Deploying TSP to a Nation: Early Results from Mexico Software Engineering Institute Carnegie Mellon University Pittsburgh, PA 15213 William R. Nichols September 24, 2008

Background

Results

Lessons Learned

Conclusions

Next Steps

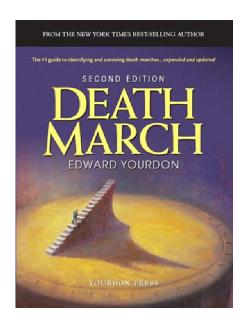
Background

- The Problem
- The Mexican Solution
 - Goals
 - Strategy
 - Challenges
- New Approaches

Results

Lessons Learned

Conclusions


Next Steps

The Software Project Problem

Typical software projects are not successful.

In engineers' opinions, these projects

- Were not achievable from the outset
- Had excessive management pressure
- Required unreasonable overtime
- Were technically frustrating
- Had lots of team conflict
- Operated in a chaotic environment

The Software Quality Problem

Typical software projects are not successful.

- About half of development time and expense involves defect removal.
- Each mistake typically results in one or more product defects.
- Experienced developers typically inject 100 or more defects per 1,000 lines of code (KLOC).

The Mexican Challenge

Goals

- Export \$5 Billion (USD) of software production
- Achieve the average in global spending on IT
- Become the leader in providing Spanish language digital content

Challenges

Scale

- This has never been attempted at a national level.
- Will need a large number of developers and coaches.

Cost

• There is a large number of Small and Medium size Enterprises (SME).

Carnegie Mellon

• It takes time to train teams.

Distance

- The SEI is geographically far from the Mexican teams.
- The SEI coaches have limited Spanish language skills

New Approaches

Training

- Co-teach with Spanish language instructors
- New courses
 - PSP Fundamentals
 - PSP Advanced

New Approaches

Training

- Co-teach with Spanish language instructors
- New courses
 - PSP Fundamentals
 - PSP Advanced

Strategic Partner

- Develop Mexican training capacity
- Mexican instructors now offer
 - PSP Instructor Training
 - TSP Coach Training

New Approaches

Training

- Co-teach with Spanish language instructors
- New courses
 - PSP Fundamentals
 - PSP Advanced

Strategic Partner

- Develop Mexican training capacity
- Mexican instructors now offer
 - PSP Instructor Training
 - TSP Coach Training

Certification

- PSP Engineer
 - Mexico leads the world in certified engineers
- TSP Coach

Background

Results

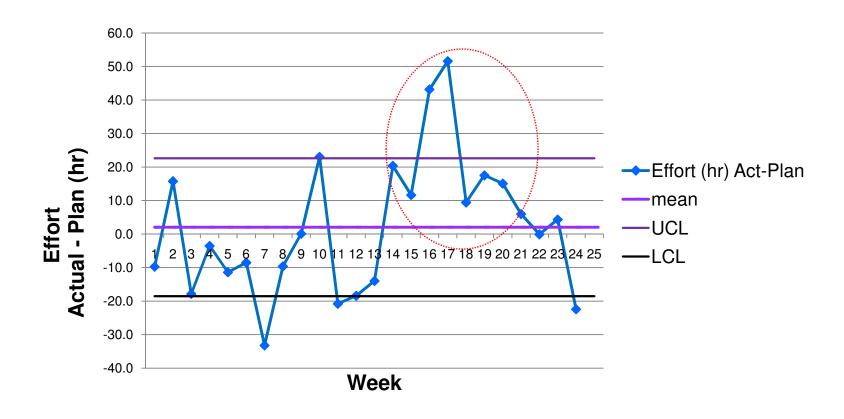
- Team Examples
- Schedule
- Cost
- Quality
- Implementation Timeline
- Perceptions

Lessons Learned

Conclusions

Next Steps

© 2008 Carnegie Mellon University


Team Example I

Challenges and Barriers

- Team of company engineers and contractors
- Resources reassigned
- Team Lead promoted

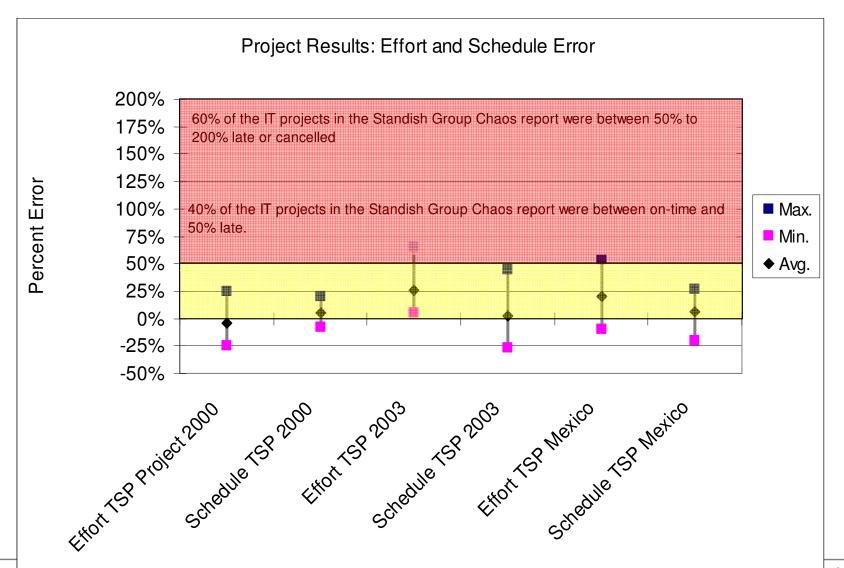
Team Example: Effort Management

Team Example I

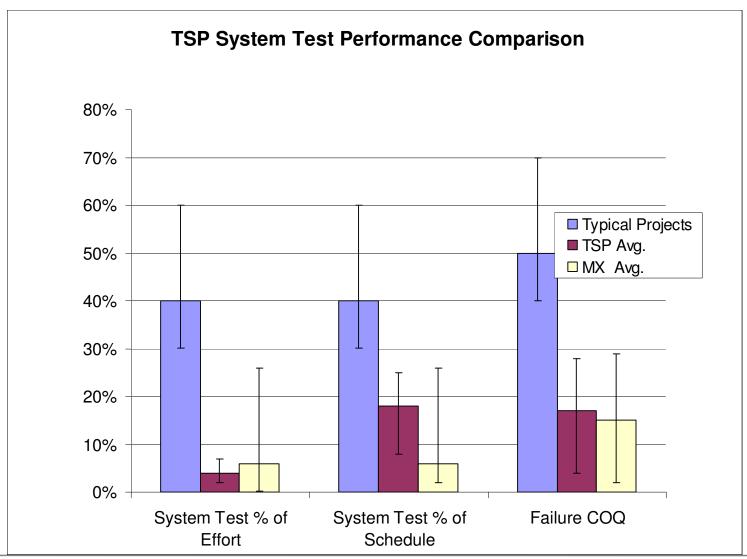
Outcome

- By end of the launch, the team was integrated.
- The team always managed to re-plan.
- This group was by far the most satisfied in the facility.

Background

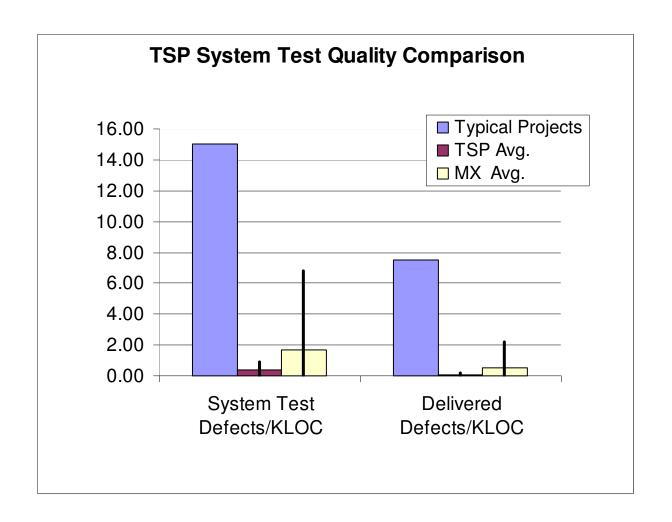

Results

- Team Example
- Overall Results
 - Schedule
 - Cost
 - Quality
 - Perceptions


Lessons Learned Conclusions Next Steps

© 2008 Carnegie Mellon University

Schedule and Effort



Quality

Quality

© 2008 Carnegie Mellon University

Perceptions

What kinds of reactions to using TSP do we expect from team members?

Perceptions

Quotes from team members:

"I'd never used review and inspections before, but now I can see how useful they are. The product quality is higher."

"I personally prefer to work in a TSP team, because I have tried many methods, philosophies and recommendations, and all of them, this framework I have personally validate that it really works, and that gives excellent results because it is based on sound science. "

"We presented the results of the first pilot to management and they were impressed because the level of data and information the TSP/PSP team was able to provide."

Background

Results

Lessons Learned

Conclusions

Next Steps

Lessons Learned

What's different about TSP results from Mexico?

Nothing! Projects come in on time, on budget, with high quality.

What's different about implementing TSP?

- Scaling to roll out to a nation is different than for a company.
- Need native Spanish speaking instructors and coaches.
- Not much initial resistance from developers.
- Many young and inexperienced developers need coaching attention.
- Difficult to get enough time for training.

How do the new approaches work?

- Teams taking PSP Fundamentals
 - Get to launch more quickly
 - Take good data and get good results
 - Don't achieve the highest quality levels

Implementation Times

Task	Q1 (Q2	Q3	Q4	Q5	Q6	
Hold executive training/kickoff session	X						
Select participants, develop schedule	x						
Train managers, engineers, instructors	X	X	X				
Conduct TSP pilots			x -			<u> </u>	
Train transition agents			x =			— x	
Plan and initiate roll-out						x —	—

Using Fundamentals, the record launch is 9 days after beginning training!

Background

Results

Lessons Learned

Next Steps

Conclusions

TSP it works!

We are satisfying the strategic objectives

- Promote software exports.
- Develop human capital.
- Achieve international standards in process capability.

Implementation

- Fundamentals accelerates TSP and project startup.
- National roll out requires a large support structure.
- We can change the world:
 - One country at a time!
 - One company at a time!
 - One project at a time!
 - One developer at a time!

© 2008 Carnegie Mellon University

Background

Results

Lessons Learned

Conclusions

Next Steps

Next Steps

Each of us has a responsibility!

- Engineers: Continue to do your best work.
- Early Adopters and Early Majority:
 - Tell others about your success.
- Executives
 - Don't hesitate; do it!
 - Provide the training.
 - Provide the resources.
- Educators
 - Learn TSP and PSP.
 - Teach students disciplined methods.
- SEI
 - Develop the links between TSP and CMMI.
 - Certify TSP organizations

© 2008 Carnegie Mellon University

Contact Information

William R. Nichols

Sr. Member of the Technical Staff

SEPM/TSP

Telephone: +1 412-268-1727

Email: wrn@sei.cmu.edu

U.S. mail:

Software Engineering Institute

4500 Fifth Avenue

Pittsburgh, PA 15213-2612

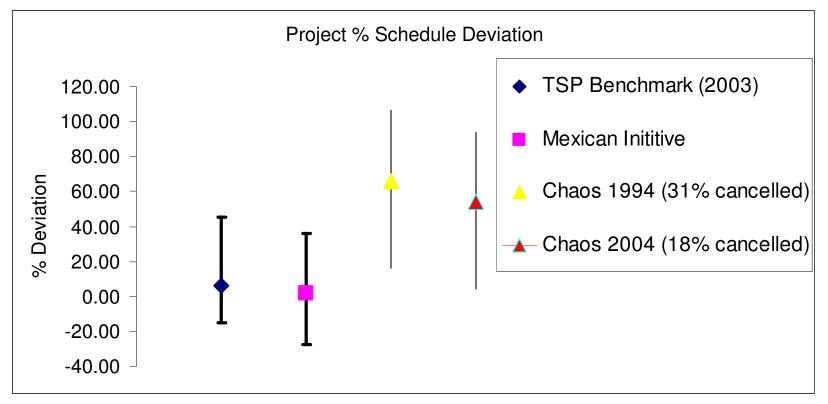
USA

World Wide Web:

www.sei.cmu.edu/tsp www.sei.cmu.edu/psp

Customer Relations

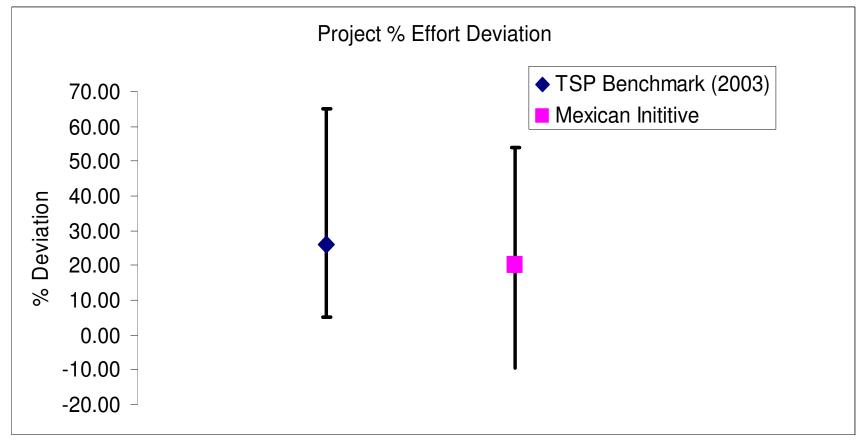
Email: customer-


relations@sei.cmu.edu

Telephone: +1 412-268-5800

SEI Phone: +1 412-268-5800

SEI Fax: +1 412-268-6257


Schedule

TSP variation use data range

Chaos has no lower bound data, upper bound at 75%

Effort

TSP variation use data range Chaos does not report effort

Quality

Measure (TSP)	TSP Benchmark Project Average	Range	Mexican initive Project Average	Range	Typical Project Average
System test defects (defects/KLOC)	0.4	0 to 0.9	1.7	0.0 to 6.8	15
Delivered defects (defects/KLOC)	0.06	0 to 0.2	0.5	0.0 to 2.2	7.5
System test effort (% of total effort)	4%	2% to 7%	5.93%	0.25% to 26.2%	40%
System test schedule (% of total duration)	18%	8% to 25%	6.20%	2.1% to 26.2%	40%
Duration of system test (days/KLOC)	0.50%	0.2% to 0.8%	5.40%	0.4% to 9.5%	NA
Failure COQ	17%	4% to 38%	15.20%	1.6 to 29.4	50%

© 2008 Carnegie Mellon University

The Software Problem

Typical software projects are not successful.

- About half of development time and expense involves defect removal.
- Each mistake typically results in one or more product defects.
- Experienced developers typically inject 100 or more defects per 1,000 lines of code (KLOC).

Carnegie Mellon