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Abstract

Malicious and unintentionally insecure Android applications can leak users’ sen-

sitive data. One approach to defending against data leaks is to analyze appli-

cations to detect potential information leaks. This thesis describes a new static

taint analysis for Android that combines and augments the FlowDroid and

Epicc analyses to precisely track both inter-component and intra-component

data flow in a set of Android applications. The analysis takes place in two

phases: given a set of applications, we first determine the data flows enabled

individually by each application and the conditions under which these are pos-

sible; we then build on these results to enumerate the potentially dangerous

data flows enabled by the set of applications as a whole. Our method requires

analysis of the sourcecode or bytecode of each app only once, and results can

be used for analysis of tainted flows possible for any combination of apps. This

analysis can be used to ensure that a set of installed apps meets the user’s data

flow policy requirements. This thesis describes our analysis method, implemen-

tation, and experimental results.
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Chapter 1

Introduction

1.1 Motivation

One billion Android devices (phones and tablets) are projected to be sold in 2014 [1].

Android apps (applications) are distributed using a marketplace model in which developers

publish apps that users can conveniently download and install from app stores. Users can

download apps from the official Google Play store1 and other markets such as the Amazon

Appstore2 for Android. These apps can potentially access a variety of sensitive information,

such as a user’s location, contacts, and the unique device ID (IMEI). Users can install

highly trusted apps such as banking apps and free social networking apps. A significant

concern in this setting is exfiltration of sensitive data, which may violate users’ privacy

and allow undesired tracking of users’ behavior. It has been shown that popular Android

apps leak sensitive information, including location, device ID, phone number, and the SIM

(subscriber identity module) card ICC-ID [2]. In 2010, the SMS Message Spy Pro app

disguised itself as a tip calculator and leaked all SMS messages, call logs, browser history,

and GPS location to a third party [3]. In 2011, the Skype app was discovered to leak

profile and IM information [4], which other apps could read. In 2014, a malicious app that

1https://play.google.com/store/apps
2http://www.amazon.com/mobile-apps/b?node=2350149011
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allows remote access for use of microphones and cameras was found in the official Google

Play store, and a toolkit for making similar apps has been found for sale in underground

forums [5].

Ensuring that apps in the app market are secure is not a trivial undertaking [6]. When

developers upload apps to the Google Play Store, the Google Bouncer [7] app security

analyzer performs a time-limited dynamic analysis on the uploaded apps to detect malicious

behavior [8]. Although this effort is encouraging, it has had limited success [9].

Most mobile computing platforms, including Android, use a permission model to at-

tempt to limit the privileges of apps, including their ability to access and exfiltrate sensi-

tive data. However, existing permission systems fail to prevent sensitive data from being

leaked [2].

Data can be leaked not only by malicious apps but also by legitimate apps if they do

not follow secure coding practices [10]. Additional analysis of data flow is necessary to

determine whether sensitive data remains within expected boundaries and to ensure that

untrusted data does not contaminate trusted data repositories. Such an analysis is often

called taint analysis. This thesis focuses on determining whether data can flow from a

sensitive data source to an undesired data sink. For instance, for a smartphone, sensitive

data sources include the phone’s unique identifier, SMS message store, photos, and apps

that provide services such as banking. Undesired sinks for such data include the network

API, external storage, and other untrusted applications.

Taint analysis can be either static or dynamic. For instance, TaintDroid performs real-

time taint tracking to dynamically detect data leaks [2]. In contrast, FlowDroid performs

a highly precise taint flow static analysis for each component within an Android appli-

cation [11, 12], and Epicc [13] performs a specific kind of flow analysis between Android

components. However, little work is documented on statically analyzing data flows of a

system composed of several applications [14]. Such static analysis is important because

data from a source might reach a sink only after passing through one or more compo-
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nents [15, 16]. Without a multicomponent data flow analysis, malicious apps (colluding

malicious apps, a single malicious app with multiple components, or a malicious app which

exfiltrates sensitive data from an unintentionally leaky app) could evade detection, and

developers of unintentionally leaky apps may not discover security problems that should

be fixed.

1.2 Contribution

We developed “DidFail” (Droid Intent Data Flow Analysis for Information Leakage), a new

static analysis tool that combines and augments the state-of-the-art tools FlowDroid [11]

and Epicc [13] to precisely report undesired information flows between interacting apps.

Our approach requires analysis of the source code or bytecode of each app only once and

leverages the results to detect potentially dangerous flows enabled by all subsets of analyzed

apps. The tool is available at

https://www.cert.org/secure-coding/tools/didfail.cfm

We tested our prototype tool on three test apps developed by our team as well as on

three relevant apps from the DroidBench3 benchmark suite.

1.3 Terminology

We define a source as an external resource (external to an app, not necessarily external

to the phone) from which data is read and a sink as an external resource to which data

is written. Example sources include device ID, contacts, photos, and current location.

Example sinks include the Internet, outbound text messages, and the file system.

3http://sseblog.ec-spride.de/tools/droidbench/
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1.4 Structure of the Thesis

The rest of the thesis is organized as follows. Chapter 2 provides a background on static

analysis and the tools that our analysis extends. It also discusses some Android-specific

concepts that are related to this work and introduces a motivating example. Chapter 3

describes our two-phase analysis design, and Chapter 4 describes its implementation. We

tested our prototype analyzer with two application sets, and the results are discussed

in Chapter 5. We discuss the limitations of our analysis in Chapter 6, related work in

Chapter 7, and conclusions in Chapter 8.
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Chapter 2

Background

This chapter briefly covers some theoretical underpinnings of our analysis. It starts with

an overview of Android and then briefly describes static analysis. An overview of the static

analysis tools that we build upon is followed by a motivating example set of two apps that

contain data flow across each other that existing analyses cannot precisely track.

2.1 Android Overview

Android apps are written in the Java programming language and are compiled to a Dalvik

bytecode using the Android Software Development Toolkit (SDK). The SDK enables the

developer to create an application package (APK), which is an archive with the .apk exten-

sion. This APK file can be installed on Android devices. The Android application sandbox

isolates apps from each other and prevents them from accessing each other’s private data.

Because each app runs in a process sandbox, apps must explicitly share resources and data

by declaring the permissions they need to access shared resources and data outside the

sandbox.

However, Android does not completely isolate apps from each other, because apps often

need to share data. For example, assume a user wants to take a photograph, edit it using a

photo-editing app, and then share it with her friends using a social networking app. This
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process requires data to flow across isolated (sandboxed) applications.

2.1.1 Components

Android apps can be composed of one or more of the following components:

• An activity, which provides a screen with which users can interact to perform a task

• A service, which can perform long-running operations in the background and does

not provide a user interface

• A content provider, which manages access to a central repository of data

• A broadcast receiver, which allows apps to register for system and application events

2.1.2 Intents

The primary method for inter-component communication, both within and between appli-

cations, is via intents. For the photo-sharing example, the information (a photo) can flow

across multiple components via intents as follows:

CameraAppactivity
intent−−−→ PhotoEditingAppactivity

intent−−−→ SocialNetworkingAppactivity

An intent can be an explicit intent for which the sender explicitly states the receiving

component, or an implicit intent, for which the intent specifies the action to perform and the

category or data on which the action should be performed. The Android OS determines the

receiver on the basis of the intent filters defined in the manifest file of all apps installed on

the device. Every app has a manifest file, AndroidManifest.xml, which contains information

about all components and their capabilities. The intent filters are used by the Android OS

to determine if any components within the app are eligible to receive a particular implicit

intent. It uses a set of filter-matching rules1 while resolving such intents. A component

may also send an intent to itself. A component can be made accessible to other apps by

setting the exported attribute in the manifest file to true. If the exported attribute is

1http://developer.android.com/guide/components/intents-filters.html#Resolution
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not defined, the OS makes the component available to other apps by default if an Intent

Filter is associated with the component. Access to this component can be restricted by

using permissions. Permissions are also declared in the manifest file, and a component can

be accessed by an app only if it has the required permission. Permissions are granted by

the user during the app installation and are enforced by the OS at runtime.

How Intents Are Used

Intents can be used to launch activities; to bind, start, and stop services; and to broad-

cast information to broadcast receivers. Intents can be sent and received only between

activities, services, and broadcast receivers and not between content providers. Table 2.1

lists commonly used methods to send intents to and receive intent results from activities.

We use the term “startActivity family” to define methods that can be used to launch

activities.

Purpose Method signature

Launch an activity
startActivity (Intent intent)

startActivity (Intent intent, Bundle options)

Launch an activity and
expect to receive a result

startActivityForResult (Intent intent, int requestCode)

startActivityForResult (Intent intent, int requestCode,

Bundle options)

Return data to the caller
setResult (int resultCode)

setResult (int resultCode, Intent data)

Read result set by the callee
in caller

onActivityResult (int requestCode, int resultCode,

Intent data)

Table 2.1: Commonly used intent-related methods for inter-activity communication

How Intents Can Be Misused

Various studies [17, 18, 19] done in the past have highlighted how intents can be misused to

carry out component hijacking and intent-spoofing attacks. Component hijacking attacks

occur when a malicious app receives an intent that was intended for another app but

not explicitly designated for it, that is, when implicit intents are used. The attack can
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result in leakage of sensitive data when the intent is received by an unintended recipient.

Intent-spoofing attacks, by contrast, can be used to send spoofed commands (via intents)

to legitimate apps, causing loss of secure control of the affected apps.

2.2 Static Analysis

Static analysis is a program analysis method in which the source code (or bytecode) is

analyzed without executing it. Dynamic analysis, on the other hand, involves studying the

application behavior by running it in an environment, for instance, analyzing an Android

app by running it on an Android device.

Static analysis allows examining all possible execution paths in the program, not just

those invoked during execution. This is especially valuable in security analysis, because at-

tacks often exploit apps in unforeseen and untested ways. However, predicting the program

behavior without executing it is a nontrivial problem. By reducing it to the halting problem,

it is possible to prove that finding all possible ways of executing any arbitrary nontrivial

program is an undecidable problem. That is, there cannot possibly be any program that

will always correctly predict the program behavior. However, static analysis can provide

useful results by approximating some facets of the actual execution of a program [20].

One of the techniques of implementing static analysis is analyzing the data flow. Taint

analysis is a special type of data-flow analysis that tracks data along the program execution

path. In this technique, sensitive data is marked with a taint at the source, and this taint

is allowed to propagate further through all program execution paths. Presence of this taint

at predefined sinks is used to establish a flow between the source and the sink. This flow

can be used to detect sensitive data leaks from source to sink.

2.2.1 Static Analysis Tools

Our analysis is built upon the FlowDroid and Epicc analyses and the Soot framework.

8



FlowDroid

FlowDroid is an open-source static analysis tool for Android apps that is context-, flow-,

object-, field-sensitive and lifecycle-aware [11]. It uses an IFDS (interprocedural, finite,

distributive, subset) framework [21], which reduces the program analysis problem to a

simple graph reachability problem. It accurately models the Android life-cycle, including

callback methods (more detail next paragraph), and precisely maps the user-defined UI

elements with the code. These features make FlowDroid highly sound and precise.

Analyzing Android apps is more complicated than analyzing Java programs because

these apps run within the Android framework. Java programs have a single entry point,

the main() method. But Android apps can have multiple entry points, that is, callback

methods that are implicitly called by the Android framework. These methods are not

directly connected in the app source code. FlowDroid precisely handles this problem by

creating a dummyMain() method, which accurately emulates the Android lifecycle for each

component by connecting the callback methods. It extends the Soot framework to obtain

a precise call graph based on Heros [22], an IFDS framework implementation. Sources and

sinks are identified on the basis of the information provided by SuSi [23].

FlowDroid can precisely detect intra-component data flows, but it cannot detect inter-

component data flows involving intents.

Epicc

The Epicc tool precisely and efficiently analyzes the inter-component communication (ICC).

It reduces the discovery of ICC to an instance of the IDE (interprocedural distributive en-

vironment) data flow problem. IDE is an extension of the IFDS problem that extends the

graph reachability problem to a value-computation problem. It identifies properties (such

as action, category , and data MIME type) of intents that can be sent and received by

components [13]. For example, Epicc might identify that a particular app can send intents

only with action android.intent.action.VIEW and MIME data type image/jpg.

9



Soot

Soot [24] is a Java optimization and analysis framework. It provides four intermediate

representations for analyzing and transforming Java and Android bytecode. As mentioned

previously, static analyses can analyze these intermediate representations more efficiently

than analyzing actual source code or bytecode. Soot also enables construction of precise

control-flow graphs (CFGs) that provide abstract model of programs.

We use the Soot framework in several parts of our analyzer, described in Chapter 4.

2.3 Motivating Example

In section 2.1, we used a simple photo-sharing example to briefly demonstrate why apps

need to share data with each other. In this section, we discuss a motivating app set in

which apps share data using intents. Figure 2.1 shows how the sensitive data can flow from

the source to the sink only after traversing through multiple apps.

Listing 2.1 shows the code that is executed when the user clicks on a button in activity

MainActivity in the SendSMS app. It reads the device ID (source) and stores it in an

intent using the putExtra() method. Finally, the startActivityForResult() method

takes that intent as an argument to start a new activity.

Figure 2.1: Data leak via an intent between SendSMS.apk and Echoer.apk

10



1 public class Button1Listener implements OnClickListener {

2 private final MainActivity act;

3 public Button1Listener(MainActivity parentActivity) {

4 this.act = parentActivity;

5 }

6 public void onClick(View arg0) {

7 Intent i = new Intent(Intent.ACTION_SEND);

8 i.setType("text/plain");

9 TelephonyManager tManager = (TelephonyManager) this.act.getSystemService(

10 Context.TELEPHONY_SERVICE);

11 String uid = tManager.getDeviceId(); // SOURCE

12 i.putExtra("secret", uid); // write sensitive data to Intent

13 this.act.startActivityForResult(i, 0); // outgoing Intent

14 }

15 }

Listing 2.1: SendSMS.button1listener.java

Because the target component for the intent is not specified (it’s an implicit intent), the

OS must find an activity that can handle it. With the help of the intent filters defined in

the manifest files of all installed apps, the OS chooses the app that can handle this intent.

Listing 2.2 shows that the Echoer app can handle this intent.

1 ...

2 ...

3 <activity

4 android:name="echoer.MainActivity"

5 android:label="@string/app_name" >

6 <intent-filter>

7 <action android:name="android.intent.action.SEND" />

8 <category android:name="android.intent.category.DEFAULT" />

9 <data android:mimeType="text/plain" />

10 </intent-filter>

11 </activity>

12 ...

13 ...

Listing 2.2: AndroidManifest.xml in Echoer.apk

The Echoer app receives the intent by using the getIntent() method, as shown in List-

ing 2.3. Intent i is stored as a class field inside the MainActivity class.

11



1 public class MainActivity extends Activity {

2 Intent i;

3

4 protected void onCreate(Bundle savedInstanceState) {

5 super.onCreate(savedInstanceState);

6 setContentView(R.layout.activity_main);

7 Button button1 = (Button) findViewById(R.id.button1);

8 button1.setOnClickListener(new Button1Listener(this));

9 }

10 protected void onResume()

11 {

12 super.onResume();

13 i = getIntent(); // read data received in Intent from the caller

14 Bundle extras = i.getExtras();

15 Log.i("Data received in Echoer: ", extras.getString("secret")); // SINK

16 }

17 ...

18 ...

19 }

Listing 2.3: Echoer.MainActivity.java

The onClick() callback method shown in the Listing 2.4 is called when the user clicks on

the button button1 and sends the received data (Intent this.act.i) back to the caller of

this activity (SendSMS) by using setResult(). A callback method onActivityResult()

inside SendSMS is called when it receives the result, as shown in Listing 2.5.

1 public class Button1Listener implements OnClickListener {

2 private final MainActivity act;

3 public Button1Listener(MainActivity parentActivity) {

4 this.act = parentActivity;

5 }

6 public void onClick(View arg0) {

7 this.act.setResult(0, this.act.i); // send received data back to the caller

8 this.act.finish();

9 }

10 }

Listing 2.4: Echoer.button1listener.java

12



1 public class MainActivity extends Activity {

2 protected void onCreate(Bundle savedInstanceState) {

3 super.onCreate(savedInstanceState);

4 setContentView(R.layout.activity_main);

5 Button button1 = (Button) findViewById(R.id.button1);

6 button1.setOnClickListener(new Button1Listener(this));

7 }

8 ...

9 ...

10 protected void onActivityResult(int requestCode, int resultCode, Intent data) { //

incoming Intent Result

11 sendSMSMessage(data.getExtras().getString("secret"));

12 }

13 protected void sendSMSMessage(String message) {

14 SmsManager smsManager = SmsManager.getDefault();

15 smsManager.sendTextMessage("1234567890", null, message, null, null); // SINK

16 }

17 }

Listing 2.5: SendSMS.MainActivity.java

Finally, the intent data is sent out via an SMS using the sendTextMessage() method.

This completes the inter-app data flow that originates at line 11 (source) in Listing 2.1

and gets leaked at line 15 (sink) in Listing 2.3 within the SendSMS app but via the Echoer

app.

None of the existing tools, including FlowDroid, can detect such inter-component data

flows. A more sound and precise inter-component data-flow analysis is required. In the

next chapter, we present our analysis design, which aims at tracing such data flows.

13



14



Chapter 3

Analysis Design

The overview of our analysis method is shown in Figure 3.1. Our goal is to produce a set

of all possible source-to-sink flows within a set of Android apps. The taint flow analysis

takes place in two phases. In phase 1, each application is analyzed individually. Received

intents are considered sources; sent intents are considered sinks. The output of the phase

1 analysis, for each app, consists of (1) flows within each component, found by FlowDroid;

(2) identification of the properties of sent intents, as found by Epicc; and (3) intent filters

of each component, extracted from the manifest file.

An intent ID is assigned to every source code line that sends an intent (that is, a source

code line that consists of a call to a method in the startActivity family), as described in

Section 4.1.1. Sent intents with distinct IDs are considered distinct sinks, whereas intents

with the same ID are combined.

Phase 2 of the analysis can be carried out on a subset of apps, using the output of

phase 1. The output of phase 2 consists of all the source-to-sink flows found in the set of

apps.

15



Source

FlowDroid

Component 1

FlowDroid

Epicc

TaintFlowsFlowDroid

Component 2

FlowDroid

Epicc

Sink

FlowDroid

Sink

Source

FlowDroid

Figure 3.1: Analysis by data flow type: FlowDroid identifies sources (including intents
received), flow of the data within the component, and sinks (including intents sent). Epicc
identifies characteristics of intents sent by a component. TaintFlows, the analyzer, matches
sent intent characteristics to components that could receive the intent, using app manifest
data and matching intent IDs from Epicc and FlowDroid. A component could have zero
or more sources, sinks, intents received, and intents sent. From beginning to end, a given
data flow could be internal to one component or traverse multiple components, which could
be in a single app or in multiple apps.

src1

sink 1

I1

C2

C1

C3
R(I3)

R(I1)

I3

src3

sink 3

Figure 3.2: Running example described in Section 3.1. R(Ii) denotes the response to intent
Ii (set using setResult()).
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Figure 3.3: Interaction between C1 and C2 in the running example

3.1 Example Scenario

This section introduces an example of information flows between multiple components

(Figure 3.2) that cannot be precisely analyzed by existing tools. Suppose that component

C1 sends data to component C2 and receives data from it in return. Component C3 interacts

with C2 in a similar fashion. These three components can belong to different apps or to a

single app. As depicted in Figures 3.2 and 3.3, for i ∈ {1, 3}:

1. Component Ci calls startActivityForResult() to send data from source srci to

component C2 via intent Ii.

2. Component C2 reads data from intent Ii and sends that data back to component Ci

by calling setResult().

3. Component Ci, in method onActivityResult(), reads data from the result and

writes it to sink sink i.

The analysis should determine that (1) information flows from src1 to sink 1 (but not sink 3),

and (2) information flows from src3 to sink 3 (but not sink 1). Note that FlowDroid by itself

cannot produce a result this precise even if the three components are part of a single app.

17



3.2 Phase 1

In this phase, each app is analyzed individually. An intent is identified by a tuple of

(sending component, receiving component, intent ID). An intent sent from C1 to C2 with

ID id is denoted by I(C1, C2, id).

In phase 1, when a component calls a method in the startActivity family, the recipient

of the intent is unknown (because each app is analyzed in isolation in phase 1, and the

recipient can be a component in another app), so we use null for the recipient field. Likewise,

in the onCreate() method, we do not know the sender of the intent, so we use null for

the sender field. If a component receives an intent I1 and returns information via the

setResult() method, we denote the returned information by R(I1).

We write source
C−→ sink to denote that information flows from source to sink in com-

ponent C. For this purpose, we treat intents as both sources (in the component that

creates and sends the intent) and sinks (in the component that receives the intent). Using

this notation, we represent the phase 1 equations for the flows depicted in Figure 3.2 and

described in Section 3.1 as follows:

src1
C1−→ I(C1, null, id1)

R(I(C1, null, null))
C1−→ sink 1

I(null, C2, null)
C2−→ R(I(null, C2, null))

src3
C3−→ I(C3, null, id3)

R(I(C3, null, null))
C3−→ sink 3

The flows constitute the desired output of the FlowDroid analysis. Although all the flows

in the running example involve intents, in general our analysis will also find flows from

non-intent sources to non-intent sinks.

We focus, in both description and implementation, on intents sent and received by

Activity components; other types of components (services, content providers, broadcast

receivers) can be handled similarly.
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3.3 Phase 2

After all apps in a set have been analyzed, we enter phase 2. Our goal is to discover

how tainted information can flow between components. For each sent intent, we find all

possible recipients, and we instantiate the phase 1 flow equations (which have missing

sender/receiver information) for all possible sender/receiver pairs, as we describe in detail

in Section 3.3.1. For the running example, the phase 2 flow equations are as follows:

src1
C1−→ I(C1, C2, id1)

R(I(C1, C2, id1))
C1−→ sink 1

I(C1, C2, id1)
C2−→ R(I(C1, C2, id1))

I(C3, C2, id3)
C2−→ R(I(C3, C2, id3))

src3
C3−→ I(C3, C2, id3)

R(I(C3, C2, id3))
C3−→ sink 3

Let T (s) denote the taint of s, that is, the set of sensitive sources from which s potentially

has information. The goal of the analysis is to determine the taint of all sinks. Each

phase 2 flow equation s1 → s2 relates the taint of s1 to the taint of s2. If data flows from s1

to s2, then s2 must be at least as tainted as s1. Accordingly, we generate a taint equation

T (s1) ⊆ T (s2). For the running examples, the taint equations we generate are

T (src1) ⊆ T (I(C1, C2, id1))

T (R(I(C1, C2, id1))) ⊆ T (sink 1)

T (I(C1, C2, id1)) ⊆ T (R(I(C1, C2, id1)))

T (I(C3, C2, id1)) ⊆ T (R(I(C3, C2, id3)))

T (src3) ⊆ T (I(C3, C2, id3))

T (R(I(C3, C2, id3))) ⊆ T (sink 3)

Each non-intent source s is tainted with itself; i.e., T (s) = {s}. We then find the least
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fixed-point of the set of taint equations. The end result of phase 2 is the set of possible

source-to-sink flows.

3.3.1 Details of Generating Phase 2 Flow Equations

Let S be the set of sources and sinks (including intents and intent results) in the phase 1 flow

equations. Consider a transmitted intent ITX and a received intent IRX from phase 1. In all

cases, ITX will have the form I(CTX , null, id), and IRX will have the form I(null, CRX , null).

In Section 3.3, we said that we instantiate the phase 1 flow equations for all possible

intent sender/receiver pairs. We now give the details of how we do this. For each phase 1

flow src → sink , we generate the set of all flows of the form src ′ → sink ′ that satisfy the

following conditions:

1. If src is a regular (non-intent) source, then src ′ = src.

2. If sink is a regular (non-intent) sink, then sink ′ = sink .

3. If src has the form I(null, CRX , null) (for example, the result of a call

to android.app.Activity.getIntent()), then src ′ must have the form

I(CTX , CRX , id) where there exists an intent I(CTX , null, id) ∈ S that matches the

intent filter of component CRX .

4. If sink has the form I(CTX , null, id) (for example, an intent object passed to

startActivity()), then sink ′ must have the form I(CTX , CRX , id) where compo-

nent CRX has an intent filter that matches the intent sink .

5. If src has the form R(I(CTX , null, null)) (for example, a parameter of the callback

method onActivityResult()), then src ′ must have the form R(I(CTX , CRX , id))

where

(a) there exists an intent I(CTX , null, id) ∈ S that matches the intent filter of com-

ponent CRX , and

(b) R(I(null, CRX , null)) ∈ S.
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6. If sink has the form R(I(null, CRX , null)) (for example, a value passed to

setResult()), then sink ′ must have the form R(I(CTX , CRX , id)) where

(a) there exists an intent I(CTX , null, id) ∈ S that matches the intent filter of CRX ,

and

(b) R(I(CTX , null, null)) ∈ S.

7. If src has the form I(null, CRX , null) and sink has the form R(I(null, CRX , null)), then

sink ′ must be R(src ′).

Condition 7 allows us to precisely handle a situation in which a component (such

as C2 in the running example) processes data from various callers without intermingling

the taintedness of the data. Condition 7 is sound as long as multiple instances of the

component can communicate only via flows included in the phase 1 equations. Our current

implementation catches most such flows but misses inter-instance communication via static

fields.

For example, in Figure 3.2, if all components are part of the same app, then the two

launched instances of C2 can store information from I1 and I3 in a static field (which is

shared between the two instances of C2). The value in the static field (tainted with both

src1 and src3) can then be read and copied into R(I1) and R(I3). This flow would be

missed by our current analysis.

Although not yet addressed, static fields can be managed in a sound manner. In

particular, if an app A has a class C with a static field sf , we could modify FlowDroid to

introduce a dummy entity sfA,C that can act both as a source and as a sink. Reading from

static field sf would be treated as reading from sfA,C , and writing to sf would be treated

as writing to sfA,C . The resulting phase 1 flow equations would enable our phase 2 analysis

to soundly handle inter-instance communication via static fields.

Our analysis cannot precisely handle the situation in Figure 3.4, wherein tainted data

travels through a chain of apps. In this situation, our analysis would mark all intent results

as being tainted with data from both I1 and I3 instead of being able to keep them separate.
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src1

sink 1

src3

sink 3

I1
C1

C3
R(I3)

R(I1)

I3
C2a C2b

I2

R(I2)

Figure 3.4: Example of inter-app communication flow wherein, for i ∈ {1, 3}: C2a receives
tainted data from Ci, sends it to C2b, receives a result with the same taint, and finally
sends it back to Ci.

3.3.2 Rules for Matching Intents

In Section 3.3.1, we used the term match in relation to a sent intent and an intent filter.

We now more fully define what we mean by match. The Android documentation1 describes

how a sent intent is matched to potential recipients. First, if the intent explicitly designates

a recipient, then the intent is matched with that recipient. Otherwise, the intent is matched

with a filter if it passes three tests: an action test, a category test, and a data test.

Epicc provides information about outgoing intents in its app analysis, and we use that.

It provides no information about the URI fields of intents, so we ignore the URI fields when

matching intents with intent filters. Sometimes, Epicc will return <any string> for the

action string or Found top element for the intent as a whole. For this case, the analyzer

has two modes (which can be selected by a command-line option): (1) a sound mode, which

assumes that an unknown action string potentially matches any action string in any filter,

thereby typically generating many false positives, and (2) a precise mode, which assumes

that the unknown action string does not match any filter, thereby potentially generating

false negatives. Likewise, in the sound mode, a top-element intent matches every filter,

and in the precise mode, it matches nothing.

1http://developer.android.com/guide/components/intents-filters.html#Resolution
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Chapter 4

Implementation

We have implemented our approach in the DidFail1 analyzer. Our analyzer (source code

and binaries), along with three apps that demonstrate the running example in §3.1, are

available at

http://www.cert.org/secure-coding/tools/didfail.cfm

4.1 Phase 1 Analysis

Figure 4.1 shows the components of our analyzer, the processing sequences, and dataflow

paths. The analyzer incorporates use of the previously existing and unchanged tools Epicc,

Dare, and Soot; a modified version of FlowDroid; and new tools TransformAPK and Taint-

Flows. TaintFlows performs the phase 2 analysis.

4.1.1 APK Transformer

The APK Transformer must be used in the first step of the analysis to be able to integrate

results of the different analytical tools used afterwards. This step is critical to achieve

the ultimate goal of outputting detected paths from sources to sinks, including paths that

1Droid Intent Data Flow Analysis for Information Leakage
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TransformAPK
Epicc

FlowDroid (Modified) 

Dare

Original APK

Figure 4.1: Phase 1

contain data flows via intents. Android apps are packaged in files with the extension .apk.

In Figure 4.1, “Original APK” is the original Android app. With the APK Transformer,

our analyzer modifies that app to enable matching intents mentioned in both the Epicc

and FlowDroid outputs. To do this, we transformed each original .apk file into a modified

.apk file, using Soot. We developed a program that first uses Soot to transform the .dex

Android bytecode into an intermediate representation called jimple. The program uses the

Soot framework to locate method calls that send intents, and immediately before that, we

insert new jimple code, which calls an Android method that inserts a unique ID into the

intent. Our program then uses Soot to compile the modified jimple code into a new .apk

file. When Epicc processes this modified file, it prints the unique intent IDs. As described

in Section 4.1.2, we modified the source code of FlowDroid so that its output identifies sent

intents by their intent ID, enabling us to match intent analysis from the two tools. We

could not modify the source code of Epicc, because the source code is not available yet.

According to the Epicc website, the authors plan to publish the source code in the future.

Once the source code is available, we might be able to combine FlowDroid and Epicc in a

more efficient manner.
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4.1.2 FlowDroid (Modified)

We modified FlowDroid in several ways. For our phase 1 analysis, we consider the points

where intent information flows in and out of the component as sources and sinks respec-

tively. Therefore, we added the method onActivityResult() as a source and setResult()

as a sink in FlowDroid. The methods getIntent() and startActivityForResult() were

already present as a source and sink respectively. Although the FlowDroid tool comes with

a smaller SourcesAndSinks.txt file, the much larger SourcesAndSinks.txt2 file can be

substituted from the SuSi analyzer [25]. We also added code to search for the putExtra()

call we added to insert the unique intent ID, which was added by the APK Transformer.

In flows where an intent is the sink, the output of FlowDroid identifies the intent by its

unique ID.

In a flow src
C−→ I(C, null, id), how do we identify C? When an intent is sent via

base.startActivity() (including the case where base is an implicit this), we assume

that the class of base must be the sending component.3

The output of FlowDroid was originally nondeterministic in the order in which flows

were listed. To produce deterministic output for regression testing, we simply sorted the

flows before printing.

4.1.3 Epicc and Dare

The Dare [26] tool takes the transformed .apk file as input, retargets the application, and

outputs Java class files. The Epicc analysis takes two inputs: the transformed .apk file and

the output of Dare.

2https://github.com/secure-software-engineering/SuSi (2013-11-25)
3We have not yet been able to confirm or refute whether this assumption is sound. To preserve

soundness at the expense of precision, we considered an intent as potentially matching the intent filter of
all components of an app if it matches the intent filter of any component of the app.
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4.2 Phase 2 Analysis

Each app in the app set undergoes its own separate phase 1 analysis, with each phase 1

analysis outputting three separate output files (manifest file, Epicc output, and FlowDroid

output) that are input to the phase 2 analysis. If there are n apps in the app set, then

the phase 1 analysis is performed n times, outputting 3n files, all of which are input to the

(single) phase 2 analysis. The phase 2 analysis output provides information about data

flows from a source to a sink, including intents if they are part of the data flow. Figure 4.2

shows the relationship of the analyses in phase 1 and 2.

Phase 1App 1

Phase 1App n

Phase 1App 3

Phase 1App 2

Phase 2

Figure 4.2: Two-phase analysis
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Chapter 5

Experimental Results

We tested our prototype analyzer on two app sets. App set 1 consists of three apps that we

created, which match the running example in Figure 3.2. App set 2 consists of three apps

from the DroidBench benchmark suite [27] that use intents for inter-app communication.

Our analyzer successfully traced all inter-app and intra-app flows in both app sets. As

described in the previous section, we first ran phase 1 analysis on all apps individually,

and then for phase 2, we ran TaintFlow analysis for each set of apps.

5.1 App Set 1: Colluding Apps

• SendSMS.apk: This app leaks the user’s device ID through an SMS. It reads the

user’s device ID, then adds it to an intent using the putExtra() method. It then

sends this intent out by calling startActivityForResult(). Another app receives

this intent and responds with a result. When the intent result is received, the

onActivityResult() callback method is called. Data received in the result is then

leaked through an SMS.

• Echoer.apk: This app receives intents from other apps. It reads the incoming intents

using the getIntent() method and writes the received data using Log. Also, it sends

this data back to the transmitter using the setResult() call.
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• WriteFile.apk: This app is similar to SendSMS except that it reads the user’s

location and leaks it to the file system.

Result:

Some of the data flows detected by our analysis are as follows:

getDeviceId()
SendSMS−−−−−→ putExtra()

SendSMS−−−−−→ startActivityForResult()
Int2−−→

getIntent()
Echoer−−−−→ setResult()

Res4−−→

onActivityResult()
SendSMS−−−−−→ getExtras()

SendSMS−−−−−→ sendTextMessage()

getLastKnownLocation()
WriteFile−−−−−→ putExtra()

WriteFile−−−−−→

startActivityForResult()
Int1−−→

getIntent()
Echoer−−−−→ setResult()

Res3−−→

onActivityResult()
WriteFile−−−−−→ getExtra()

WriteFile−−−−−→ write()

Note: Arrows with name above it show intra-component flows within that app or

component. Arrows with Int* or Res* above them show inter-component flows via

intents and intent results respectively. Figure 5.1 shows all intent-based data flows

detected by our analyzer.

1 Int1: Intent(tx=’WriteFile’, rx=’Echoer’, intent_id=’newField_8’)

2 Int2: Intent(tx=’SendSMS’, rx=’Echoer’, intent_id=’newField_6’)

3 Res3: IntentResult(i=Intent(tx=’WriteFile’, rx=’Echoer’, intent_id=’newField_8’))

4 Res4: IntentResult(i=Intent(tx=’SendSMS’, rx=’Echoer’, intent_id=’newField_6’))

5 Snk5: ’Sink: <android.telephony.SmsManager: void sendTextMessage(java.lang.String,java.

lang.String,java.lang.String,android.app.PendingIntent,android.app.PendingIntent)>’

6 Snk6: ’Sink: <android.util.Log: int i(java.lang.String,java.lang.String)>’

7 Snk7: ’Sink: <java.io.FileOutputStream: void write(byte[])>’

8 Src8: ’Src: <android.location.Location: double getLatitude()>’

9 Src9: ’Src: <android.location.Location: double getLongitude()>’

10 Src10: ’Src: <android.location.LocationManager: android.location.Location

getLastKnownLocation(java.lang.String)>’

11 Src11: ’Src: <android.telephony.TelephonyManager: java.lang.String getDeviceId()>’

Listing 5.1: Legend for reading the graph shown in Figure 5.1
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Snk6

Int1

Res3

Int2

Res4

Snk7 Snk5

Src11Src9 Src8 Src10

Figure 5.1: Tainted intent-based data flow in test apps

5.2 App Set 2: DroidBench Benchmark Suite

DroidBench1 is a set of open-source Android applications that can be used as a testing

ground for static analysis tools.

• IntentSource1.apk: This app reads the incoming intent using getIntent() and

sends the intent out by calling startActivityForResult(). When another app

receives this intent and responds with a result, this app logs the result (sink).

• InterAppCommunication IntentSink1.apk: This app reads the user’s device ID

(source), adds it to the received intent, and then sends the intent result out by

calling setResult() method.

• InterAppCommunication IntentSink2.apk: This app also reads the user’s device

ID (source), adds it to a new Intent object, and sends the intent out by calling

startActivity().

1https://github.com/secure-software-engineering/DroidBench (2014-03-26)
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Result:

Some of the data flows detected by our analysis are as follows:

getDeviceId()
IntentSink2−−−−−−→ putExtra()

IntentSink2−−−−−−→ startActivity()
Int3−−→

getIntent()
IntentSource1−−−−−−−→ startActivityForResult()

Int4−−→

getIntent()
IntentSink1−−−−−−→ putExtra()

IntentSink1−−−−−−→ setResult()
Res8−−→

onActivityResult()
IntentSource1−−−−−−−→ Log .i()

getDeviceId()
IntentSink1−−−−−−→ putExtra()

IntentSink1−−−−−−→ setResult()
Res8−−→

onActivityResult()
IntentSource1−−−−−−−→ Log .i()

Note: Arrows with name above it show intra-component flows within that app or

component. Arrows with Int* or Res* above them show inter-component flows via

intents and intent results respectively. Figure 5.2 shows all intent-based data flows

detected by our analyzer.

1 Int3: Intent(tx=’IntentSink2’, rx=’IntentSource1’, intent_id=’newField_5’)

2 Int4: Intent(tx=’IntentSource1’, rx=’IntentSink1’, intent_id=’newField_6’)

3 Int6: Intent(tx=’IntentSource1’, rx=’IntentSource1’, intent_id=’newField_6’)

4 Res8: IntentResult(i=Intent(tx=’IntentSource1’, rx=’IntentSink1’, intent_id=’newField_6

’))

5 Snk11: ’Sink: <android.content.Intent: android.content.Intent setAction(java.lang.

String)>’

6 Snk12: ’Sink: <android.util.Log: int i(java.lang.String,java.lang.String)>’

7 Src13: ’Src: <android.telephony.TelephonyManager: java.lang.String getDeviceId()>’

8 }

Listing 5.2: Legend for reading the graph shown in Figure 5.2

Note: In DroidBench suite, InterAppCommunication IntentSink1.apk and

InterAppCommunication IntentSink2.apk use the same package, de.ecspride.

Because Android does not allow two packages with the same name, we modified the

package name for the first and the second app to de.ecspride.IntentSink1 and

de.ecspride.IntentSink2 respectively.
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Figure 5.2: Tainted intent-based data flow in DroidBench apps
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Chapter 6

Limitations

Soundness and precision are important characteristics of any program analysis. DidFail

inherits sources of unsoundness and imprecision from its building blocks, FlowDroid and

Epicc.

6.1 Sources of Unsoundness

Sources of unsoundness cause the analysis to fail to identify a tainted flow. Sources of

unsoundness in our analysis include reflection and native code, which are not addressed

by Epicc. FlowDroid also does not consider reflective calls. However, FlowDroid does

analyze calls that invoke native code, using a heuristic called taint wrapping. It defines

explicit taint propagation rules for commonly called native methods. For all other native

methods, FlowDroid uses the following heuristic: if the input array was tainted before the

call, then FlowDroid determines that all call arguments and any return value are tainted.

FlowDroid’s handling of native calls is unsound; it does not analyze the native code in the

callee. For example, native code can read from sources and write to sinks, which will not

be detected by FlowDroid. FlowDroid also is unsound because it does not trace some leaks

caused by multithreading and some implicit flows.

DidFail does not consider implicit flows where information is not read from the received
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intents. For example, suppose an app AT wants to communicate a bit vector 〈bn, ..., b0〉

to an app AR without being detected by our analysis. App AR can have two components,

CR0 and CR1, which have mutually exclusive intent filters. Then AT can send a sequence

of intents 〈In, ..., I0〉 where

• intent Ii matches CR0 iff bi = 0, and

• intent Ii matches CR1 iff bi = 1.

To ensure that intents arrive in proper order, App AT can use startActivityForResult()

to send the intent and then wait until CR0 or CR1 calls setResult() to acknowledge receipt.

Data can flow between components of different apps via file or database accesses such

as writes to and reads from shared external storage, internal storage, and shared public

directories on the device. These same files and databases can be accessed to allow (and

sometimes to restrict) data flow between components of a single app. FlowDroid considers

a read from a file to be a source and a write to a file to be a sink. Within one component,

the FlowDroid analysis finds a tainted flow if there is a read from a file and a call to a sink

or a call to a source and a write to a file. Although our analyzer finds some tainted flows,

including file access, which FlowDroid does not, it does not soundly analyze taint flows

involving files accesses. Our analysis finds a multicomponent tainted data flow that ends

with a write to a file sink. However, it does not trace a multicomponent tainted data flow

that starts with a read from a file source. Also, our analyzer is unsound because it does

not trace a multi-component tainted data flow with a read from a file in one component

after a write to it by another.

Additional sources of unsoundness in the analyzer include shared static fields. Flow-

Droid traces tainted data within a component (or within an entire app, depending on

command-line arguments) that is written to and/or read from a shared static field. Un-

soundness resulting from inter-instance static field communication is discussed in Sec-

tion 3.3.1.
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6.2 Sources of Imprecision

Imprecision in the analysis would result in the analysis reporting a possible tainted flow

where such a flow is not possible in the real system. For instance, the Epicc analyzer over-

approximates inter-component communication via intents because it does not handle URIs,

which are used by Android to match intents to receiving components. As previously de-

scribed, FlowDroid’s analysis of native calls is not precise and sometimes overapproximates

returned tainted fields. DidFail does not use permissions to restrict possible matching of

intent senders and receivers. This overapproximated matching is a source of analysis im-

precision.

In our phase 1 FlowDroid analysis, all the received intents for a component are con-

flated together as a single source. As future work, to be more precise, we plan to modify

FlowDroid so that when a callback function such as onCreate() is analyzed, it can report

the data flows as a function of the properties of the received intent. For example, we

might report that a component C has a flow camera
C−→ R(I) iff I.hasExtra(“cam”) = true.

Similarly, we can make analysis of onActivityResult() be sensitive to the value of the

requestCode parameter.
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Chapter 7

Related Work

The Epicc tool performs the most precise static analysis of Android intents and inter-

component intent communication of any Android analyzer known to us, finding vulnera-

bilities with far fewer false positives than the next best tools. The authors showed that

the intent ICC problem can be reduced to an IDE problem, so the existing algorithms for

efficient IDE solutions could be used. Epicc builds on a preexisting IDE framework within

the Soot library.

Daniel Hausknecht’s 2013 thesis [28] describes VarDroid, intended to integrate intra-

component and inter-component static analyses, which is similar in some ways to our

method. His concept is modular whereby different analyses can be switched out for the

intra-component and inter-component data-flow tracing. Where we use a modified Flow-

Droid, his concept could use Chex [19], FlowDroid, or another analyzer. His thesis says

he did not complete integrating FlowDroid in his system. Instead, he simulated data-flow

analysis through probabilistically generated information simulating results of the intra-

component and inter-component analyses.

The Kirin tool [29] provides a formalized model for stating data policy and compares

stated policies to information extracted from app manifest files, processing this informa-

tion on the phone, to determine whether an app should be installed. The SORBET [30]

system modified a standard Android system to enable formal definition of desired secu-
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rity properties, which were proven to hold on SORBET but not on Android. Livshitz et

al. [31] performed static analyses on Java code to detect policy violations with security

implications, including taint analysis. TaintDroid [2] performs real-time taint tracking to

dynamically detect data leaks.

Felt et al. [32] found that about one-third of 940 Android apps tested asked for more

privileges than they actually use. They found evidence that a cause of overprivilege is

developer confusion resulting in part from inadequate Android API documentation. Fur-

thermore, malicious apps can use permission re-delegation attack methods [33], which

when successful take advantage of a higher-privilege app performing a privileged task for

an application without permissions. The ComDroid [17] tool analyzes inter-app communi-

cation in Android, looking at intents sent and the manifest files for potential vulnerabilities

resulting from insecure intent communication. Although it examines vulnerabilities, the

ComDroid analysis does not trace and identify data paths between sources and sinks.
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Chapter 8

Conclusion and Future Work

This thesis introduced a new analysis that integrates and enhances existing Android app

static analyses in a two-phase method. We demonstrated feasibility by implementing our

approach and testing apps with it. Future work includes enhancing the inter-component

part of the taint flow analysis to include additional data channels such as static fields,

SQLite databases, and SharedPreferences. We plan to test a large number of publicly

available Android apps. We envision that a two-phase analysis such as ours can be used

as follows. An app store can run the phase 1 analysis on each of the apps in the app

store. When a user wants to install a new app, the app store would conduct the phase 2

analysis and tell the user about the new flows that would be made possible if the new app

is installed.
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