cent

Adding Network Flow
Analysis to Your
Security Architecture

Sid Faber

Member of the Technical Staff

CERT Network Situational Awareness
sfaber@cert.org

»

Software Engineering Institute | Carnegie Mellon ©2011 Carnegie Mellon University

Welcome to this session on Network Flow Analysis.

(CERT‘I | ?L: Software Engineering Institute | Carnegie Mellon © 2011 Carnegie Mellon University

Outline

- What?
a flow primer
. Why?
whether it fits your needs
- How?
tools and analysis
- More?
more analysis, better tools, additional resources

GE} | i Software Engineering Institute | CarnegieMellon © 2011 Carnegie Mellon University 2

In this session we'll begin by covering the basics of network flow analysis. After a brief look at the history of flow,
we’ll dig into some examples of how common network traffic appears in flow.

Once the basics have been covered, we’ll plug flow into a typical network security plan. There are some places
gaps left by other security tools that can be filled by flow, so by the end of this discussion you should be able to
decide whether flow might help solve some of your challenge problems.

Now that you’ve decided to add flow into your architecture, we need to find the right tools. In this section we’ll
talk about the architecture of the typical SiLK installation.

We’'ll close with a look at some of the more advanced tools and things that are in the works.

[CER‘T | i:_: Software Engineering Institute | CarnegieMellon © 2011 Carnegie Mellon University

A Flow Primer

A is for Application,
B is for Bulk Transport

@ | == software Engineering Institute | CarnegieMellon ©2011 Carnegie Mellon University 3

So let’s get started looking at what flow is all about.

ICERT‘ I ?:_= Software Engineering Institute | Carnegie Mellon © 20 Carnegie Mellon University

In the Beginning...

[] i516 3
First there were] g | Itk Lrgh
16-bit header idenciication bt ags 13-bit fragmentation offset
packets e I 168k header chacksem
- Source and destination IP 12bit source IP address
32-bit destination IP sddress
- Size & flag data
l options (f am) z
- Routing information (TTL,
fragmentation, QoS, etc)
r o 1r
Then protocols Source Port Osecracin Port
added ports v——
Adowledgement Number
= I Reserved | [Window Stz
Chaet= Ungenc Polnter

ece Jurc [ack | pse | rsT [onv | AN [owm |

GE} | i Software Engineering Institute | CarnegieMellon © 2011 Carnegie Mellen University 4

Let's take a closer look at the relationship between data packets and flow records.

Here you see the IP and TCP packet header. As you already know, each packet contains the source and
destination IP addresses. The IP packet also contains information about packet size, IP flags which help the
client interpret the data contained in the packet.

Routing information, and other packet related data in the IP header help get the packet to its destination. TCP
and UDP protocols encapsulated within IP packets contain source and destination ports which help the packet
find the right service on the destination machine.

CERT | == Software Engineering Institute | CarnegieMellon

Accounting for packets

The ISP asks, “who is using my bandwidth”
+ Only routers know
- Very high volume
- Routers know packets, we need them to summarize

Netflow was developed by Cisco in 1996
- Proprietary
- Evolved into the primary network accounting method

- |[ETF standard on IPFIX (based on Cisco NetFlow v9),
RFC5101

GE} | i Software Engineering Institute | CarnegieMellon © 2011 Carnegie Mellon University 5

So then how did packets end up generating flow? In the early days of Internet routing, the service
providers quickly realized that it was very important to know who was using network resources.

Some features of this problem quickly became apparent:
« Only routers tracked the information that was provided,
* The volume of traffic was very high so data collection had to match the volume, and

* Routers are very good at understanding and moving packets, so they can summarize packet
data—but they can not summarize actual content data.

As a result, Cisco developed a proprietary standard for netflow data collection. In 1996 that was

used for network accounting and network traffic analysis. This standard was quickly adopted by all
major routers, and became formalized into an Internet Engineering Task Force Standard based on
the most recent version of netflow. The proprietary “netflow” protocol has now become a standard
wire-format network “flow” protocol known as IPFIX (Internet Protocol Flow Information Exchange).

CERT | i‘: Software Engineering Institute | CarnegieMellon

Whatis a Flow?

A flow is an aggregated record of packets

SiLK flows are defined by five unique attributes
+ |IP Protocol (TCP, UDP, ICMP, IPSec, etc)

Source Address

Destination Address

Source Port

Destination Port

SiLK flows are unidirectional

GE} | i Software Engineering Institute | CarnegieMellon © 2011 Carnegie Mellen University &

As we have already discussed, the flow record is an aggregated summary of packets observed by
the flow sensor.

Each flow record combines all the packets that match the five unique packet attributes: [P protocol,
source and destination address and source and destination port.

SiLK flows are unidirectional; that is, packets from a client to a server are not combined with the
server to client packets because the source and destinations are swapped, so typical TCP sessions
result in two flow records—one from client to server and another from server to client.

CERT | i‘: Software Engineering Institute | CarnegieMellon

What Does a Flow Know?

Each unique flow (tuple) has associated attributes
+ Timing (start, stop)
+ Volume (packets, bytes)
- TCP flags
+ Collection location (sensor, traffic type)

Flows get flushed when they close
« Timeouts, TCP FIN/RST, router resources low

GE} | i Software Engineering Institute | CarnegieMellon © 2011 Carnegie Mellon University 7

As individual packets are combined into flow records, specific attributes of the packets are recorded
and saved with the flow record.

The flow records the time the first packet in the flow was seen, as well as the time the last packet
was seen. Remember, individual packets are instantaneous and don’t have time stamps or
durations. A flow record counts the total number of packets combined into the record, and the total
byte volume for all the packets that make up the flow.

A list of all the TCP flags seen in the flow is saved. The flow record also stores the location for where
the flow was collected. Also, remember that flow records can not stay in memory forever, and they
must be flushed to the collector. This happens when TCP sessions close and when the flows
timeout.

CERT | i‘: Software Engineering Institute | CarnegieMellon

SiLK Flows are Half Duplex

For the TCP 3-way
handshake, consider how
flows are counted:

M
» Flow 1 is created when the sensor @_’
observes the first packet between
hosts A and B.
« Flow 2 is created with the second
packet. Swapped IPs means a new
flow. ’®_’

+ The third ACK packet updates flow
1 since the source and destination
addresses and ports match.

GE} | i Software Engineering Institute | Carnegie Mellon © 2011 Carnegie Mellon University g

Let’s take another look at the concept of unidirectional flow records.

Consider the TCP three-way handshake, where the client sends a SYN packet to the server, the
server responds with a SYN-ACK packet, and the client finishes the handshake with an ACK packet.

As the first SYN packet passes the sensor, our first flow record is created. The tuple includes the
protocol (TCP), the source address A and the destination address B, and has the “flags” value set to
SYN only.

B responds with a SYN-ACK packet. This creates a _new_ flow record where the tuple has the
source address B and the destination address A.

The third packet, the ACK packet, matches the first flow record, since it has source address A and
destination B. This flow is updated with a packet count of two, the byte volume is increased, and the
“flags” value is changed from “SYN only” to “SYN plus ACK”. From here, you should be able to judge
how additional packets in this TCP session will be added to these two existing flow records.

CERT | i‘: Software Engineering Institute | CarnegieMellon

What is this #1

L

sIP| dIP|sPort|dPort|pkt|bytes|flags]| s
63.236.206.174| 72.24.144.5]44800| 25| 21|19606|FS PA| ®—>
72.24.144.5]163.236.206.174] 25144800] 17| 1066|FsS PA| g ;
63.236.206.174| 72.24.144.5144800| 251 1] 40| R | g g
63.236.206.174| 72.24.144.5144800| 251 1| 40| R | § ;
63.236.206.174| 72.24.144.5144800| 251 1] 40| R | g §

63.236.206.174| 72.24.146.90/44800] 251 1| 40 R |
72.24.146.90163.236.206.174| 251448001 1| 49| F PA|

GE} | i Software Engineering Institute | CarnegieMellon © 2011 Carnegie Mellon University o

At this point we will begin looking at some sample flow data. Whatis shown in this example? Can
you tell which IP address appears to be the client and which is the server?

We see communications on port 25, which means this is probably email (SMTP) traffic. IP address
72.24.177.5 appears to be the server since it is hosting the SMTP port 25 service.

Since IP address 63.236.206.174 is using a high numbered ephemeral port, it is the SMTP client.

Take a look at the byte volume. There’s a big difference between the client and the server—the
client set about five times as much data as the server, a total of about 20k bytes. That makes sense
if we consider 63.236.206.174 to be sending a message to 72.24.144.5.

What about all those RST packets? Well, they're all sent from the client to the server, and it seems
like they're sent after the FIN connection teardown has completed. Although we can’t tell exactly
what is going on here, it's not uncommon to see spurious RST packets at the end of a TCP session,
particularly with high-volume clients and servers.

Finally, did you notice that there are some extra records here that don’t really belong? The last two
records may have escaped your attention. They have the same client address and port, and they'’re
SMTP traffic, but they actually point to a different SMTP server.

CERT | i‘: Software Engineering Institute | CarnegieMellon

What is this #2

@w_ =
sIP| dIP|pro|pkt sTime|
.179|72.24.150.186| 1| :00.582|
4.179|72.24.148.123| 1| :00.911 |
4.179| 72.24.146.95| 1| :01.783|
.179|72.24.159.123| 1| :01.
.179|72.24.145.227| 1| 102,
.179| 72.24.154.87| 1| :02.3
.17@\77 24.149.212| 1| :02.

.24,158.18| 1| :02.7
72.24.150.34| 1| 102

24 153.102| 1| p)

.144.61| 1| 103 .4

7> 24 129.2| 1] 103,
.24.129.224| 1| 103,
2.24.151.196]| 1| 104,

U'l

o
<
s
N 0

IS
®®®®®g®®®®®

=

=
M NN NNND

®

w w
B
-
)

NN
(V]

w w
B

B
=
N

W)

w
B
=
(av)

[0)]
[0)}
B
=

N NN

(W)

o)}
[y

w w w w
B

fo))
B
®

w
B

()N e) I I}
(o)}

(o)}
O v v

.142.
.142.
.142.
.142.

o))
(o)
S

e e
O

w w
B
PR R R e

o)
(o)}
w
I
(o)}
5

1
.1
.1
.1
.1
.1

66 .1
.1
.1
.1

1

1

1

1

N NN NN NMNNMNMNMNNMNMNNNNMNNNNDN

=
N

O
(o))
w
B
=
o

'"WhatIsThis-2.txt" 15L, 871C

GE} | i Software Engineering Institute | Carnegie Mellon ® 2011 Carnegie Mellon University 10

What do you notice in this set of flow records? Does this look like normal traffic to you?

Taking a quick look at the IP addresses, you see that one address—the source address—
remains the same, while the destination address changes. In fact, you'll notice that while the
destination address changes, it only changes within a given range of addresses; the first two
octets of the destination address remain the same while the second to octets change. It looks
like the IP address 66.142.134.179 is scanning the 72.24 network. This is a scan.

Can you tell anything else about the scan? Let’s take a closer look. The protocol is always 1.
That means this is an ICMP scan. Each scan target receives two packets for a total of 122
bytes. That means each packet is probably half that, or 61 bytes. Each packet probably has a
40-byte IP header and four bytes of ICMP header, leaving room for 17 bytes of data.

Finally, look at the packet timing. We see about two to four packets per second. Is this a fast
scan, or maybe even a denial-of-service attack? Not at that rate.

Considering everything we've observed, this just looks like routine scan activity.

CERT | i‘: Software Engineering Institute | CarnegieMellon

What is this #3

P SEVCERT - SiLK
72.24.144,
68.8.27.
72.24.144,
68.8.27.
72.24.144,
68.8.27.

—

N N -
=

[0)}
B
N NN NN D

7|Fs
5|FS
8|FS
8|Fs
7|Fs
5|FS

w w
= = W
> W W

=N
O ¢
Vil Pp

N

AR, O EE O H
N TN

Ul U

4,144, 68.8.27.65|63707| 80| | FS
80|63707| | FS

4,144.12 .8.27.65|63957 8|Fs
.8.27.65|72.24.144. - : 8|FS

72.24.144.12| 68.8.27.65|64504| 80| 8|Fs
B8.8.27.65|72.24.144.12| 8e|64504| 8|FS
"WhatIsThis-3.txt" 16L, 909C :

GE} | i Software Engineering Institute | Carnegie Mellon ® 2011 Carnegie Mellon University 11

Next example. At first glance, this seems a bit more confusing than our last example. Is it normal
traffic, or something to be concerned about?

Ouir first clue in unraveling this traffic is to look at the ports. You should quickly recognize port
80, the port used for normal web or HTTP traffic. Every flow record on the list uses this port, so
it's probably all HTTP traffic. Looking at the first record, since 80—the service port—is the
destination port, that means that the destination IP address is the server. So we know that
68.8.27.65 is service HTTP traffic.

Similarly, looking at the high port, the ephemeral port, we identify the client as 72.24.144.12.
Also notice that the ephemeral port increases with new connections, which is to be expected.

We see three separate connections from the client to the web server all within 20 seconds, and
then three later connections. Each connection has normal flags—SYN, ACK and FIN—and a
reasonable number of packets. All in all, the first set of six flows—three TCP connections—
looks like a standard web page loading and then pulling down some included reference data like
images or style sheets.

Finally, take a look at all the flows together. Everything’s pretty similar, except for the timing.
There’s repetitive behavior here, but it’s pretty slow—there’s almost a minute between each
connection—and the timing is not exact. This does not look like system behavior; instead, it
looks like normal user interaction with a web site: click, read, click, read, click.

Overall, this looks like normal web browsing activity.

CERT | i‘: Software Engineering Institute | CarnegieMellon

What is this #4

sIP| sPort|dPort|pk
4.129.20|82.80.30. g8e| 1220| 1
.30.150|72.24. . 1220 | 80 |
4.129.20|82.80. 80| 1221|112
.30.150|72.24.129.20| 1221] g8o| 4
4.129.20|82.80.30.150| 80| 1223
.30.150|72.24.129.20| 1223 80|
4.129.20|82.80.30.150| 80| 1224|
.30.150|72.24.129.20| 1224] 80|
.30.150|72.24.129.20| 1223] 80 |

S sTime|
.602 |
.602 |
.710|
.710|
.341|
.341 |
.883|
.883|
.068|

w

w

w

J O U1t
w o omN

w

1
6
3

2
2
9
8
7

N NN NN NNN

SRPA|00@:
R Alee:

w o Oy O W

=

w

"WhatIsThis-4.txt"

GE} | i Software Engineering Institute | Carnegie Mellon ® 2011 Carnegie Mellon University 12

Here’s another example. Once again, you see the port 80 traffic right away, and can assume that
this is HTTP web browsing traffic. But there’s something a bit different about this set of flows. What
do you see?

You probably noticed right away that these flows are larger than the ones in the previous
example. Even though these sessions are large, this is still fairly normal for web traffic. This
could come from large images, or another rich media type.

However, did you notice the RST packets in these flows? In this case, we see resets being sent
from the client back to the server, which is not uncommon—the client probably no longer wants
the content being delivered. In fact, it's also very common for high-volume web servers to send
resets to clients as well, because it's much quicker and more efficient to shut down a TCP
session with a RST packet than with a FIN exchange.

Finally, note how the last flow happens long after the actual data exchange in the TCP session.
When the client timed out the TCP session it sent this reset packet. In cases like this you have
to watch the ephemeral port to make sure you don’t accidentally tie the last RST packet in with
the wrong TCP session.

CERT | i‘: Software Engineering Institute | CarnegieMellon

It’s All a Matter of Timing

The flow buffer needs to be kept manageable

Inactivity timeout:

- If there is no activity within [30] thirty seconds, flush the flow

Active timeout:

- Flush all flows open for [30] thirty minutes

30 min
<+ >

Lplr [Blr = o lplri=lrlrlrhs
W_J ~~ ~" JW‘

Flow 1 Flow 2 Flow 3

GE} | == software Engineering Institute | CarnegicMellon © 2011 Carnegie Mellon University 13

We briefly mentioned that flows have to time out to keep the flow buffer manageable. Let's take a
closer look at what causes a flow to time out.

Keep in mind that a “flow” means the tuple—source and destination ports and addresses. An
inactive timeout occurs when no packets are seen within the inactive window that match the tuple.
Active timeouts occur when a flow has been open for a specific period; this ensures that long-lived
flows are flushed off the sensor within a reasonable time.

Taking a look at this activity in a timeline, here you see individual packets with the same tuple,
packets that are aggregated into a single flow. Since inter-packet arrival is relatively quick, the
packets aggregate nicely. Then at some point, communications on the socket pauses for a period,
which causes the flow to time out. This is an inactivity timeout.

After the pause, the conversation becomes active again, and data continues to flow for a long time.
At a certain point—30 minutes in this case—the flow collector flushes the flow and starts a new flow.
This is an active timeout.

Now let’s take a look at flow records that have timeouts.

CERT | i‘: Software Engineering Institute | CarnegieMellon

What is this #5

9 SELCERT - SilK.
sIP|
97.138.194|72.24.145.
.1

a
O N H

o)
~ 00 B 00 b O

&l

1| 112|@e

] 112 | @¢
224|00:
224|00:13:
224|00:
224 |
112
112|00:
112 |ee:

\
500 |
500 |
500 |
500 |
500 |
500 |
500 |
500 |
500 |
500 |
500 |
500 |
500 |
500 |

=

Vo o
v U
® B L

® =
VLWWoow

5
5@
5

Ul
=

ONERPR R WWERRERRENNNN

N

@ | i Software Engineering Institute | Carnegie Mellon © 2011 Carnegie Mellon University 14

Take a look at this flow data, see if you can tell how flow timeouts affect what you see. Do you
recognize this traffic?

It might seem odd that both the source and destination ports are the same for this protocol 17
(UDP) traffic. However, that's actually typical for VPN clients.

Look at the packet and byte counts, however. They’re pretty small. Also look at the timing of
these packets—there’s a lot of time in between each one. What do you think this is?

To me this looks like a mostly quiet VPN, the only thing being sent on it are small keep-alive
type packets. That would also explain why the last flow is larger than the rest—at some point, a
small amount of data actually traveled across the VPN.

CERT | i‘: Software Engineering Institute | CarnegieMellon 14

What is this #6

&g SEVCERT - SilK
sTime|
9:11.361|1800.
9:11.91!

00 OO C
co

N

o]
N

2|18ee0.
20|1800.

2|31107 | PA
|31113|PA

O B N WO WO

"WhatIsThis-6.txt" 17L,

@ | i Software Engineering Institute | Carnegie Mellon © 2011 Carnegie Mellon University 15

What do we have here?

The first thing you'll probably notice about this traffic is the service port, 22. This is the port for
SSH so these all appear to be SSH client / server flows.

All the flags are PSH-ACK--no SYN, FIN or RST flags--so this definitely looks like one very long
lived TCP session.

Now look closely at the times. Each flow is 1800 seconds long—30 minutes, which is a
common setting for the active timeout. Then look at the start time for each flow—they’re almost
exactly 30 minutes apart. However, there are two sensors in play here: one rolls the flow over
at :26 and :56 minutes after the hour; the other one is on the hour.

This is normal SSH traffic for a long-standing, high-volume traffic.

CERT | i‘: Software Engineering Institute | CarnegieMellon

15

What is this #7

@ | i Software Engineering Institute | Carnegie Mellon © 2011 Carnegie Mellon University 16

Here’s the last example for you to take a look at. Don’t worry that the IP addresses are in the 10.x
network, this data has been anonymized.

This is port 80 web traffic. The first thing that should stick out immediately is that this is a very
long TCP session for web traffic. Normally HTTP sessions deliver a web page and then close;
occasionally streaming media will be delivered over HTTP, but that still rarely lasts for more
than a few minutes. In this case, we see a single session that’s been open from 2:00 until
almost 5:00.

Now take a look at the rate packets are being sent: 40 packets every 30 minutes. That’s slow,
certainly not fast enough for streaming media.

Finally, look at the last set of connections. They're all new TCP sessions that occur over the
course of a few hours, yet they all use the same ephemeral port. This looks very suspicious.

Overall, this does not appear to be normal HTTP traffic. What is it? We can't tell for sure, just
that it does not fit the typical profile for web traffic.

CERT | i‘: Software Engineering Institute | CarnegieMellon

16

Why Flow?

Image Courtesy www.ratemynetworkdiagram.com

CarnegieMell © 2011 Carnegie Mellon University 17

-h

That was interesting, but | can get all that from packet capture. Why bother with flow?

(CER“T I i: Software Engineering Institute | Carnegie Mellon © 2008 Carnegie Mellon University

Sensor Types

Alerting
+ Network IDS/IPS
+ Host-based IDS
Data Collection
« Firewall, router
+ Metadata collection
» Full packet capture

GE} | i Software Engineering Institute | CarnegieMellon © 2011 Carnegie Mellon University 13

Let’s start by considering the different types of sensors that might already be in your environment.

In general, alerting sensors feed some type of workflow so you can take action when something “interesting’
happens.

On the other hand, data collection sensors just pull information off the wire and store it until you need it to
investigate an event.

Flow fits in the “Data Collection” sensor; it’s similar to collecting firewall or router logs, metadata, or even full
packet capture.

So if | have those data collection techniques already, why bother with flow?

CERT | i‘: Software Engineering Institute | Carnegie Mellon © 2008 Carnegie Mellon University

Why Flow? Reason #1

Complaint: There’s no content!

Counter-complaint: That means privacy concerns
are minimal. Many privacy-conscious
organizations have legally approved flow collection.

GE} | i Software Engineering Institute | CarnegieMellon © 2011 Carnegie Mellon University 19

The major complaint is that there’s no content with flow, so there’s no value.

That actually can be a significant strength if your collection efforts are hampered by privacy concerns. Even
public service providers have been able to safely collect flow without violating privacy concerns.

CERT | i‘: Software Engineering Institute | Carnegie Mellon © 2008 Carnegie Mellon University

Why Flow? Reason #2

Complaint: There’s still no content!

Counter-complaint: Because there’s no content, you
can store lots of data. Using SiLK:
 Fully saturated 100mb link = 50Gb / month

« With a good storage back-end, you can easily query
50Gb of data in 10-20 minutes.

Details for SiLK storage and bandwith usage can be found in the SiLK Provisioning
Worksheet at http://tools.netsa.cert.org/releases/SiLK-Provisioning-v204.xls

GE} | == software Engineering Institute | CarnegicMellon © 2011 Carnegie Mellon University 20

Another reason to use flow is to be able to store lots of historical data. Most flow compresses nicely and any
traffic that doesn’t (mostly DNS and scanning) can be easily timmed from the long term data store if necessary.

rCER‘T | i:‘:‘ Software Engineering Institute | Carnegie Mellon © 2008 Carnegie Mellon University

Why Flow? Reason #3

Complaint: No, really, there’s still no content!!

Counter-complaint: Content is a distraction for many
problems.

» For many problems you need an index to get to the right
content in your huge data store

+ For other problems you need to search gobs and gobs of
history

» Encrypted? So what!

That's the niche where flow lives

GE} | i Software Engineering Institute | Carnegie Mellon © 2011 Carnegie Mellon University 21

Believe it or not, there are a lot of problems you face that really don’t need content. Or problems that you can’t
ask to your entire full content data set; problems where you need a pointer to focus your query. That’'s where
flow fits in nicely: you can do a broad sweep of your data set with flow, and then do a fine-grained query against
your full content data store.

Since flow doesn’t use content, it also has lots of advantages when analyzing encrypted traffic. Remember that
VPN tunnel from earlier that wasn’t being used?

CERT | i‘: Software Engineering Institute | Carnegie Mellon © 2008 Carnegie Mellon University

Got a Question? Flow Can Help

- What's on my network?

- What happened before the event?

- Where are policy violations occurring?

- What are the most popular web sites?

- How much volume would be reduced with a blacklist?
- Do my users browse to known infected web servers?

- Do | have a spammer on my network?

- When did my web server stop responding to queries?
- Who uses my public DNS server?

GE} | i Software Engineering Institute | CarnegieMellon © 2011 Carnegie Mellon University 22

We've spent time looking at where flow records come from, what data they contain, and seen how
network traffic appears in flow data. Hopefully you now can begin to consider many different ways
that flow can be used as part of your overall security suite. It can act as a tool to support forensic and
historical analysis, it can monitor your infrastructure, help you gain situational awareness about your
network, and locate some classes of security events.

CERT | i‘: Software Engineering Institute | CarnegieMellon

The Big Picture

Q. Why Flow?
A. So you can get beyond signature-based detection

That's Network Situational Awareness:

« Perceive
« Comprehend
+ Predict
GE} | i Software Engineering Institute | CarnegieMellon © 2011 Carnegie Mellon University 23

So at the end of the day, flow is your bridge between your data collection sensors and your alerting workflow. It’s
the place where you do things that are generally NOT signature-driven (although that’s starting to change), the
place where you really begin to understand what’s on your network.

For more information about situational awareness, see Mica Endsley’s paper “Toward a Theory of Situation
Awareness in Dynamic Systems”, Human Factors, 1995, 37(1), p32-64.

CERT | i‘: Software Engineering Institute | Carnegie Mellon © 2008 Carnegie Mellon University

CERT

Tools & Beginning
Analysis

- tools.netsa.cert.org
4

== Software Engineering Institute | CarnegieMellon ©2011 Camegie Mellon University

Argus is another popular open source flow collection and analysis package. Commercial products exist as well.
There’s even a module you can bind to a Linux Ethernet adapter to generate flow.

For the rest of this class we’ll be looking specifically at the SiLK toolkit. It's very mature (over a decade of large
installations), scalable (used by large organizations and service providers), actively maintained and it's open
source.

Let’s dig into some of the tools in the SIiLK toolkit and some things you can do with them.

{CER‘T | g_:f Software Engineering Institute | Carnegie Mellon © 2008 Carnegie Mellon University

The Flow Suite

Generate

« Aggregates packets into flow records
- Sends flow records somewhere

Store

« Gathers the flow records into a storage architecture
Analyze

« Retrieves and processes stored flow record

A Pluggable Architecture
We’'ll focus on SiLK but others exist

GE} | i Software Engineering Institute | CarnegieMellon © 2011 Carnegie Mellon University 25

A complete flow implementation requires three things: something that generates flow records from packets on

the wire, something that turns the wire-format flow (or netflow) records into a disk format and something that
allows you to analyze the on-disk flow records.

Commercial solutions based on netflow often will combine two or more of these things together, but it's important

to keep them all in mind as you plan for interoperability between sensors and security event management
systems.

CERT | i‘: Software Engineering Institute | Carnegie Mellon © 2008 Carnegie Mellon University

Flow Generation

Generate Store

Hardware Option
« Pro: easy

Dedicated Sensor Option

generate IPFIX and forward to the store

Analyze

» Router generates and forwards Cisco Netflow

« Con: router’'s main job is routing, not accounting

« Tap or span session to a dedicated appliance
« SiLK option is to use YAF (Yet Another Flowmeter) to

GE} | i Software Engineering Institute | Carnegie Mellon © 2011 Carnegie Mellon University 26

Most commercial routers can generate flow, so it might be an easy matter to simply turn on flow accounting and
have records generated for you. However, remember that a router’s primary job is to route packets, not to count
flow. As the router becomes overburdened—particularly in a denial-of-service condition—the router will stop

generating flow.

One alternative to reduce the load of generating flow records is to use sampling. For sampled flows, the router
will only count every 100t or 1000t packet. This works fine for determining large-scale network trends, but it

tends to mask many of the network behavior details that make flow valuable.

Another alternative is to use a dedicated sensor that exists specifically to monitor traffic and generate flow. The
SiLK suite includes “Yet Another Flowmeter” (YAF), a service designed specifically to create flow from a network

tap.

fCER‘T | i: Software Engineering Institute | Carnegie Mellon © 2008 Carnegie Mellon University

Flow Storage

Generate Store

Flow record on-disk fomat
« Highly tuned, very compact
« Most analyses are I/O constrained
« SILK uses binary flat file storage

Alternatives:
« SIM/SEIM or an RDBMS
« Generally don’t scale well

GE} | == software Engineering Institute | CarnegicMellon

Limited only by file system space, 10 performance

Analyze

® 2011 Carnegie Mellon University 27

The flow records are sent to a collector in Cisco Netflow or IPFIX format, and the collector is responsible for

storing the records on disk.

SILK uses a very tightly compressed proprietary data structure for storing flow on disk. Since analysis tasks are
often bound by the amount of time it takes to retrieve data from disk, it's important to keep the disk footprint

small.

It's also possible to store flow records directly in your security information manager or in a relational database.
That’s a great way to correlate flow with other events, but it generally will not scale well in larger organizations.

CERT | == Software Engineering Institute | CarnegieMellon

© 2008 Carnegie Mellon University

Flow Analysis

Generate Store Analyze

Generally an 1/0O problem
« SiLK’s “rwfilter” pulls records from the store

« Many supporting tools manipulate binary flow records
rwcut, rwuniq, rwsort, rwcat, etc.
Keep it binary as long as possible

« Specialized tools
IP sets, arbitrary IP labeling, statistics, top-N analysis

@ | i Software Engineering Institute | CarnegieMellon © 2011 Carnegie Mellon University 28

That leads us to analysis of the stored flow data. If you've used SiLK as your storage back end, you can take
advantage of a number of specialized analysis tools in the suite. The tools are designed to keep flow data in the
compressed binary form for as much of the analysis as possible—although you may be tempted to print out flow

records as text and bring them into Excel, you’ll be much more successful in large scale analysis by keeping the
data in binary.

Although the analysis tools are mature, you should still think of them as middle-tier tools. They’re generally all
Unix command-line driven and produce text output.

fCER‘T | i: Software Engineering Institute | Carnegie Mellon © 2008 Carnegie Mellon University

Typical Installation

Generate —— Store |—- Analyze |

Storage
Infra-
structure

Analysis
Server

-

Analyst

@ | i Software Engineering Institute | CarnegieMellon © 2011 Carnegie Mellon University 29

The typical large organization will have three distinct tiers for its flow collection and analysis setup. A dedicated
tap will feed a flow sensor, the sensor will send data to a distributed storage infrastructure, and the analysis
server will access data in the storage cloud.

{CER‘T | g_:f Software Engineering Institute | Carnegie Mellon © 2008 Carnegie Mellon University

Minimal Installation

@@m@maﬁ@Jﬁ/‘ Store %/ Analyze)

http://tools.netsa.cert.org/silk/livecd.html

Storage Analysis

LiveCD

You

@ | == software Engineering Institute | CarnegicMellon © 2011 Carnegie Mellon University 30

If you're a tinkerer, you can bypass all that complexity with the SiLK live CD. This CD has all the moving parts
loaded into a single virtual image, just about all you have to do is to define a network interface to begin sensing.

fCER‘T | i: Software Engineering Institute | Carnegie Mellon © 2008 Carnegie Mellon University

Let’s Get Practical
Some results of flow analysis

@ | == software Engineering Institute | CarnegicMellon ©2011 Carnegie Mellon University 31

Now let’s get back into some of the analysis that can be done once the flow infrastructure is set up.

(CER‘T | i: Software Engineering Institute | Carnegie Mellon © 2011 Carnegie Mellon University

31

120.16.86

235.185.173
120.16.86
235.185.173

235.185.173

120.16.86
235.185.173
235.185.173

235.185.173.
235.185.173.
235.185.173.

120.16.86.
235.185.173.
235.185.173.

235.185.173.

120.16.86.
120.16.86.
235.185.173.

120.16.86.
235.185.173.
120.16.86.

sIP|sPort]|

.207| 1637]235.185.173.
131| 3460| 120.16.86.
131| 3460] 120.16.86.
131] 3460| 120.16.86.
207| 1638]235.185.173
131| 3465| 120.16.86.
131| 3465| 120.16.86.
.131] 3465| 120.16.86.
.207| 1639]235.185.173
.131] 3666| 120.16.86.
131| 3666| 120.16.86.
.131] 3666| 120.16.86.
207| 1642235.185.173.
207| 1643|235.185.173.
131| 3465| 120.16.86.
.207| 1649]235.185.173,
.131] 3460| 120.16.86.
.131] 3460| 120.16.86.
207| 1649(235.185.173
131] 3460] 120.16.86.
207| 1649]235.185.173.

Example #1: Poison lvy

diP|dpPort|pro|pkts|bytes|ini|sess |

131]
207|
2071
207]
131]
207]
207|
2071
131]
2071
207]
207]
131]
131]
207|
131]
2071
207]
131]
207]
131]

3460|
1637
1637]
1637|
3465|
1638|
1638
1638]
3666
1639]
1639]
1639]
3460|
3465|
1643
3460
1649
1649
3460|
1649|
3460

é;;;’ | == software Engineering Institute | CarnegicMellon

6|
6|
6l
6|
6|
6|
6|
6|
6|
6|
6l
6|
6|
6|
6|
6|
6|
6|
6|
6|
6|

24|
40|
26|
38|
94|
55

81|
41|

144|s
40|
40|
40|
144|s
40|
40|
40|
144|s
40|
40]
40|
144|s
2040|s
16809|s
3688(s
23113|s
6526|
6664 |
5207
3608|

|
\
|
\
|
|
|
\
|
|
|
|F

|
Al
PA|
PA|
PA|
PA|

S
R
R
R

S
R
R
R

S
R
R
R

S

112:
All2:
All2:
All2:

|12:
All2:
All2:
All2:

112:
All2:
All2:
All2:

|12:

PA|12:
PA|12:
PA|12:
PA|12:
PA|12:
PA|12:
PA|12:
PA|12:

08:
08:
08:
08:
09:
09:
09:
09:
10:
10:
10:
10:
14:
15:
15:
24:
24:
28:
28:
59:
59:

50.
50.
51.
52.
52.
52.
53.
L7711
7741
54.
54,
.661]
37.
.791]
.026|
.184]
.424]
.561]
.674]
.2271
.265]

53
53

55

487
722|
316|
105|
093]
313|
020]

025]
787

755]

1

0o oo OO0OOCKHEHOOOoO

95
95
1789

sTime+msec| dur+msec|
.373]
.000]
.000]
.000|
444
.000|
.000]
.000]
.670]
.000|
.000]
.000]
.004]
513.
513.

393
398|

.440|
.550]
.016]
1788.
1800.
1800.

529|
622 |
619]

® 2011 Carnegie Mellon University 32

This showed up one day while watching the default poison Ivy port (3460). Can you explain what's going on here
based on what you know about poison ivy? What characteristics might help you decide if this is botnet

command/control traffic or just routine traffic on a non-standard port?

120.16.86.207 might have an implant that’s trying to connect to 235.185.173.131, but it looks like we're
missing the first SYN packet in this screen shot. It seems to be retrying the connection attempt every 60

seconds or so.

There’s a point where the connection succeeds, there’s a lot of data sent from the server (182) back to the

client (117), and then the connection stays open for over an hour.

Even with those features, it’s difficult to get a feel for what’s going on here. Let’s take a look at how the activity

proceeded over a longer time period.

CERT | == Software Engineering Institute | CarnegieMellon

© 2011 Carnegie Mellon University

Example #1: A Picture

01/22 01/22 01/22 01/22 01/22 01/22 01/22 01/22 01/22 01/22 Q1/22 01/23
02:00 04:00 06:00 08:00 10:00 12:00 14.00 16:00 18:00 20:00 22:00 00:00

[2357185.173.181:3460 ->' 120.16.86.2071" R O
1 L 1 L 1 L 1 L | I - 1 1 1 L I I
D 309bps
[235.185.173.131:3465 -> 120.16.86.207:" b]
it b i e—————
N N N S st L _
[235.185.173.199:3666 -> 120.16.86.207: (p693ops]

1 s | L 1 L | L | i | i | i | i %szs i |

85.173.199:3460 -> 120.16.86.207:"

L B
A

@ | == software Engineering Institute | CarnegicMellon © 2011 Carnegie Mellon University 33

Here’s an example of essentially the same traffic plotted over a 24-hour time span. Now can you spot the
beacon? And what do you think happened at 12:15? How about 18:30 and 19:45?

Originally we thought there was a beacon every 60 seconds; what’s actually happening are three retries 60-
seconds apart, and then a rest for 30 minutes.

This plot was generated using the “stripplot.py” python script with the command

./stripplot -v —-count=6 -fields=* controller.rw

’

This script uses SiLK, gnuplot and ghostscript to generate simple time-series flow visualizations as a .pdf file. It's
available here:

https://tools.netsa.cert.org/confluence/display/tt/Strip+Plots

And there’s a presentation on how to use it here:

https://tools.netsa.cert.org/confluence/download/attachments/10027010/Faber_StripPlots.pdf?version=1&modific
ationDate=1263239683000

fCER‘T | i: Software Engineering Institute | Carnegie Mellon © 2008 Carnegie Mellon University

https://tools.netsa.cert.org/confluence/display/tt/Strip+Plots
https://tools.netsa.cert.org/confluence/download/attachments/10027010/Faber_StripPlots.pdf?version=1&modificationDate=1263239683000
https://tools.netsa.cert.org/confluence/download/attachments/10027010/Faber_StripPlots.pdf?version=1&modificationDate=1263239683000
https://tools.netsa.cert.org/confluence/download/attachments/10027010/Faber_StripPlots.pdf?version=1&modificationDate=1263239683000
https://tools.netsa.cert.org/confluence/download/attachments/10027010/Faber_StripPlots.pdf?version=1&modificationDate=1263239683000
https://tools.netsa.cert.org/confluence/download/attachments/10027010/Faber_StripPlots.pdf?version=1&modificationDate=1263239683000
https://tools.netsa.cert.org/confluence/download/attachments/10027010/Faber_StripPlots.pdf?version=1&modificationDate=1263239683000
https://tools.netsa.cert.org/confluence/download/attachments/10027010/Faber_StripPlots.pdf?version=1&modificationDate=1263239683000

52:8443

Example #2: 30b UDP Packets

i ' 8558 “

734bps

1.4:21867 incd

S *.4:51317 Jap

RS 21279 120bpe

@ | == software Engineering Institute | CarnegieMellon

00 0200 0400 06:00 08:00 10:00 1200 14:00 16:00

18:00 20:00 22:00 00

© 2011 Carnegie Mellon University 34

One day | started looking at 30 byte UDP packets transiting my network. | found tons of them coming from all
over the place, destined for a small number of IP addresses in my network. Many were heading to addresses
that ended in .0 or .4, but never for a live host. They were coming from hundreds of thousands of sources.
Roughly 90% came from China, maybe another 8% from the Pacific Rim, and the remaining mostly from the

United States.

Look at the third strip: that’s what | found really confusing. All at once tens of thousands of clients almost

simultaneously started generating the same type of traffic.

Any idea what this might be?

CERT | == Software Engineering Institute | CarnegieMellon

© 2008 Carnegie Mellon University

Example #1: 30b UDP Packets (Single Host)

09/08 09/08 09/08 09/08 09/08 09/08 09/08 09/08 09/08 09/08 09/08 09/08 09/09
00:00 02:00 04:00 0600 08:00 10:00 12:00 14:.00 16:00 1800 20:00 22:00 00:00

a4 S 210040 KPS 1 ¢ 1 v oy 0 v T
(111 NP A s it 1 |

14bps ¢

120 = 75.0:185!

| PR T PR T

T T 844
mmmmmMmMuﬂhﬁﬂmlmm.l. AP 1

42 > 13.114:9604 14PS =

P 1101 | O I |

12 > t51.o:417T""S —
AP VI T I T 1) I R 1 D A A

ot 5.18:39480]

ll. ll.]l IR [T I T— — 1 P I o Fo— |

@ | i Software Engineering Institute l Carnegie Mellon © 2011 Carnegie Mellon University 35

Here’s a view of the packets generated by a single IP address. Note how the source will hit up four destinations
at atime. Whenver we see traffic like this we’re tempted to think the worst—that it's some type of attack—but it
just doesn’t have the hallmarks of a distributed denial-of-service attack or anything else particularly malicious.

So what is this? I'm still not sure, but | believe it's some type of broken peer-to-peer software; likely peer-to-peer
IP Television which is widely used in China. But | never found out for sure.

fCER‘T | i: Software Engineering Institute | Carnegie Mellon © 2008 Carnegie Mellon University

Example #3: IP Watchlist

[===m.125" -4 112 294:" |

T 118 - 112 s 108" |

R T P .
! lmsméps
= 10.27" > 190_===08" |
R IR B SR ll L l [-

Setemacw
| O TR Y U 1 IO N N 1 DO N £

02i18 0218 02118 02118 02118 02118 0218 02018 02118 02118 02118 02[19
02100 04i00 0600 0800 10j00 12j00 14i00 16{00 18/00 20j00 22{00 _ 00}00

GE} | i Software Engineering Institute | CarnegieMellon © 2011 Carnegie Mellon University 35

Can you spot the beacon? Any idea what this is?

This is actually a view of traffic destined to known Conficker sinkholes. Review what you know about conficker—
can you explain what’s going on in these plots?

fCER‘T | i: Software Engineering Institute | Carnegie Mellon © 2008 Carnegie Mellon University

Example #4: Beacons

FTP Anti-Virus Updates

1.23:->*21

HTTPs strangeness

3

497>

@ | i Software Engineering Institute | CarnegieMellon © 2011 Carnegie Mellon University 37

All beacons are not malicious. Here are some examples of two benign beacons. The first one is for anti-virus
updates; in this case it looks like the update check is about every 10 minutes. This might represent updates for
multiple clients behind a single NAT’d IP address. Can you tell when the clients are shut off for the evening?

The second strip shows some aggressive SMTP retries. There are a number of scenarios where email can get
caught in a resend loop for a few days, can you think of any?

The final plot is just plain odd HTTPS traffic. It's relatively slow and flat, it looks kind of like a stale HTTPS
channel...but it shouldn’t stay active for a whole day!

fCER‘T | i: Software Engineering Institute | Carnegie Mellon © 2008 Carnegie Mellon University

Routine Behavior: Streaming Media

Streaming video: browse, watch, browse watch,
done.

D0.3005780 ; i A i ; i | 43Kbps
.|.i.i.i.|.|r“‘i.|.i.|.|.1

Streaming Audio: Browse, browse, listen

~

734780 § § : § :]J : i 19Kbps
.i.i.i.i.i.i.bi.ﬂt 0 R T

GE} | == software Engineering Institute | CarnegicMellon © 2011 Carnegie Mellon University 33

Here’s a comparison of traffic for streaming media, typically the largest consumer of bandwidth on your network.

Note how streaming video—youtube in this case—shows a browse, watch, browse, watch pattern and the videos
are all rather short.

Contrast that with the streaming audio example in the second strip. Bandwidth is smaller, but you see a steady
utilization that covers a few hours.

CERT | ij_: Software Engineering Institute | CarnegieMellon © 2011 Carnegie Mellon University

A Network Anomaly

Different hosts and protocols on the same network:

960bps

129:%>%:53

L VR LT \RIENL Ly, TR N

A10:%-%%:53

[, [

i 1024bps

Lu-ja_-iht A:Lr_,.uu Lu..m.u]l n......il-ll :l.hux.

m s T R T R R
0 L TR

24:1064->"53 : i 5 5 : : : 53803

In'uld.ln

@ | == software Engineering Institute | CarnegicMellon © 2011 Carnegie Mellon University 39

And what’s going on here? I'm not quite sure, but there’s definitely an anomaly. Probably there was a network
outage that resulted in an increased volume of DNS retry attempts.

(CER‘T | i: Software Engineering Institute | Carnegie Mellon © 2011 Carnegie Mellon University

Better Tools, More
Resources

@ | == software Engineering Institute | CarnegicMellon © 2011 Carnegie Mellon University 40

Let’s take a brief look at some of the things that are on-the-way for the SiLK tool suite.

fCER‘T | g_:f Software Engineering Institute | Carnegie Mellon © 2008 Carnegie Mellon University

YAF Improvements

Application labeling
« “app’” field tags HTTP, SSH, Teredo, 20+ protocols
Metadata Capture

* DNS (becomes your pDNS store)
- HTTP server, user-agent, referrer, etc
« X.509 certificates (in progress)

Generate +~ Store ﬁ/ Amnalyze
\ 7

GE} | == software Engineering Institute | CarnegicMellon © 2011 Carnegie Mellon University 41

Recall that YAF is the tool that counts packets and creates flow records. YAF includes an “application labeling”
feature that allows you to assign an integer to a flow based on deep packet inspection. This is very useful to

identify protocols—for example, a relatively simple regular expression can identify HTTP traffic running on any
port and assign it an application label of “80”.

Since YAF is inspecting packets, it has been re-engineered to pull deeper metadata out of the conversation.
Since IPFIX allows for more generic passing of information about a flow, YAF can pull some metadata off the
wire and add that to the flow record. Eventually YAF will become a passive DNS collector, HTTP monitor and
pull metadata out of any number of protocols.

CERT | i‘: Software Engineering Institute | Carnegie Mellon © 2008 Carnegie Mellon University

YAF Inspector (almost live!)

& yinspector: YAFDPI - Windows Internet Explorer ol e =
\J\J | &) http://106548.2/yinspecto ~[2[4] x|[lo sing TS
File Edit View Favorites Tools Help

3 Favorites | ok) Suggested Sites v 8] Web Slice Gallery v

@ yinspector: YAFDPI fi > B -0 @ v Pagev Safetyv Tools~ @~ 7

ylnspector

DPI - you know you want to look

Search...

@ @ Internet | Protected Mode: On v Ri1xsn -
Generate [~ | Analyze J
@ | === software Engineering Institute | CarnegieMellon ©2011 Carnegie Mellon University 42

Although IPFIX allows collection of metadata, a mature storage solution for the data does not yet exist.
yinspector seeks to fill that gap with flexible storage and query of IPFIX metadata.

fCER‘T | i: Software Engineering Institute | Carnegie Mellon © 2008 Carnegie Mellon University

YAF Inspector Reports and Queries

DataTable Graph

Top 10 Referrers

Query Results Total: 10 Records

Referer Total

w2 DataTable Graph =

http://twitter.com/

wommenen . TOp 10 User Agent Strings

http://www.ustream.tv/channel/one-track

http://www.wired.com/wiredscience/2010 Query Results Total: 10 Records
e.com/sea UserAgent 4 Total

fozilla/5.0 (Macintosh; U; Intel Mac OS X 10

Mozilla/5.0 (Macintosh; U; Intel Mac OS X 10.6; en-US; 13469

m

Moz 5.0 hone; U; CPU iPhone OS 4
Mozilla/5.0 (X11; U; Linux i686; en-US; rv:1.9.2.13) G(5332
Mozilla/5.0 (Linux; U; Android 1.5; en-us) AppleWebKit4918

© 2011 Carnegie Mellon University 43

@ | === software Engineering Institute | CarnegieMellon

[intentionally blank]

fCER‘T | i: Software Engineering Institute | Carnegie Mellon © 2008 Carnegie Mellon University

Pipeline

Process flows as they are collected
« Moves some analysis into the storage phase
« Alert data: watchlists, beacon detection

- Situational Awareness data: inventories, IPv6 usage,
current activity

Analysis Alerting
Pipeline Workflow

Generate — - Store F/ Analyze

J J

® 2011 Carnegie Mellon University 44

@ | == software Engineering Institute | CarnegieMellon

Pipeline is a new and significant improvement that will allow flow analysis to feed directly into the alerting flow in
real time—but it won’t require you to throw all your flow records into your security correlation engine.

Analysis pipeline takes a streaming feed of events, maintains state, performs analytics and feeds an alerting
library.

fCER‘T | i: Software Engineering Institute | Carnegie Mellon © 2008 Carnegie Mellon University

iISiLK (when you need something clicky)
rwfilter
B Query Builder (LBNL-62eu.isilk) g
--type=out : i _
--start=2011/04/12:00 " 8 e e ke
--end=2011/04/12:12 ¢ [om
--dport=80,8080,443 el Gasen || == —
-—pass=tmp.rw T | M (e ;
5[6|7 ;léi\j!ll!‘! 5(6[7 ;151130'“‘ Desmdonp s
12]13]14[15 18 12[13[14]15 18
STl el | [T e se | e
|- 11 Choose
Start hour (GMT): 0 — Endhour (GMT): | 23 S it R 3
2 days O hours
Name | Web traffic n-out same ports Addto |LBNL-62eu.istk v [Return records that FAIL fiter
| =0
Generate|—_store | (NN
@ | === software Engineering Institute | CarnegieMellon ©2011 Carnegie Mellon University 45

As mentioned at the beginning, all of the SiLK analysis tools run from the Unix command-line. iSiLK is a

graphical user interface that will generate all the commands for you, display the output in a spreadsheet and
produce simple visualizations.

fCER‘T | i: Software Engineering Institute | Carnegie Mellon © 2008 Carnegie Mellon University

Prism

[

3
Total
z

=

Client Webo

=

Served Webo

0718 07119 07120 07/21 07/22 07/23 0724 07/25
Generate|—_ Store | — (NN
@ | == soft Institute | CarnegieMellon ©2011 Carnegie Mellon University 46

Prism is a situational awareness tool used to carve traffic up into flexible bins and display long term trends.

ICERT‘ I ?:_= Software Engineering Institute | Carnegie Mellon © 2008 Carnegie Mellon University

Other Analysis Tools

Rayon
pySiLK; the NetSA python toolkit

IPA: the IP Address Annotation System

Generate ——- Store J—/m
7

GE} | == software Engineering Institute | CarncgicMellon © 2011 Carnegie Mellon University 47

Stay tuned, there’s much more in the works!

{CER‘T | g_:f Software Engineering Institute | Carnegie Mellon © 2008 Carnegie Mellon University

Where to go for more

The entire SiLK training class is on-line!

Also available at http://tools.netsa.cert.org:
LiveCD
Software
+ Documentation
Wiki / Tooltips
Scripts

FloCon 2012 (mid-January)

FloCon2011 O) Y

GE} | i Software Engineering Institute | CarnegieMellon © 2011 Carnegie Mellon University 48

For the SILK training class go to https://tools.netsa.cert.org/ and select the “Online Training” link in the left
column. This brings up the public Virtual Training Environment course on “Using SiLK for Network Traffic
Analysis”. This five-hour course covers most of the SiLK analysis tools and techniques and includes a hands-on
lab.

You can find the SiLK LiveCD at https://tools.netsa.cert.org/silk/livecd.html or by clicking on “SiLK” under the
Projects section and selecting LiveCD from the menu.

fCER‘T | i: Software Engineering Institute | Carnegie Mellon © 2008 Carnegie Mellon University

https://tools.netsa.cert.org/

Questions?

http.//tools.netsa.cert.org
netsa-help@cert.org
sfaber@cert.org

@ | == software Engineering Institute | CarnegicMellon ©2011 Carnegie Mellon University 49

[intentionally blank]

fCER‘T | i: Software Engineering Institute | Carnegie Mellon © 2006 Carnegie Mellon University

NO WARRANTY

THIS MATERIAL OF CARNEGIE MELLON UNIVERSITY AND ITS SOFTWARE ENGINEERING
INSTITUTE IS FURNISHED ON AN “AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO
WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING,
BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY,
EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON
UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM
FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

Use of any trademarks in this presentation is not intended in any way to infringe on the rights of the
trademark holder.

This Presentation may be reproduced in its entirety, without modification, and freely distributed in written or
electronic form without requesting formal permission. Permission is required for any other use. Requests
for permission should be directed to the Software Engineering Institute at permission@sei.cmu.edu.

This work was created in the performance of Federal Government Contract Number FA8721-05-C-0003
with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded
research and development center. The Government of the United States has a royalty-free government-
purpose license to use, duplicate, or disclose the work, in whole or in part and in any manner, and to have
or permit others to do so, for government purposes pursuant to the copyright license under the clause at
252.227-7013.

GE} | i Software Engineering Institute | CarnegieMellon © 2011 Carnegie Mellon University 50

fCER‘T | i: Software Engineering Institute | Carnegie Mellon © 2008 Carnegie Mellon University

