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Introduction 
• A method and metrics for Situational Awareness 

• SA  Monitoring trends and changes in traffic 

• Analysis over time  Time series models 

• Metrics related to time series are key for SA 

• Correlations over time  Autocorrelation Function 

• Time window and time scale are important to 
understand the ACF  
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Background 
 

• The ACF shows how one observation in time is 
related to other observations at other points in 
time 

• The ACF and most metrics related to time series 
are dependent on the time window (W) and the 
time scale (b) over which they are computed 

• Therefore W and b are important for interpreting 
T-S metrics 

• Identify short-term & long-term dependencies 
• Important for anomaly detection 
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Method of Analysis 

• Analysis of flow data to investigate this issue 
• Construct an initial time series | W and b 
• Estimate the autocorrelation function for this 
• Vary the time scale (bin size) and estimate the 

ACF for each new time series 
• Compare the ACFs across varying bin sizes 
• Develop a metric to quantify the differences 
• Vary time window (W) 
• Compare ACFs across varying W |same bin size 
• Metric can be tracked over time (successive Ws) 
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Data and Design 

• Analysis reported here was done with  
publicly available data 
•Three time windows (8 hours each) 
•Three time scales (b=4,8,16 minutes) 
•Analysis was done with SiLK and R 
•Can be done with any flow data and scripts 
•One set of comparisons shown (10 lags) 
•One comparison of ACFs from two Ws 
•Metric to investigate differences in ACFs: 

 = Sum of absolute differences 
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Results 

Autocorrelations by 
Time Scale –  
Lags one to ten. 
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Discussion 

• ACF1 (bin size = 4min.) -> 0 at lag 8; low negative 
values after that till lag 17. 

• ACF2 (bin size = 8 min.) -> sharper decrease 
• -> 0 at lag 4; then approximately cyclical  

• Less long-term effect 

• ACF3 (bin size = 16 min.) -> 0 at lag 2 [~ MA(1)] 

• ACFs across 2 time windows (bin size = 4min.) 

• Sum of absolute differences = 1  

• with mean = .1 (less than std. err.) >> Stable 
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Conclusions 

• An attack or intrusion usually implies some shift in 
traffic patterns 

 
• One indicator of such shifts could be a change 

from a stable long-term dependency to a short-
term dependency 

 
• This methodology has the potential to detect such 

attacks at an early stage  
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Benefits 

• This approach could detect attacks and intrusions that do 
not perturb the network traffic in other discernible ways 

• Thus other techniques may not identify them early enough 
• Early detection is important for effective mitigation 

 
• This method also allows us to distinguish between short-

term and long-term dependencies within traffic patterns 
• This distinction is important for selecting the appropriate 

techniques for further analyzing network traffic 
• E.G. Short term  Traditional Poisson/Erlang Models 
• E.G. Long term  Complicated Self-Similar Models 
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Future Work 

Implications of changes in the ACF wrt time scales 
 
Predictions from attack/intrusion models 
 
Alternative metrics to quantify differences in ACFs 
 
Repeat the analysis: wide W & different networks 
 
Test methodology with data with known attacks 
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