
© 2014 Carnegie Mellon University

Why Can’t Johnny Program
Securely?

Session #A9
Wednesday, April 9
9:45 AM – 10:45 AM

Robert C. Seacord
Secure Coding Technical Manager

2

Copyright 2014 Carnegie Mellon University

This material is based upon work funded and supported by the Department of Defense under Contract No. FA8721-05-C-
0003 with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research and
development center.

Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not
necessarily reflect the views of the United States Department of Defense.

References herein to any specific commercial product, process, or service by trade name, trade mark, manufacturer, or
otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by Carnegie Mellon
University or its Software Engineering Institute.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND,
EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF
FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE
MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO
FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

This material has been approved for public release and unlimited distribution except as restricted below.

This material may be reproduced in its entirety, without modification, and freely distributed in written or electronic form without
requesting formal permission. Permission is required for any other use. Requests for permission should be directed to the
Software Engineering Institute at permission@sei.cmu.edu.

Carnegie Mellon® and CERT® are registered marks of Carnegie Mellon University.

DM-0001394

3

What Is Secure Software Development?

Not the same as developing security software, such as
• Firewalls, intrusion detection, encryption
• Protection of the environment within which the software operates

Secure software development is building defect-free software
that can function robustly in its operational production
environment and is resistant to attack.

4

Application Security

5

Most Vulnerabilities Are Caused by
Programming Errors
64% of the vulnerabilities in the National Vulnerability
Database in 2004 were due to programming errors

• 51% of those were due to classic errors like buffer
overflows, cross-site scripting, injection flaws

• Heffley/Meunier (2004): Can Source Code Auditing
Software Identify Common Vulnerabilities and Be Used
to Evaluate Software Security?

Cross-site scripting, SQL injection at top of the
statistics (CVE, Bugtraq) in 2006
“We wouldn’t need so much network security if we
didn’t have such bad software security.”
 —Bruce Schneier

6

Agenda
Education and assessment of programmers in major
software markets
Programming is hard
Limitations of analysis and testing
Use and application of secure coding standards
Conformance testing using SCALe (Source Code
Analysis Laboratory)

7

Software Developer Demand
There are about 18.2 million software developers worldwide;
due to rise to 26.4 million by 2019, a 45% increase*

U.S. leads the world in software developers, with
about 3.6 million.
The U.S. Bureau of Labor Statistics estimates that

• 76,000 software development jobs are added annually
• software developer employment will grow 22% from

2012 to 2022

The Indian IT industry employs nearly 2.75 million
people and added 180,000 new positions in 2013.
By 2018, India will have 5.2 million developers, a
nearly 90% increase.

* Evans Data Corp. in its latest Global Developer Population and Demographic Study

8

Gap in Computer Science Workforce
The U.S. Bureau of Labor Statistics forecasts that during the
period of 2008–2018

– close to 140,000 job openings in computing
fields will be created

– only 50,000 students will receive degrees in
computer science and related areas.

India’s National Association of Software and Service
Companies (NASSCOM) studies indicate that of roughly
400,000 university graduates earning technical degrees in
2006-2007 only 100,000 suitable candidates were found
suitable by Indian Companies for training.

10

Computer Science Education at CMU
The School of Computer Science at Carnegie Mellon
University is undergoing major revisions to its
introductory course sequence.
Major changes include:

• Promoting computational
thinking

• Increasing software reliability
— Safety critical systems

— Security vulnerabilities

• Preparing for a world of parallel computation

11

Secure Coding at CMU
The Computer Science Department at
CMU has offered CS 15-392 “Secure
Programming” as a computer science
elective since 2007.

CMU’s Information Networking Institute
has also offered 14-735 “Secure
Software Engineering” in its Master of
Science in Information Technology
Information Security Track (MSIT-IS).

12

Increasing Capacity
Increased capacity can be addressed, in part, by an increase
in the productivity and efficiency of learners, that is, moving
ever more learners ever more rapidly through course
materials.
This need for throughput is matched by the need for quality.
Students must be able to apply what they have learned and be
able to learn new things.
Effective secure coding requires a balance between

• high-level theory
• detailed programming-language expertise
• the ability to apply both in the context of developing secure software.

13

Leveraged Expertise
Educating software developers properly requires great expertise.
While this expertise does exist, it tends to reside in individuals and
organizations that are isolated from one another.

• These pockets of excellence, effective within their spheres, do not scale to meet the
national demand.

• Even when practitioners do achieve significant improvement in the effectiveness of
their instruction, this success is not shared or systematized.

Just as contemporary models for software development have rejected the
isolated “hero programmer” in favor of a team- and process-driven
engineering approach, current best practices in educational technology and
research in learning science point away from the solo educator.
In the words of Herbert Simon, “Improvement in post-secondary education
will require converting teaching from a ‘solo sport’ to a community based
research activity.”

14

What is CMU’s Open Learning Initiative?

Scientifically-based
online learning
environments
designed to
improve both
quality and
productivity in
higher education

15

Secure Coding Course: Objectives 1

• Recognize the different string types in C
and C++ language programs.

• Select the appropriate byte character
types for a given purpose.

• Identify common string manipulation
errors.

• Explain how vulnerabilities from
common string manipulation errors can
be exploited.

• Identify applicable mitigation strategies,
evaluate candidate mitigation
strategies, and select the most
appropriate mitigation strategy (or
strategies) for a given context.

• Apply mitigation strategies to reduce
the introduction of errors into new code
or repair security flaws in existing code.

• Explain and predict how integer values
are represented for a given
implementation.

• Predict how and when conversions are
performed and describe their pitfalls.

• Select appropriate type for a given
situation.

• Programmatically detect erroneous
conditions for assignment, addition,
subtraction, multiplication, division,
and left and right shift.

• Recognize when implicit conversions
and truncation occur as a result of
assignment.

• Apply mitigation strategies to reduce
introduction of errors into new code or
repair security flaws in existing code.

16

Secure Coding Course: Objectives 2

• Use standard C memory management
functions securely.

• Align memory suitably.
• Explain how vulnerabilities from

common dynamic memory
management errors can be exploited.

• Identify common dynamic memory
management errors.

• Perform C++ memory management
securely.

• Identify common C++ programming
errors when performing dynamic
memory allocation and deallocation.

• Identify common dynamic memory
management errors.

• Define concurrency and it’s
relationship with multithreading and
parallelism.

• Calculate the potential performance
benefits of parallelism in specific
instances.

• Identify common errors in concurrency
implementations.

• Identify common errors and attack
vectors C++ concurrency
programming.

• Apply common approaches for
mitigating risks in C++ concurrency
programming.

• Describe common vulnerabilities that
occur from the incorrect use of
concurrency.

17

Secure Coding Course Interface

Objectives
summarize the

purpose of each
course section.

Search tool
enables

students to
find related
information.

Information is
straightforward,

concise, and
easy to read.

Line numbering
makes code

examples easy
to reference.

Color promotes
visual learning.

Navigation tabs tell students
where they are in the course . . .

. . . where they’ve
been . . .

. . . and what
comes next.

Page navigator
appears at the
top and bottom
of each page.

18

Secure Coding Online Assessments
Learn by Doing and Did I Get This?
activities reinforce information and
help students check their progress.

Each module ends with a
graded final exam.

19

Feedback Loops

Real-time data
collection of student
activity enables
educators to iteratively
refine their courses

20

Assessment
Objective assessment, such as multiple-choice
questions

• provide a cost-effective means for determining examinee
knowledge about areas such as language syntax

• much less successfully assess the ability of an examinee
to create or modify working computer programs.

Performance-based assessment, examinees are
examined for their ability to write software.

• assessments generally take the form of short answer
examinations typically asking examinees to generate
code fragments.

21

Short Answer Examinations
Provide some degree of performance-based
assessment, but have several shortcomings.

• Involve minimal tasks, such as creating a few lines of
code or identifying some performance parameter.

• Cannot evaluate the ability to comprehend and build
upon even a small class library.

• Typically performed without access to any programming
tools, the examinees have no way to test or even
compile their solutions.

• Must be graded manually, limiting the ability to offer the
exam at a reasonable price and at a global scale.

22

Authentic Assessment
Create a testing environment that closely matches
the working environment of software professionals
and asking them to perform tasks typical of those
performed software developers in similar roles.
The Software Developer Examination developed at
CMU examines programmers by asking them to
perform programming tasks using a normal
development environment in a proctored setting and
scoring their coding solutions.

23

Authentic Assessment
Authentic assessment measures the test-takers’ ability to program realistic
problems in a professional programming environment.

The examinee is put in the role of a professional software developer and
has an opportunity to demonstrate skills by building solutions to tasks
defined in the context of real software projects.

24

Agenda
Education and assessment of programmers in major
software markets
Programming is hard
Limitations of analysis and testing
Use and application of secure coding standards
Conformance testing using SCALe (Source Code
Analysis Laboratory)

25

Popular Programming Languages

26

Programming is Hard
Popular programming languages such as C (17.5%),
Objective-C (12%), and C++ (6.3%) have undefined
behaviors which do not need to be diagnosed and
can result in errors and vulnerabilities.
I used to think Java was a “secure”
language, then we wrote this book→
with 744 pages and 156 rules followed by
this book with 304 pages and
75 additional recommendations →

27

Undefined Behaviors
Undefined behaviors are identified in the C Standard:

• If a “shall” or “shall not” requirement is violated, and that
requirement appears outside of a constraint, the
behavior is undefined.

• Undefined behavior is otherwise indicated in this
International Standard by the words “undefined behavior”

• by the omission of any explicit definition of behavior.
There is no difference in emphasis among these
three; they all describe “behavior that is undefined”.
The C Standard Annex J.2, “Undefined behavior,”
contains a list of explicit undefined behaviors in C.

28

Undefined Behaviors
Behaviors are classified as “undefined” by standards
committees to:

• give the implementer license not to catch certain program errors that
are difficult to diagnose;

• avoid defining obscure corner cases which would favor one
implementation strategy over another;

• identify areas of possible conforming language extension: the
implementer may augment the language by providing a definition of
the officially undefined behavior.

Implementations may
• ignore undefined behavior completely with unpredictable results
• behave in a documented manner characteristic of the environment

(with or without issuing a diagnostic)
• terminate a translation or execution (with issuing a diagnostic).

29

Code Example
char *copy(size_t n, const char *c_str) {

 if (n == 0) return NULL;

 char *p = (char *)malloc(n);

 if (p == NULL) return NULL;

 for (int i = 0; i < n; ++i) p[i] = *c_str++;

 return p;

}

 The dynamically allocated buffer
referenced by p overflows for
values of n > INT_MAX

30

Agenda
Education and assessment of programmers in major
software markets
Programming is hard
Limitations of analysis and testing
Use and application of secure coding standards
Conformance testing using SCALe (Source Code
Analysis Laboratory)

31

Defect-removal Efficiency
The percentage of bugs eliminated by software
reviews, inspections and tests. For example:
Total defect reports: 100
Development defects/total defects
= defect removal efficiency 90/100 = 0.9
Defect-removal efficiency: 90%

Jones, C., "Software defect-removal efficiency," Computer , vol.29, no.4, pp.94,95, Apr 1996
doi: 10.1109/2.488361

32

Software Testing
Exhaustive testing (with all possible combinations of inputs or
values for program variables) is impossible.
Some statistics:

• Most forms of testing are below 35% in defect removal efficiency or
remove only about one bug out of three.

• All tests together seldom top 85% in defect removal efficiency.
• About 7% of bug repairs include new bugs.
• About 6% of test cases have bugs of their own.

Software testing can demonstrate the presence of bugs but
cannot demonstrate their absence

• As we find problems and fix them, we raise our confidence that the
software performs as it should

• But we can never guarantee that all bugs have been removed

33

Formal Inspections
Formal inspections have been
measured to top 85% in defect
removal efficiency and have more
than 40 years of empirical data from
thousands of projects.
Inspections also raise testing defect
removal efficiency by more than 5%
for each major test stage.

34

Static Analysis
A static analysis tool analyzes software without
actually executing the software.
Many analyses which could be performed statically
and would produce useful results are, unfortunately,
NP-complete problems.

• the time required to solve the problem using any
currently known algorithm increases quickly as the size
of the problem grows.

• the time required to solve even moderately sized
versions of many of these problems can easily reach into
the billions or trillions of years, using any amount of
computing power available today.

35

Static Analysis
NP-complete problems are often addressed by using
heuristic methods and approximation algorithms.

• static race detection tools provide an approximate
identification.

• static analysis algorithms are prone to false negatives
(vulnerabilities not identified) and false positives
(incorrectly identified vulnerabilities).

Static analysis has a high defect removal efficiency,
frequently topping 65%.

36

Dynamic Analysis
Dynamic analysis tools integrates detection with the
actual program’s execution.
The advantage of this approach is that a real runtime
environment is available to the tool.
Analyzing only the actual execution flow has the
additional benefit of producing fewer false positives
that the programmer must consider.
The main disadvantages of dynamic detection are

• fails to consider execution paths not taken
• significant runtime overhead associated with dynamic

detection

37

Why Can’t Johnny Program Securely?

“Inefficient”, “inexperienced”, “under-educated”, etc.

Random experimentation will eventually produce
code that works under optimal (tested) conditions but
will not produce secure code.

38

Why Can’t Suzie Program Securely?

The reasons for women entering, not entering, or not staying in
the field of computer science have a lot to do with

• environment
• culture
• perception of the field

1) Census Bureau Reports Women's Employment in Science, Tech, Engineering and Math Jobs Slowing as Their Share of
Computer Employment Falls.
2) Carol Frieze, Orit Hazzan, Lenore Blum, and M. Bernardine Dias. 2006. Culture and environment as determinants of
women's participation in computing: revealing the "women-CS fit". SIGCSE Bull. 38, 1 (March 2006), 22-26.
DOI=10.1145/1124706.1121351 http://doi.acm.org/10.1145/1124706.1121351

Women's share in computer occupations declined
to 27% in 2011 after reaching a high of 34% in
19901.
The notion of a gender divide in how men and
women relate to computing is largely a result of
cultural and environmental conditions2.

39

Agenda
Education and assessment of programmers in major
software markets
Programming is hard
Limitations of analysis and testing
Use and application of secure coding standards
Conformance testing using SCALe (Source Code
Analysis Laboratory)

40

CERT Secure Coding Standards
CERT C Secure Coding Standard

• Version 1.0 (C99) published in 2009
• Version 2.0 (C11) published in 2011
• ISO/IEC TS 17961 C Secure Coding Rules

Technical Specification
• Conformance Test Suite

 CERT C++ Secure Coding Standard
• Not completed/not funded

CERT Oracle Secure Coding Standard for Java
• Version 1.0 (Java 7) published in 2011
• Java Secure Coding Guidelines
• Identified Java rules applicable to Android

development
• Planned: Android-specific version designed for the

Android SDK
The CERT Perl Secure Coding Standard

• Version 1.0 under development

Develop
Guidelines

Develop
checkers

Evaluate
checkers by

analyzing
source code

41

The CERT C Coding Standard

Standards
• ISO/IEC TS 17961 C Secure Coding Rules

establishes a baseline set of requirements for
static analysis tools and C language compilers.

• The CERT C Coding Standard was updated for
C11 and compatibility with ISO/IEC TS 17961.

At Cisco, we have adopted the CERT C
Coding Standard as the internal secure
coding standard for all C developers. It is
a core component of our secure
development lifecycle. The coding
standard described in this book breaks
down complex software security topics
into easy to follow rules with excellent
real-world examples. It is an essential
reference for any developer who wishes
to write secure and resilient software in C
and C++.

Edward D. Paradise, VP Engineering,
Threat Response, Intelligence, and
Development, Cisco Systems

42

Rules and Recommendations
Rules and recommendations in the secure coding
standards include

• Concise but not necessarily precise title
• Precise definition of the rule
• Noncompliant code examples or antipatterns in a pink

frame—do not copy and paste into your code
• Compliant solutions in a blue frame that conform with all

rules and can be reused in your code
• Risk Assessment

43

Risk Assessment
Risk assessment is performed using failure mode,
effects, and criticality analysis.

Severity—How serious are the consequences of
the rule being ignored?

Value Meaning Examples of Vulnerability

1 low denial-of-service attack, abnormal
termination

2 medium data integrity violation, uninten-
tional information disclosure

3 high run arbitrary code

Likelihood—How likely is it that a flaw introduced
by ignoring the rule can lead to an exploitable vul-
nerability?

Value Meaning

1 unlikely
2 probable
3 likely

Cost—The cost of mitigating the vulnerability.

Value Meaning Detection Correction

1 high manual manual
2 medium automatic manual
3 low automatic automatic

44

Priorities and Levels

45

Secure Coding Standard for Java

“In the Java world, security is not
viewed as an add-on a feature. It is a
pervasive way of thinking. Those who
forget to think in a secure mindset end
up in trouble. But just because the
facilities are there doesn’t mean that
security is assured automatically. A
set of standard practices has evolved
over the years. The Secure®
Coding® Standard for Java™ is a
compendium of these practices.
These are not theoretical research
papers or product marketing blurbs.
This is all serious, mission-critical,
battle-tested, enterprise-scale stuff.”

—James A. Gosling, Father of the
Java Programming Language

46

Scope
The CERT® Oracle® Secure Coding Standard for JavaTM
focuses on the Java Standard Edition 6 (Java SE 6) Platform
environment and includes rules for secure coding using the
Java programming language and libraries.
The Java Language Specification, third edition [JLS 2005],
prescribes the behavior of the Java programming language
and served as the primary reference for the development of
this standard.
This coding standard also addresses new features of the Java
SE 7 Platform, primarily as alternative compliant solutions to
secure coding problems that exist in both the Java SE 6 and
Java SE 7 platforms.

47

 CERT Perl Secure Coding Standard

Provides a core of well-documented and enforceable coding
rules and recommendations for Perl
Developed specifically for versions 5.12 and later of the Perl
programming language
Contains just over 30 guidelines in eight sections:

• Input Validation and Data Sanitization
• Declarations and Initialization
• Expressions
• Integers
• Strings
• Object-Oriented Programming (OOP)
• File Input and Output
• Miscellaneous

http://www.perl.org/

48

Agenda
Education and assessment of programmers in major
software markets
Undefined behaviors in popular programming
languages
Limitations of analysis and testing
Use and application of secure coding standards
Conformance testing using SCALe (Source Code
Analysis Laboratory)

49

Source Code Analysis Laboratory
Source Code Analysis Laboratory (SCALe)

• Consists of commercial, open source, and experimental analysis
• Is used to analyze various code bases including those from the DoD, energy

delivery systems, medical devices, and more
• Provides value to the customer but is also being instrumented to research

the effectiveness of coding rules and analysis
SCALe customer-focused process:

1. Customer submits source code to CERT for analysis.
2. Source is analyzed in SCALe using various analyzers.
3. Results are analyzed, validated, and summarized.
4. Detailed report of findings is provided to guide repairs.
5. The developer addresses violations and resubmits repaired code.
6. The code is reassessed to ensure all violations have been properly

mitigated.
7. The certification for the product version is published in a registry of

certified systems.

50

Government Demand
SEC. 933 of the National Defense Authorization Act for Fiscal Year 2013 requires
evidence that government software development and maintenance organizations
and contractors are conforming in computer software coding to approved secure
coding standards of the Department during software development, upgrade, and
maintenance activities, including through the use of inspection and appraisals.
The Application Security and Development Security Technical Implementation
Guide (STIG)

• is being specified in the DoD acquisition programs’ Request for Proposals (RFPs).
• provides security guidance for use throughout an application’s development lifecycle.

Section 2.1.5, “Coding Standards,” of the Application Security and Development
STIG identifies the following requirement:
(APP2060.1: CAT II) “The Program Manager will ensure the development team
follows a set of coding standards.”

51

Industry Demand
Conformance with CERT secure coding standards
can represent a significant investment by a software
developer, particularly when it is necessary to refactor or otherwise
modernize existing software systems.
However, it is not always possible for a software developer to
benefit from this investment, because it is not always easy to market
code quality.
A goal of conformance testing is to provide an incentive for industry to
invest in developing conforming systems:

• Perform conformance testing against CERT secure coding standards.
• Verify that a software system conforms with a CERT secure coding

standard.
• Use CERT seal when marketing products.
• Maintain a certificate registry with the certificates of conforming

systems.

52

CERT SCALe Seal 1

Developers of software that has been determined by CERT to
conform to a secure coding standard may use the CERT
SCALe seal to describe the conforming software on the
developer’s website.
The seal must be specifically tied to the software passing
conformance testing and not applied to untested products, the
company, or the organization.
Use of the CERT SCALe seal is contingent upon the
organization entering into a service agreement with Carnegie
Mellon University and upon the software being designated by
CERT as conforming.

53

CERT SCALe Seal 2

Except for patches that meet the following criteria, any
modification of software after it is designated as conforming
voids the conformance designation. Until such software is
retested and determined to be conforming, the new software
cannot be associated with the CERT SCALe seal.
Patches that meet all three of the following criteria do not void
the conformance designation:

• The patch is necessary to fix a vulnerability in the code or is
necessary for the maintenance of the software.

• The patch does not introduce new features or functionality.
• The patch does not introduce a violation of any of the rules in the

secure coding standard to which the software has been determined
to conform.

54

Source Code Analysis Laboratory
Microsoft Simplified Security Development Lifecycle has been instantiated
using CERT tools and methods*.
SCALe supports the following SDL Security Activities:

• Establish Security Requirements
• Create Quality Gates/Bug Bars
• Static Analysis
• Dynamic Analysis
• Fuzz Testing
• Final Security Review

* See www.cert.org/archive/pdf/MS_CERT_SDL.pdf

55

For More Information
Visit CERT® websites:
http://www.cert.org/secure-coding
https://www.securecoding.cert.org

Contact Presenter
Robert C. Seacord
rcs@cert.org

(412) 268-7608

Contact CERT:
Software Engineering Institute

Carnegie Mellon University

4500 Fifth Avenue

Pittsburgh PA 15213-3890

USA

http://www.cert.org/secure-coding/
https://www.securecoding.cert.org/
mailto:rcs@cert.org

	Why Can’t Johnny Program Securely?
	Slide Number 2
	What Is Secure Software Development?
	Application Security
	Most Vulnerabilities Are Caused by Programming Errors
	Agenda
	Software Developer Demand
	Gap in Computer Science Workforce
	Computer Science Education at CMU
	Secure Coding at CMU
	Increasing Capacity
	Leveraged Expertise
	What is CMU’s Open Learning Initiative?
	Secure Coding Course: Objectives 1
	Secure Coding Course: Objectives 2
	Secure Coding Course Interface
	Secure Coding Online Assessments
	Feedback Loops
	Assessment
	Short Answer Examinations
	Authentic Assessment
	Authentic Assessment
	Agenda
	Popular Programming Languages
	Programming is Hard
	Undefined Behaviors
	Undefined Behaviors
	Code Example
	Agenda
	Defect-removal Efficiency
	Software Testing
	Formal Inspections
	Static Analysis
	Static Analysis
	Dynamic Analysis
	Why Can’t Johnny Program Securely?
	Why Can’t Suzie Program Securely?
	Agenda
	CERT Secure Coding Standards
	The CERT C Coding Standard
	Rules and Recommendations
	Risk Assessment
	Priorities and Levels
	Secure Coding Standard for Java
	Scope
	 CERT Perl Secure Coding Standard
	Agenda
	Source Code Analysis Laboratory
	Government Demand
	Industry Demand
	CERT SCALe Seal 1
	CERT SCALe Seal 2
	Source Code Analysis Laboratory
	For More Information

