
TSP Secure

Software Engineering Institute

© 2008 Carnegie Mellon University

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

Noopur Davis, Philip L. Miller, William R.
Nichols, and Robert C. Seacord

23 September 2009

Outline

� Initiative in a nutshell

� Assumptions about the audience

� Vulnerability and exploits

� Advances in secure coding

2

TSP Symposium: Davis et al, 23 Sept. 2008

© 2009 Carnegie Mellon University

� Advances in secure coding

� Why TSP

� Prior work

� Integration

� Next steps

Initiative in a nutshell-1

ASPASP

CERTCERT

Software
Assurance
Software

Assurance

Secure CodingSecure Coding

Vulnerability
Analysis

Vulnerability
Analysis

Function
Extraction
Function

Extraction
Secure

Systems
Secure

Systems

Organizational
Security

Organizational
Security

3

TSP Symposium: Davis et al, 23 Sept. 2008

© 2009 Carnegie Mellon University

SEISEI

Coordinated
Response

Coordinated
Response

TrainingTraining

RTSSRTSS

SEPMSEPM

CMMICMMI

SEMASEMA

TSPTSP

Initiative in a nutshell-2

Objective

Build software that is free
from known vulnerabilities;
vulnerabilities that – if
exploited – enable a
determined adversary to

Method

Build software correctly in the
first place.

… for all the usual reasons
only more so.

4

TSP Symposium: Davis et al, 23 Sept. 2008

© 2009 Carnegie Mellon University

determined adversary to
violate security policies.
Examples include

• running arbitrary code

• accessing sensitive
information

• denying services to
legitimate users

only more so.

Assumptions about the audience

� Have good general TSP knowledge

� Are aware of software exploitation

� May have few details

� May be out of date

5

TSP Symposium: Davis et al, 23 Sept. 2008

© 2009 Carnegie Mellon University

� May be out of date

� Know little about prior TSP-Secure work

Secure Programming is a Challenge

The C Standard defines undefined behavior as:

Behavior, upon use of a nonportable or erroneous

program construct or of erroneous data, for which the

standard imposes no requirements. An example of

undefined behavior is the behavior on integer

overflow.

6

overflow.

Undefined Behaviors in C

Undefined behaviors are identified in the standard:

• If a “shall” or “shall not” requirement is violated, and that requirement
appears outside of a constraint, the behavior is undefined.

• Undefined behavior is otherwise indicated in this International
Standard by the words “undefined behavior”

• by the omission of any explicit definition of behavior.

There is no difference in emphasis among these three; they all

7

There is no difference in emphasis among these three; they all

describe “behavior that is undefined”.

C99 Annex J.2, “Undefined behavior,” contains a list of explicit

undefined behaviors in C99.

Undefined Behaviors in C

Behaviors are classified as “undefined” by the standards

committees to:

• give the implementer license not to catch certain program errors that
are difficult to diagnose;

• avoid defining obscure corner cases which would favor one
implementation strategy over another;

• identify areas of possible conforming language extension: the

8

• identify areas of possible conforming language extension: the
implementer may augment the language by providing a definition of
the officially undefined behavior.

Implementations may

• ignore undefined behavior completely with unpredictable results

• behave in a documented manner characteristic of the environment
(with or without issuing a diagnostic)

• terminate a translation or execution (with issuing a diagnostic).

Fun With Integers

char x, y;

x = -128;

y = -x;

if (x == y) puts("1");

Lesson: Process must be
supplemented with a strong
fundamental knowledge of the
language and environment

9

if (x == y) puts("1");

if ((x - y) == 0) puts("2");

if ((x + y) == 2 * x) puts("3");

if (((char)(-x) + x) != 0) puts("4");

if (x != -y) puts("5");

Integer operations that may result in overflow and
undefined behavior

Op Overflow Op Overflow Op Overflow

+ � *= � &

- � /= � |

* � %= � ^

/ � <<= � ~

10

/ � <<= � ~

% � >>= � !

++ � &= un +

-- � |= un - �

= ^= <

+= � << � >

-= � >> � etc.

Integer Overflow Vulnerabilities

In 2007, MITRE reported that integer overflow, barely

in the top 10 overall in the years preceding the report,

was the number two issue as reported in operating

system (OS) vendor advisories (after buffer overflow,

which may also be caused by integral security

issues).

11

issues).

Advances in Secure Coding

University courses
• CMU
• Purdue
• University of Florida
• Santa Clara University
• St. John Fisher College

SEI Secure
Coding Course

Licensed to:
• Computer Associates
• Siemens
• SANS

Adoption by Analyzer

Tool Test Suite

Secure Design
Patterns

Influence International
Standard Bodies

B
re

a
d

th
 o

f
im

p
a
c
t

12

TSP Symposium: Davis et al, 23 Sept. 2008

© 2009 Carnegie Mellon University

Tools

Application
Conformanc
e Testing

B
re

a
d

th
 o

f
im

p
a
c
t

2003 Time 2010

Adoption by software developers
• Lockheed Martin Aeronautics
• General Atomics

CERT SCALe (Source Code Analysis Lab)

Satisfy demand for source code assessments for both

government and industry organizations

Assess source code

against one or more

secure coding standards.

13

Provided a detailed

report of findings

Assist customers in

developing certifiably

conforming systems

Conformance Testing

Client contacts SCALe

SCALe communicates
requirement

Client provides buildable
software

The use of secure coding standards

defines a set of prescriptive rules and

recommendations to which the source

code can be evaluated for compliance.

14

SCALe selects tool set

SCALe analyzes source
code and generates initial

report

Client repairs software

SCALe issues conformance
tests results and certificate

INT30-C. Provably nonconforming

INT32-C. Conforming

INT31-C. Documented deviation

INT33-C. Provably Conforming

Why TSP?

• Produces nearly defect-free software

• Has frameworks for planning, measurement, and quality

management

• Supports the use of processes and standards
• Planning for quality,

• Tracking and managing the development plan,

15

• Empowers self-directed teams committed to common goals,

and management and mitigation of risks

• Builds developer training into the plan

• Reinforces training with reviews, inspections, and tools

• Has predictive capability

Prior work

• 2002 Microsoft Secure Code

Project

• 8-person software development

team

16

• Created 30 thousand lines of

new and modified code in 7

months

• Resulted in the initial TSP-

Secure

Deliverables from Prior Work

. 2-day TSP-Secure workshop

• Overview of Common Causes of vulnerabilities

• In-Depth look at top causes of vulnerabilities

— Buffer Overflow

— SQL Injection

— Cross-site Scripting

17

— Race Conditions

— Etc..

• Design patterns for vuls

— State machine verification

— Updated DESIGN script

• Secure code inspections

— New REVIEW script

Integration-1

18

Integration-2

19

Integration-3

• Selection of a secure coding standard during requirements

• Train all developers on appropriate secure coding

• Train engineers in source code analysis.

• techniques prior to project launch

• Define a new team role, Security Manager

20

• Specify and script additional pre-launch meetings

• Modify and script existing launch meetings

• Integrate the use of static analysis tools

Next Steps

• Continue the fundamental technical work on integrating

secure coding and TSP

• Pilot the existing package with selected organizations on a

few projects

• Publish results

• Revise TSP-Secure based on outcomes of pilot projects.

21

• Revise TSP-Secure based on outcomes of pilot projects.

Contact Information

Philip Miller

Sr. Member of Operational Staff

Program Development and Transition

Telephone: +1 412-268-3560

Email: pmiller@sei.cmu.edu

22

TSP Symposium: Davis et al, 23 Sept. 2008

© 2009 Carnegie Mellon University

World Wide Web: www.sei.cmu.edu

U.S. mail:

Software Engineering Institute

4500 Fifth Avenue

Pittsburgh, PA 15213-2612

USA

