

Anomaly-based Bot Server (and more!) Detection

Jim Binkley
jrb@cs.pdx.edu
Portland State University
Computer Science

outline

- background
- experimental flow tuples
- botnet server mesh detection
- botnet client mesh detection
- conclusions

PSU's network

- 26k students/faculty/staff
- 350 Ethernet switches, 10k lit ethernet ports
- wide-spread wireless "pubnet", 802.11b/g
- typical daily traffic
 - 60k pps at peak periods
 - 200-300 mbits total, more to Internet, than from Inet
 - see next bullet item
- we have dorms (resnet) resnet is typically infected
 - massive p2p bittorrent/gnutella traffic

ourmon architectural breakdown

scan count graph (worm count) in Jan. 2005

2k external host attack (DDOS) on infected host running IRC

recent large ddos attack

fundamental pkts graph looks like this normally:

ouch ouch ouch

that's 869k pps – we have physical gE connection to Inet ...

botnet situation

- over the last 2 years emerging picture
 - large percentage of our infections botnet related
- collateral damage common:
 - Jan 06/wireless subnet knocked off air due to DDOS attack
 - large and vicious DDOS attacks have occurred in OUS systems (previous pic)
- large amounts of TCP-based scanning aimed at ports 139/445
- decided to create IRC mesh detection module in ourmon to look for IRC-related malware
- goal: basic IRC statistics plus coupling of IRC to scanning module elsewhere in ourmon

infrastructure – 3 tuples in ourmon (irc new, tcp syn old)

- every thirty seconds extract 3 experimental flow tuples:
- □ irc channel tuple:
- irc host tuple:
- tcp syn tuple
 - coupled with scan detection attribute called
 - tcp work weight
- IRC: we look at layer 7 IRC data, and use a snap size of 256 bytes.

irc tuples and stats

- □ we extract these 4 IRC messages:
 - JOIN, PRIVMSG channel-name
 - PING, PONG for client/server connectivity
- we want: IP addresses in channel names
- also client/server information taken from directionality of IRC messages
- per host and channel stats counters
- also per network stats counters, total message kinds of all 4 kinds – graphed with RRDTOOL

irc measures

- irc channel tuples: channel name, message counts, list of IPs
- irc node tuples:
 ip address, message counts, weak tcp ww, client/server flag
- TCP work weight: (comes from syn tuple)
 per IP ww = (Syns sent + Fins sent + Resets returned)/total pkts

view this as a **rude efficiency measurement**: 100% means you are sending control packets.

TCP ww

- we have 2 years of experience with it
- □ < 50% is normal over some number of minutes
- not only attribute used for scan detection:
 - strength: typically use 1 syn/second at least
 - 2-wayness of data: typically look at this as additional attribute in 30-second scan determination
 - counts of L3 and L4 unique destinations
- strength and 2-wayness not used here:
 - IRC version of TCP work weight is weaker
- ww often affected by P2P lack of connectivity especially with gnutella

high abnormal scanner count – ironically was the real alert

some kinda distributed tcp syn scan right?, wait ... let's look at the IRC data

bot server detection: uh-oh, irc RRD has ping/pong way UP!

hourly irc summary stats like so:

channel	msgs	ips	scann	ers evil
□ f	157k	36k	1700	you tell me
□ X	81k	13k	712	
normalirc	5k	20	0	

- about 50k remote hosts with one campus botserver in several IRC channels
- a botclient "just changed" into a botserver
 Friday about 10 am, and acquired many friends fast

botserver conclusions

- from pure IRC POV:
- □ 1. ping/pong counts
 - entire IRC nets at PSU 40/period, not 2k/period
- 2. number of IPs in channel
 - biggest IRC channel 20 per day, not 10-50k
- 3. total IRC server messages
 - pings/pongs/privmsgs elevate the server
- interesting: total number of high TCP wws
 - external hosts that cannot connect to on-campus bot server (running on windows system)

TCP syn point of view - stats

- □ 1. L3D/L4D: interesting but statistically weak result
- on the 2 days of the bot server
 - bot server IP had highest count of average L3 destinations per sample period for any campus host
 - 1100 versus next highest which was a web server
 - web server and/or p2p clients typically < 1000
 - all you really say: will score high for that attribute
- 2. Syn count per period
 - highest on day 1, less so (still bad) on day 2
 - but it was scanning on day 1 as a normal bot client
- □ 3. pkt count for sent/recv. pkts HIGHEST on day 2
 - RECV pkts/SENT pkts 10/1

botnet client detection

- typical IRC data gives us small meshes on campus of
 - max: 20, min: 2 IRC channels
 - ports used may be 6667, but may vary
 - some automated bots exist (devoted to traditional IRC phenomenon like audio/video dissemination)
 - we have dorms ...
- what seems to happen though is that the botnet client meshes SCAN with greater than one host during the day
- we therefore need an hourly/daily summarization

ubuntu channel - benign

ip	tmsg	ping	pong	privmsg	ww	server
net1.1	11598	1912	1910	6494	43	Н
net1.2	7265	619	622	5086	0	Н
net1.3	17218	4123	4100	7069	37	Н
net2.1	28152	3913	3904	17113	0	S

F7 - an evil client mesh

ip	tmsg	ping	pong	privmsg	ww	server
net1.1	1205	377	376	428	42	Н
net1.2	113	39	43	25	96	Н
net1.3	144	60	61	21	94	Н
net1.4	46	12	14	17	90	Н
net1.5	701	343	345	11	90	Н
net2.1	1300	587	593	101	16	S

evil channel sort – rank channels based on simple metric

- □ f7 ahead of ubuntu −
 - given 4/6 scanners compared to none
- max work weight during day kept is important idea
 - out of set of N, how many were scanners at any time?
- key idea: > 1 scanner in channel
 - plus of course other attributes in logs help
 - including ports
 - length and intensity of scanning

conclusions/future work

- p2p vs malware scanners distinction is a problem
 - we have an algorithm for p2p id based on pure attributes
 - it's not perfect but it's not bad
 - we use signatures too (but they aren't perfect)
- given a set of attackers N (scanbots/spambots)
 - and not using IRC as a mesh organizing principle how can we determine the mesh?
 - DNS?
 - p2p meshes are a problem here too
 - except when they are the target

more information

- see http://www.cs.pdx.edu/~jrb
- "Locality, Network Control, and Anomaly Detection," James R. Binkley, Portland State University, John McHugh, Carnegie Mellon University, and Carrie Gates, Dalhousie University, PSU Technical Report 04-04. January 2005. ps
- "Ourmon and Network Monitoring Performance," James R.
 Binkley and Bart Massey, Computer Science, PSU, Proceedings of USENIX '05: FREENIX Track, April 2005. ps
- "An Algorithm for Anomaly-based Botnet Detection," James R. Binkley and Suresh Singh, Computer Science, PSU, USENIX SRUTI: '06 2nd Workshop on Steps to Reducing Unwanted Traffic on the Internet", July 7 2006. pdf
- "Anomaly-based Botnet Server Detection," James R. Binkley, Computer Science, PSU, FLOCON CERT/SEI, Vancouver WA, October 2006. pdf
- http://ourmon.sourceforge.net