
Anomaly-based Bot Server (and more!)
Detection

Jim Binkley
jrb@cs.pdx.edu

Portland State University
Computer Science

2

outline

background
experimental flow tuples
botnet server mesh detection
botnet client mesh detection
conclusions

3

PSU’s network

26k students/faculty/staff
350 Ethernet switches, 10k lit ethernet ports
wide-spread wireless “pubnet”, 802.11b/g
typical daily traffic

60k pps at peak periods
200-300 mbits total, more to Internet, than from Inet
see next bullet item

we have dorms (resnet) – resnet is typically
infected

massive p2p bittorrent/gnutella traffic

4

ourmon architectural breakdown

probe/FreeBSD graphics engine/BSD
or linux

ourmon.conf
config file

runtime:
1. N BPF expressions
2. + topn (hash table) of
flows and other things
(tuples or lists)
3. some hardwired C filters
(scalars of interest)
4. PCRE tags for large-scale traffic
analysis

pkts from NIC/kernel BPF
buffer

30-second
summaries

outputs:
1. RRDTOOL strip charts
2. histogram graphs
3. various ASCII reports,

hourly summaries
or report period

5

scan count graph (worm count) in
Jan. 2005

2k external host attack (DDOS) on infected host running IRC

6

recent large ddos attack

fundamental pkts graph looks like this normally:

7

ouch ouch ouch

that’s 869k pps – we have physical gE connection to Inet …

8

botnet situation

over the last 2 years emerging picture
large percentage of our infections botnet related

collateral damage common:
Jan 06/wireless subnet knocked off air due to DDOS attack
large and vicious DDOS attacks have occurred in OUS
systems (previous pic)

large amounts of TCP-based scanning aimed at ports
139/445
decided to create IRC mesh detection module in
ourmon to look for IRC-related malware
goal: basic IRC statistics plus coupling of IRC to
scanning module elsewhere in ourmon

9

infrastructure – 3 tuples in ourmon
(irc new, tcp syn old)

every thirty seconds extract 3 experimental flow
tuples:
irc channel tuple:
irc host tuple:
tcp syn tuple

coupled with scan detection attribute called
tcp work weight

IRC: we look at layer 7 IRC data, and use a
snap size of 256 bytes.

10

irc tuples and stats

we extract these 4 IRC messages:
JOIN, PRIVMSG channel-name
PING, PONG for client/server connectivity

we want: IP addresses in channel names
also client/server information taken from
directionality of IRC messages
per host and channel stats counters
also per network stats counters, total message
kinds of all 4 kinds – graphed with RRDTOOL

11

irc measures

irc channel tuples:
channel name, message counts, list of IPs

irc node tuples:
ip address, message counts, weak tcp ww,

client/server flag

TCP work weight: (comes from syn tuple)
per IP ww = (Syns sent + Fins sent + Resets

returned)/total pkts

view this as a rude efficiency measurement:
100% means you are sending control packets.

12

TCP ww

we have 2 years of experience with it
< 50% is normal over some number of minutes
not only attribute used for scan detection:

strength: typically use 1 syn/second at least
2-wayness of data: typically look at this as
additional attribute in 30-second scan determination
counts of L3 and L4 unique destinations

strength and 2-wayness not used here:
IRC version of TCP work weight is weaker

ww often affected by P2P lack of connectivity –
especially with gnutella

13

high abnormal scanner count –
ironically was the real alert

some kinda distributed tcp syn scan right?, wait … let’s look at the IRC data

14

bot server detection: uh-oh, irc RRD
has ping/pong way UP!

15

hourly irc summary stats like so:

channel msgs ips scanners evil
f 157k 36k 1700 you tell me
x 81k 13k 712
normalirc 5k 20 0

about 50k remote hosts with one campus
botserver in several IRC channels
a botclient “just changed” into a botserver
Friday about 10 am, and acquired many friends
fast

16

botserver conclusions

from pure IRC POV:
1. ping/pong counts

entire IRC nets at PSU 40/period, not 2k/period
2. number of IPs in channel

biggest IRC channel 20 per day, not 10-50k
3. total IRC server messages

pings/pongs/privmsgs elevate the server
interesting: total number of high TCP wws

external hosts that cannot connect to on-campus bot
server (running on windows system)

17

TCP syn point of view - stats

1. L3D/L4D: interesting but statistically weak result
on the 2 days of the bot server

bot server IP had highest count of average L3 destinations per
sample period for any campus host
1100 versus next highest which was a web server
web server and/or p2p clients typically < 1000
all you really say: will score high for that attribute

2. Syn count per period
highest on day 1, less so (still bad) on day 2
but it was scanning on day 1 as a normal bot client

3. pkt count for sent/recv. pkts HIGHEST on day 2
RECV pkts/SENT pkts 10/1

18

botnet client detection

typical IRC data gives us small meshes on campus of
max: 20, min: 2 IRC channels
ports used may be 6667, but may vary
some automated bots exist (devoted to traditional IRC
phenomenon like audio/video dissemination)
we have dorms …

what seems to happen though is that the botnet client
meshes SCAN with greater than one host during the
day
we therefore need an hourly/daily summarization

19

ubuntu channel - benign

ip tmsg ping pong privmsg ww server

net1.1 11598 1912 1910 6494 43 H

net1.2 7265 619 622 5086 0 H

net1.3 17218 4123 4100 7069 37 H

net2.1 28152 3913 3904 17113 0 S

20

F7 - an evil client mesh

ip tmsg ping pong privmsg ww server

net1.1 1205 377 376 428 42 H

net1.2 113 39 43 25 96 H

net1.3 144 60 61 21 94 H

net1.4 46 12 14 17 90 H

net1.5 701 343 345 11 90 H

net2.1 1300 587 593 101 16 S

21

evil channel sort – rank channels
based on simple metric

f7 ahead of ubuntu –
given 4/6 scanners compared to none

max work weight during day kept is important
idea

out of set of N, how many were scanners at any
time?

key idea: > 1 scanner in channel
plus of course other attributes in logs help
including ports
length and intensity of scanning

22

conclusions/future work

p2p vs malware scanners distinction is a
problem

we have an algorithm for p2p id based on pure
attributes
it’s not perfect but it’s not bad
we use signatures too (but they aren’t perfect)

given a set of attackers N (scanbots/spambots)
and not using IRC as a mesh organizing principle
how can we determine the mesh?
DNS?
p2p meshes are a problem here too

• except when they are the target

23

more information

see http://www.cs.pdx.edu/~jrb
"Locality, Network Control, and Anomaly Detection," James R.
Binkley, Portland State University, John McHugh, Carnegie Mellon
University, and Carrie Gates, Dalhousie University, PSU Technical
Report 04-04. January 2005. ps
"Ourmon and Network Monitoring Performance," James R.
Binkley and Bart Massey, Computer Science, PSU, Proceedings of
USENIX '05: FREENIX Track, April 2005. ps
"An Algorithm for Anomaly-based Botnet Detection," James R.
Binkley and Suresh Singh, Computer Science, PSU, USENIX
SRUTI: '06 2nd Workshop on Steps to Reducing Unwanted Traffic
on the Internet", July 7 2006. pdf
"Anomaly-based Botnet Server Detection," James R. Binkley,
Computer Science, PSU, FLOCON CERT/SEI, Vancouver WA,
October 2006. pdf
http://ourmon.sourceforge.net

http://www.cs.pdx.edu/~jrb
http://web.cecs.pdx.edu/%7Ejrb/ourmon2.ps
http://web.cecs.pdx.edu/%7Ejrb/jrb.papers/ourmon-freenix-final/ourmon.ps
http://web.cecs.pdx.edu/%7Ejrb/jrb.papers/sruti06/sruti06.pdf
http://web.cecs.pdx.edu/%7Ejrb/jrb.papers/flocon/flocon.pdf
http://ourmon.sourceforge.net/

	Anomaly-based Bot Server (and more!) Detection
	outline
	PSU’s network
	ourmon architectural breakdown
	 scan count graph (worm count) in Jan. 2005
	recent large ddos attack
	ouch ouch ouch
	botnet situation
	infrastructure – 3 tuples in ourmon (irc new, tcp syn old)
	irc tuples and stats
	irc measures
	TCP ww
	high abnormal scanner count – ironically was the real alert
	bot server detection: uh-oh, irc RRD has ping/pong way UP!
	hourly irc summary stats like so:
	botserver conclusions
	TCP syn point of view - stats
	botnet client detection
	ubuntu channel - benign
	F7 - an evil client mesh
	evil channel sort – rank channels based on simple metric
	conclusions/future work
	more information

