-maturity process
- help individuals to follow a defined process and collect metrics data
- improve the accuracy of collected metrics

GTACS & TSP: Productivity

OGDEN AIR LOGISTICS CENTER

- TSP Schedule Improvement
 - Zero missed deadlines
 - Zero "returned" workload
- TSP Quality Improvement
 - Zero integration defects
 - Zero integration rework

- TSP Productivity Improvement
 - 417% increase in SLOC/Hour!
 - Completely recouped TSP investment cost after about 1 month!

TSP Symposium 2007

GTACS & TSP: Quality

OGDEN AIR LOGISTICS CENTER

Sys Test

Int Test

TSP Promotes High Quality Processes

- Personal Reviews
- Team Peer Reviews
- Integrated Systems
 Engineering Peer Reviews
- GTACS Team Achieves
 99.4% Defect Removal
 Before Release

Defect Removal Profile

Compile

Code Inspect

Test

BE AMERICA'S BEST

Design Review Design Inspect Code Review

50 40

^oroduct Life

Accept Test

- 1998: Assessed SW-CMM Level 5
- 2001: Evaluated Moving to CMMI vs Another SW-CMM Assessment
- 2003: Began CMMI Transition
- 2005: Performed Two SCAMPI B's on Potential Focus Projects
- 2006: Performed SCAMPI A on Focus and "Depth" Projects

SCAMPI C: provides a wide range of options, including characterization of planned approaches to process implementation according to a scale defined by the user

SCAMPI B: provides options in model scope and organizational scope, but characterization of practices is performed on implemented practices

SCAMPI A: Is the most rigorous method, and is the only method that can result in ratings

SCAMPI B #1 Results – 1 GTACS Project Only*

Risk Level	Total Risks	tal Risks Process Risks		Document	Non-Team	
			Risks	Risks	Risks	
High	19	1	17	0	1	
Medium	67	15	18	6	28	
Low*	0	0	0	0	0	
Total	86	16	35	6	29	

*Low risks were not categorized in the first SCAMPI B

Definitions

- Risk Level
 - the risk that the final SCAMPI A Assessment will have a negative finding
- Process Risks
 - the GTACS team had no process in place
- Artifact Risks
 - the assessment team found insufficient artifacts to assess

- Document Risks
 - GTACS process documentation needed to be updated
- Non-Team Risks
 - the responsibility of a team other than the TSP team, such as the group's SEPG or the GTACS CM Team

SCAMPI B #1 Actions

OGDEN AIR LOGISTICS CENTER

- Addressed Causal Analysis & Resolution (CAR) Findings (High Risk)
 - Focused on executing CAR process
 - Gathered data / created CAR artifacts
- Process Framework & Documentation
 - Identified missing elements (Requirements Management, Project Planning, Project Monitoring & Control)
 - Created/Implemented Process Improvement Proposals
- Team Resources
 - No special resources devoted to CMMI
 - Work was done by the team and led by the team's process manager (a standard TSP role)

SCAMPI B #2 Results – 1 GTACS Project Only*

SCAMPI B #2 Results – 2 GTACS Project Only

OGDEN AIR LOGISTICS CENTER

Risk Level	Total Risks	Process Risks	Artifact	Document	Non-Team	
			Risks	Risks	Risks	
High	23	0	8	0	15	
Medium	38	7	6	17	8	
Low	22	0	1	11	10	
Total	83	7	15	28	33	

- Decision Analysis & Resolution (DAR):
 - **7** High, Artifact
 - 3 Medium, Artifact
 - 1 Low, Document
- Organizational Process Performance (OPP):
 - 13 High, Non-Team
 - 1 Medium, Non-Team
 - 1 Low, Non-Team

Training:

- I High, Artifact
- 2 High, Non-Team
- 12 Medium, Document
- 1 Low, Artifact
- 1 Low, Non-Team
- Others with GTACS responsibility:
 - 18 Medium 17 Low
 - Spread throughout model
 - QPM, CAR, and Risk Management required process changes

Scope

- During 1st SCAMPI B, DAR was focused at the organizational level
- This proved to be insufficient to produce the necessary artifacts
- An Organization level DAR process was developed by representatives throughout the 309th
- The new DAR process became a requirement for GTACS
- Timing
 - The majority of the time between the first and second SCAMPI B's was spent at the Organizational level
 - GTACS defined its process, conducted training, but did not execute the process prior to the second SCAMPI B

SEI's Report: All DAR Specific Practices "Partially Addressed"
 Underestimates Risk and Effort for TSP Teams

- TSP is consistent with DAR philosophy but is nowhere near sufficient
- TSP as it now stands is insufficient to pass a CMMI assessment
- TSP DAR procedure is required to produce proper and meaningful artifacts

- Institutionalization
 - The 309th provided DAR training for GTACS
 - GTACS adapted the Organization level DAR process for use on their team
 - Determined to use the TSP approach
 - Scripts
 - Forms
- Adaptation
 - GTACS created a draft operational process in the form of a TSP script
 - The DAR script was then used to analyze several different types of issues
 - product design
 - tool selection
 - process

DAR TSP Script for GTACS

OGDEN AIR LOGISTICS CENTER

DAR Process Script

Purpose	To guide the team in making formal decisions.
Entry	Either
Criteria	- A Critical measurement exceeds the thresholds defined in the GTACS DAR threshold matrix
	or
	- A critical decision needing a formal analysis is identified.
General	- Critical decisions are ones that have potential impact on the project or project team. Issues with
	multiple alternative approaches and multiple evaluation criteria are particularly well suited for
	formal analysis
Tailoring	- This procedure may be used to make and document other decisions

Step	Activities	Description				
1	Planning	- A POC is assigned				
		• The POC may be self assigned if the POC is responsible for the critical decision				
		• The team lead assigns the POC otherwise				
		The team that will perform the DAR analysis and selection activities (the DAR team) is				
		assigned				
		- The POC completes the Entry section of the MXDE Decision Analysis and Resolution				
l		Coversheet (section I)				

	 The completed MXDE Decision Analysis and Resolution Coversheet Scoring and analysis worksheets CM is notified that the DAR is complete and that the DAR artifacts can be archived to the GTACS data management repository
Exit Criteria	 The MXDE Decision Analysis and Resolution Coversheet is completely filled out The artifacts produced during the DAR activities have been archived in accordance with the GTACS DMP

Note: The entire process script can be found in the Crosstalk article "CMMI Level 5 and the Team Software Process"

GTACS Weaknesses in OPP and QPM

- GTACS data were not analyzed at the sub-process level
- Data analyses did not address an understanding of process variability
- TSP Paradigm is Not Consistent with CMMI Expectations

TSP teams use data for three purposes:

- project planning
- project monitoring and oversight
- process improvement
- TSP fundamentally considers the software development process as a single entity

GTACS Addressed OPP by

- Helping the Organization address Organizational Process Performance requirements by Organizational Subprocess (Process Category)
- Mapping detailed TSP project data to Organizational data structures
- Using Organizational goals to guide data analyses

MXDE Historical Data Worksheet												
Project Name:												
Flight:									1 19 📥	Z R	5	
TPM:									SUGI SOFTE	TUTUT		
Number of PEs:									11114	RETUNIT		
Project Type:								•				
Product Size:		Si	zing Units									
Completion Date:									•			version 0.7
Process Performance Da	ata											1
MXDE Standard Engineering Process	Estimated Effort at Kiekeff	Final Negotiated	Actual Effort at	Estimated Schedule Duration at	Final Negotiated Schedule	Actual Schedule	Defects Injected in	Defects Removed in Peer	Defects Removed in Test	Effort to Remove	Externally Detected	Category % of Total
Planning	KICKOII	Ellori	compression	КІСКОП	Duration	Duration	Category	Review	Event	Defects	Defects	0.0%
Design									1			0.0%
Development									1			0.0%
Test												0.0%
Support												0.0%
Overall	0	0	0	0	0	0	0	0	0	0	0	0.0%
MXDE Process Peformance Objectives												
MXDE Standard			Schedule:	Schedule:		Quality:	Quality:	Quality:		Quality:		
Engineering Process	Cost: CEV%	Cost: CEV%	SEV%	SEV%	Quality:	DDR Peer	DDR Test	DDR	Quality:	Rework%	Productivity	
Category	(KickOff)	(Negotiated)	(Kickoff)	(Negotiated)	DIR	Reviews	Event	Overall	DD	Actual	(Size/Hour)	-
Planning	0.0%	0.0%	0.0%	0.0%	0.00	0%	-		0.00	0%	U	-
Design Development	0.0%	0.0%	0.0%	0.0%	0.00	0%	{		0.00	0%	0	
Teet	0.0%	0.0%	0.0%	0.0%	0.00	μ U% Π%	1		0.00	μ U% D%		
	0.070	0.070	0.070	0.070	0.00	0.0	4	1	L 0.00	0.0	U	
Support	0.0%	n.n%	0.0%	<u></u>	1 0.00	L Π%			1 0.00	l Ω%	n –	
Support Overall	0.0%	0.0%	0.0%	0.0%	0.00	0%	0%	0%	0.00	0%	0	

TSP Symposium 2007

Utilized Existing TSP Data

Earned Value

- For project management, the Projected Completion Date is one of the key items of interest
- •GTACS had more than one year's worth of statistically significant data on Earned Value
- Rework
 - •TSP teams collect a great deal of Defect data, including time spent in the finding and fixing of defects
 - •GTACS defined Rework as the percent of total project time spent finding and fixing defects (consistent with the Organizational definitions)
 - •GTACS had more than one year's worth of statistically significant data on Rework

QPM Solutions – 2

OGDEN AIR LOGISTICS CENTER

TSP Symposium 2007

The Bad News

- The TSP "holistic process" approach is not consistent with CMMI's requirement for quantitatively managing at the subprocess level
 - The TSP and PSP approach is to manage *projects* using measures and metrics
 - The CMMI approach is to manage *processes*
- The "alternate practice" used in CMMI version 1.1 level 5 assessment was to treat each project module (baseline change request) as a complete PSP subprocess
- This approach was adequate at the time
- Since that time, SEI has increased the rigor of high maturity assessments
- Our approach may not pass a CMMI version 1.2 assessment using the recently implemented high maturity assessment standards

TSP Postmortem Process

- Currently calls for a detailed analysis of project and process data, including identification of improvements
- This provides a great deal of support for CAR

TSP Postmortem Lacks CAR "Formality" and "Feedback"

- CAR artifacts not specifically defined nor required
- No examination of data to determine if implemented process improvements really worked
- GTACS Updated the TSP Postmortem Scripts
 - Directly addresses Causal Analysis and Resolution
 - Created a CAR Report
 - Details the data analysis which was performed
 - Identifies any weaknesses discovered
 - Suggests process improvements to address these weaknesses
 - Requires an analysis of previous project improvements

TSP	Postmortem	Script					
Purpo	se	- To gather	r, analyze	, and record phase and	project data		
-		- To analyz	ze project	performance against p	plans and goals		
		- To identi	fy potenti	al areas for improvem	ent		
		- To identi	fy and sul	omit GCARs			
Entry	Criteria	- All plann	ed work f	for the phase has been	completed.		
		- All proje	ct and pro	cess data are available	e		
		- Team Da	shboard v	with data from the phase	se being analyzed		
		- Current	C		The team lead leads the team in an analysis of the team's measure conclusion		
		- Note:	0	Process Causar	The team lead leads the team in an analysis of the team's process capability		
		positio		Analysis	- A discussion is neid of key process capabilities (e.g., estimation accuracy,		
Step	Activities	Descript			productivity, quality) and compared with desired numeric goals		
1	Meeting Roles	Select the			- A determination is made to identify any process capability deficiencies that exist or		
	e	- The lau			if there are process capability improvement opportunities.		
		- The tim			Key process capabilities are analyzed		
		- The rec			Where improvement opportunities are identified		
		insures			Identify process, training, tool, support, or management actions		
		- The Pro			Submit GCARs as required		
2	Dent	Notebo	7	Quality Causal	The quality manager leads the team in an analysis of the team's defect data		
2	Baseline	The support		Analysis	- A determination of which defects to analyze is made through an analysis of:		
3	Plan Evaluation	The plan		5	Pareto charts for the most costly and most common defect types		
5	I lai Evaluation	- actual x			All defect escapes from Unit Test		
4	Quality	The quali			- For those defects and defect types selected:		
	Performance	- quality			Their defect log entries are analyzed to determine root cause		
		- team pe			Where improvement is needed		
1	Planning Data	Provide u			Identify process (e.g. checklist(s) undate) training tool support or		
		- size, rea			management actions		
		- defect,			Submit GCARs as required		
6	Process Causal	The team					
	Analysis	- A uiscuss	sion is hel	d of key process capal	bilities (e.g., estimation accuracy,		
		productivity, quality) and compared with desired numeric goals A determination is made to identify any process conchility deficiencies that avist on					
		I - A deierm	inanon is	made to identity any i	NINCESS CADADULY DEPICIENCIES INTERVISEOF 1		

TSP Symposium 2007

V500A Causal Analysis and Resolution

1 Selecting Defects for Problem Analysis

During the postmortem phase for V500A an analysis of the defect data was performed in an attempt to find ways to improve our process and our product quality. The focus of the analysis was to find the kind of errors that were the most expensive to correct or perhaps occurred most frequently. We also wanted to look at problems that occurred during the V500A development phase that were possibly not logged as defects but cost the team in terms of schedule.

1.1 Most Common Defect

The initial V500 Defect data showed that the most expensive type of defect was type function.

The GTACS defect type of data is defined to be any defect caused by the improper design or implementation of a data element. This type of error also happens to be the most expensive error type logged by our team for errors in the test development phase.

1.1 Defects by Phase

Another metric that was evaluated was the total number of defects injected in a development phase of our process. The Test Development Phase has the most total defects logged.

- **TSP Training Covers Many CMMI Requirements**
 - Personal Software Process Training for Engineers
 - Managing TSP Teams for Managers & Team Leader
 - Addressed the training requirement (SP 2.5) for:
 - Project Planning
 - Project Monitoring & Control
 - Integrated Project Management
 - Process and Product Quality Assurance
 - Measurement & Analysis
 - Causal Analysis & Resolution
 - Verification (partially addressed)

A Training Plan was Developed for the Remaining Process Areas

- TSP Does Not Guarantee CMMI Level 5
- SEI's Mapping of TSP to CMMI is a Good Starting Point
- TSP Teams Should Focus on:
 - Causal Analysis & Resolution
 - Decision Analysis & Resolution
 - Organizational Process Performance
 - Quantitative Project Management
 - Training
- TSP Does Provide All the Data and Discipline Required
- Additional Scripts, Forms and Reports are Needed

TSP Symposium 2007

David R. Webb 309 SMXG 520 Software Maintenance Squadron Hill Air Force Base, Utah 84056 (801) 586-9330 E-mail: david.webb@hill.af.mil

Jim VanBuren Draper Laboratory 517 Software Maintenance Squadron Hill Air Force Base, Utah 84056 (801) 777-7085 E-mail: jim.vanburen@hill.af.mil

Dr. Eugene Miluk Software Engineering Institute Carnegie Mellon University 4500 Fifth Avenue Pittsburgh, PA 15213 (412) 268-5795 E-mail: gem@sei.cmu.edu

Carnegie Mellon Software Engineering Institute