

From Scientific Methods to High Maturity with **PSP**sm/**TSP**sm

High Maturity made easy!

James Over Software Engineering Institute E-mail: jwo@sei.cmu.edu

Yoshihiro Akiyama, Ph.D., Kyushu Institute of Technology & Next Process Institute Ltd. E-mail: y.akiiyama@ieee.org

September 17, 2009

Sponsored by the U.S. Department of Defense © 2007 by Carnegie Mellon University

Trademarks and Service Marks

The following are service marks of Carnegie Mellon University.

- Team Software ProcessSM
- TSPSM
- Personal Software ProcessSM
- PSPSM

The following are registered trademarks of Carnegie Mellon University.

- Capability Maturity Model[®] Integration
- CMMI[®]

The Road to High Maturity: PSP/TSP

We all know the characteristics of a high maturity process.

- We can get to high maturity through scientific measures that inform our decisions and our work as the work progresses.
- Let's talk about high maturity and the barriers to getting there.

Quantitative Project Management: CMMI

SG1: The project is quantitatively managed using quality and process-performance objectives.

SP 1.4-1: Manage Project Performance

Monitor the project to determine whether the project's objectives for quality and process performance will be satisfied, and identify corrective action as appropriate.

SG2: The performance of selected sub-processes within the project's defined process is statistically managed.

To implement, use Process Performance Baselines (PPB) and Process Performance Models (PPM).

Purpose of Organizational PPM and PPB

To engineer successfully:

- 1. Define aggressive but achievable objectives.
- 2. Develop a plan with sufficient detail that you can commit to the objectives.
- 3. Measure and control the process variations and the project progress.
- 4. Adjust the plan, as needed, to meet the objectives.

What Makes This Difficult?

You must have measures to estimate, evaluate, and control the quality and process performance of a project.

However, there are difficult challenges to measurement:

- **Sufficiency** of data at planning time
- **Definition** of data and sub-processes to monitor the performance variations
- Accuracy of the data used for analysis and control
- **Context** of the data must be understood
- **Size** of the data set may be insufficient for application of statistical methods

The TSP/PSP Approach

TSP and PSP fill the gap:

- Measurement and planning framework
- Estimation and planning for individuals and teams
- Evaluation of plan and performance
- Monitoring of quality

We can apply these to both individuals and projects.

PSP Principles

The quality of a software system is determined by its worst components.

A developer learns skills for continual process improvement.

- Learn to estimate, measure, track, analyze, and make a detailed plan
- Habitually log data: time, defects, and size
- Understand current performance and performance variation
- Improve the process using the Process Improvement Proposal (PIP)
- Establish quality before testing

PSP – The Planning Framework

Size Estimation Dilemma in Project Planning

Early in a project, very little information is available for estimating.

Accurate effort estimates are needed to make accurate plans and commitments.

The Proxy Based Estimating (PROBE) Method makes accurate, early estimation possible.

PSP PROBE Method: PROXY Size Metric

Early project challenge: no precise sizes identified for parts to be developed.

Fuzzy logic helps to specify the size for each type of object: VS, S, M, L, VL.

Relative Size Metric

	C++ Object Size in LOC per Method						
	Category	VS	S	М	L	VL	
>	Calc	2.34	5.13	11.25	24.66	54.04	
	Data	2.6	4.79	8.84	16.31	30.09	
	I/O	9.01	12.06	16.15	21.62	28.93	
	Logic	7.55	10.98	15.98	23.25	33.83	
	Set-up	3.88	5.04	6.56	8.53	11.09	
	Text	3.75	8	17.07	36.41	77.66	

PSP PROBE Method: PROXY Size Estimate

				Estimated Size	Actual Size
NEW OBJECTS:	TYPE	METHODS	REL SIZE	LOC *	LOC [*]
Data_ReadIn	10	1	L	21.6	26
Compute_rxy, b0, b1	C		<u>L</u>	24.7	24 '
Compute_Predict_Int_(calc_yk)					
Significance test					
Compute_txy(calc_txy)	C	1	M	11.3	12
Compute_pxy	C	1	M	11.3	5
Compute_calc_tail	C	1	\$	5.1	1
Compute_2	C	1	M	11.3	19
(NO) subtotal from page 2	Variatio	ne at olome	entary love	0.0	0
TOTAL NEW OBJECTS (NO)	balanc	e out at the	total level	85.2	87

C++ Object Size in LOC per Method							
Category	VS	S	Μ	L	VL		
Calc	2.34	5.13	11.25	24.66	54.04		
Data	2.6	4.79	8.84	16.31	30.09		
I/O	9.01	12.06	16.15	21.62	28.93		
Logic	7.55	10.98	15.98	23.25	33.83		
Set-up	3.88	5.04	6.56	8.53	11.09		
Text	3.75	8	17.07	36.41	77.66		

Actual

Planned

PROBE Method: PPMs on Size and Time

Using Correlation between "Estmate" and "Actual" 70% Prediction Interval "Size range" "Time range"

PPB and PSP Prediction Interval

		Size estima	ate Size	Time
Estimated Object LOC:		E = BA+NO+M	254.44	
Regression Parameter:		B ₀	19.89	202.31
Regression Parameter:		B ₁	0.87	4.28
Estimated Nr Regressi	on on Size Data	$N = B_0 + B_1 * E$	240.3	
Estimated Total LOC:		T = N + B - D - M + R	621.3	Obiectives
Estimated Total New Reu	ise (sum of * LOC):		121.66	
Estimated To Regressi	on on Time Data	Time = $B_0 + B_1 * E$		1290.3
Prediction Range:		Range	19.9	254.6
Upper Prediction Interval:	Predictior	UPI = N + Range	260.3	1544.9
Lower Prediction Interval:	Interva	LPI = N - Range	220.4	1035.6
Prediction Interval Percen	nt		70%	70%
Method Selected	Process Perform	mance Range	Α	Α
R^2	(Baselines) for t	this project	0.98	0.89

→ PROBE Method helps agile planning with accuracy!

TSP Principles

Use a self-directed team to manage knowledge work.

- Knowledge work must be managed by the team and individuals who actually do the work.
- The TSP launch process creates a self-directed team.
- A detailed plan is developed before committing objectives to management and the customer.
- Team management is accomplished through TSP weekly meetings and management reporting.

TSP Launch Process

Ref. SEI Course: "Leading a Development Team"

Project Level Data Decomposed to and Reaggregated from Individual Data in TSP

© 2007 Carnegie Mellon University

18

TSP Derived Measures for Subprocesses Generated from the Team Data in Real Time

TSP WEEK – Weekly Progress Status: Variance in Task Hour Goal and Project End Date

TSP WEEK – Weekly Progress Status: Variance in Schedule Hours

			Plan /
Weekly Data	Plan	Actual	Actual
Schedule hours for this week	99.0	61.6	1.61
Schedule hours this cycle to date	441.8	318.7	1.39
Earned value for this week			
Earned value this cycle to date	26.8	22.0	1.22
To-date hours for tasks completed	338.7	286.4	1.18
To-date average hours per week	63.1	45.5	1.39
EV per completed task hour to date	0.065		
Week			
61.6 hours worked for this week, wh	hich is 61%	b less than t	the plan –

Cycle

318.7 hours worked in total, which is 39% less than the plan

TSP WEEK – Weekly Progress Status: Variance in Weekly Completed Tasks

		Plan /
Plan	Actual	Actual
0.0.0	61.6	1.61
441.8	318.7	4.30
6.1	4.5	1.36
26.8	22.0	1.22*
338.7	286.4	
63.1	45.5	1.39
0.065		
	Plan 99.0 441.8 6.1 26.8 338.7 63.1 0.065	PlanActual99.061.6441.8318.76.14.526.822.0338.7286.463.145.50.0650.077

Week

36% under to the plan for this week

Cycle

22% under to the plan for this cycle

TSP WEEK – Weekly Progress Status: Variance in Accuracy of Estimate

		Plan /
Plan	Actual	Actual
99.0	61.6	
441.8	318.7	<u>, 1</u>
	11081081001081091091091091091091091091091091091091091	
338.7	286.4	<mark>1.18</mark> ←
63.1	45.5	<mark>1.39</mark> ←
0.065	0.077	
	Plan 99.0 441.8 6.1 26.8 338.7 63.1 0.065	PlanActual99.061.6441.8318.76.14.526.822.0338.7286.463.145.50.0650.077

Accuracy on Task Hours Estimate

18% under estimate of Task Hours

Accuracy on Schedule Hours Estimate

39% under estimate of Task Available Hours per Week

TSP WEEK – Weekly Progress Status: Variance in Progress

Question: When will this project complete?

			Plan /
Weekly Data	Plan	Actual	Actual
Schedule hours for this week	99.0	64.6	4.64
Schedule hours this cycle to date	441.8	318.7	1.39
Earned value for this week		4.5	1.30
Earned value this cycle to date	26.8	22.0	1.22
To-date hours for tasks completed	338.7	286.4	1.18
To-date average hours per week		45.5	1.39
EV per completed task hour to date	0.065	0.077	an oo ah

Schedule Growth = 1.39/1.18=1.17 Net 17% growth expected

Quantitative Management in TSP

TSP team strives to manage their planned schedule using the following:

- Workload growth rate
- %Task hours added to the baseline
- Review rate
- Defect injection and removal rate
- Process and phase yield, etc.

TSP Quality Profile

The Quality Profile and Process Quality Index (PQI) are useful tools for quantitative management, but they must be used carefully.

Example:

- 1. An excellent PSP engineer was assigned to develop the six components, in the example below.
- 2. Only one defect was reported in the IT phase.
- 3. Component1-1 and Component1-2 are closely related.
- 4. TSP planning and quality parameters were used for the first time.

TSP Quality Profile for Component

PQI is given by multiplication of the five indexes.

Ref. A Self-Improvement Process for Software Engineers, Addison Wesley 2006

The Selected Six Components

PQI vs. Post-development Defects

Reference: Watts Humphrey, Winning with Software, Addison Wesley, 2001

c-Control Chart to Determine Defect-Risk Component

Does a High PQI Mean the Component Is Really Good?

Reasons for a defective but high PQI component:

- Defects are present but not found during compile and unit test.
- Half of development work time is spent in ineffective review.
- Design and code progresses with missing components that are identified in later phases.
- Defect may not be recorded, etc.

Proposal: An Experience-based Rule to Identify a Defect-risk Component with a High PQI Value

- 1. Compare "time in phase, actual%" for similar components that have been worked by a PSP engineer.
- Identify a component that shows a different pattern in "time in phase, actual %" distribution, especially for later phases. This may be considered a defect-risk component.
- 3. Group the components that are closely related to the defect-risk component. Each component in the group may be a defect-risk even if it has a high PQI value.

"Time in phase, actual%" Analysis of the Six Components

- 1. Component1-2 is a defect-risk component.
- 2. If Component1-1 and Component1-2 are *closely related*, the component1-1 may be defect-risk.

Summary

The CMMI high maturity practices, i.e., the PPM and PPB, are easily implemented in the PSP and TSP.

Project level PPM and PPBs are generated by aggregating individual-level data of time, defect, and size for estimating and quantitative management of a project.

Prediction interval, control chart, and significance are used to present variations in estimating, monitoring, and evaluating respectively and TSP data are used to derive these.

The sub-process must not only be within specification but should be stable. (A high PQI does not necessarily guarantee that the component is defect free.) The stability should be examined by the developers.

Questions?

Thank you for your attention.

Contact information:

James Over Software Engineering Institute Carnegie Mellon University jwo@sei.cmu.edu

Yoshihiro Akiyama, Ph.D. Kyushu Institute of Technology & Next Process Institute Ltd. <u>y.akiyama@ieee.org</u>