
A Maze of Twisty Passages all Alike:
A Bottom-Up Exploration of Open Source

Fuzzing Tools and Frameworks

Matthew Franz
mdfranz@threatmind.net @frednecksec

CERT Vulnerability Discovery Workshop (Feb 2010)

mailto:mdfranz@threatmind.net

Agenda

• Introduction

• Beyond smart & dumb
fuzzers

• A Case Study in Fuzzer
Selection

• Conclusions (and stuff I
ran out of time on)

Source: http://www.colossalcave.com/cavetour.html

http://www.colossalcave.com/cavetour.html

Where I’m coming from…

• Lots of “big company” security QA/R&D during early-mid 2000s
– Primarily dealt with binary protocols on embedded devices
– Wrote a variety of protocol-specific fuzzers and two attempts at block-

based multi-protocol fuzzing frameworks (in Python/C#)
– Used some commercial tools near the end

• Some on-the side (mostly unbillable) vuln research in a small SCADA
security consulting firm
– If Amap and Nessus find bugs, your fuzzers can be pretty crude
– Still somewhat traumatized by the SCADA disclosure debate

• Enjoyed a sabbatical from vuln research & pen-testing from late
2006 to mid-2009, but slowly getting back into it again
– Sneak some robustness testing in compliance engagements
– Focusing Smart Grid (AMI), SCADA redux, etc.
– Trying to resist the temptation of writing new tools from scratch

Fuzzing in 2010

• No longer exotic/boutique
– Responsible for some non-

trivial % of vulns discovered
– Even integrated into

commercial singature based
vuln scanners

• Over 100 fuzzers on Jeremy
Brown’s list
– Range of capabilities and

usability/usefulness
– Dormant to active

development
– Crude Perl hacks to well-

defined documented APIs

• Can there be too many
choices?

Objectives & Non-Objectives of this Talk

• Try to untangle the “maze” of FOSS fuzzers by:
– Isolating the discrete feature-sets most useful for performing

efficient software security testing
– Developing a framework for evaluating and selecting tools for

specific users & use cases
– Identifying common (and useful) design & implementation

approaches and highlight some standouts and areas for
development

• Avoiding some more interesting problems
– Coverage metrics
– Effectiveness and track record of tools
– Fuzzing bake-off vs. reference implementations
– Commercial vs. Open Source capabilities

Who uses Fuzzers and why do we care?

• QA/test engineers
– “Click on start” and give me a traffic light when done
– Coverage, repeatability, test case reduction are a major concern

• Pen-testers of various shapes & sizes
– That probably know how to do a little scripting
– That should know how protocols work on the wire
– A single bug might be good enough

• Hard core bug hunters
– That could implement the protocols they are testing (in .asm)

This diversity of objectives, backgrounds, requirements,
programming/scripting languages has led to the “the maze”

Exploration Approach

• Biases
– Religious conviction that C (and Perl) should be avoided at all costs and that

simple small lightweight tools are always best
– Selfish interest in binary & proprietary network protocols
– Which tools would be the most useful for some upcoming projects and that

could be used by members of my team (who have less experience with
robustness testing)

• Evaluation criteria
– Tools had to support multiple protocols /applications/file format
– Compiled relatively easily on a recent version of Ubuntu
– Open Source only (wasn’t anal about license terms)
– Web client/server tools were sufficiently different to exclude them

• Analysis process
– Too much time reading through source code and trying to get them to work
– Not enough time fully testing all the features on real protocols
– Focus was on a identifying discrete attributes (see the .xls for the raw data)
– Validated scheme based on a larger number of tools and then narrowed down

BEYOND SMART & DUMB FUZZERS

Attributes of Fuzzers/Frameworks

• Target – external interface under test
– Client, Server, Parser, Kernel, Protocol, etc.

• Mode of Operation
– API
– Executable

• Language – Python, C, Ruby, etc.
• Transport – you can inject test cases into the

application/protocol (TCP, IP, UDP, SSL, IPv6)
• Template

– Generation – manual automated, inline, from traces, file source
– Data Model – representation of messages and protocol state
– Built-in Functions – crypto, checksum, hashes, encoding, etc.

Attributes of Fuzzers & Frameworks (cont.)

• Fault Payloads
– “canned” vs. programmatic
– buffer overflow, format string, bit shifting, etc.

• Debugging & Instrumentation
– Fault detection
– Control and monitoring of target (both internal

• Session Handling
– Capture, storage, replay
– Logging
– Interactive vs. Unattended
– Pause, stop restart, breakpoints

• Documentation & Examples

See the spreadsheet for the details…

Attributes & Workflow (all features)

Generation

Inline Proxy

Capture / Conversion

Target

Transport (injection)

Template

Session Recording & Replay
Breakpoints

Logging

Debugging

Data
Model

Payloads

State
Model

Mode of Operation

Operating Modes

• Approaches
– API-based

• Write code in a scripting language
• Extend existing processers
• Examples: sulley, ruckus, peach, fuzzled

– Executable
• Execute fuzzing engine against a more/less complex configuration file with

more/less complex command-line options
• Examples: peach, GPF, autodafe

• Primary consideration: time to test/develop
– Go with executable if you have limited time
– If you have to partially implement the protocol anyway you should

probably go with API
– Some configurations files (templates) are more convoluted that coding

More on Templates

• Template development is the most tedious
(and sometimes difficult) process of modeling
the valid/invalid data

• Auto generation of an “unknown” protocol
remains a “holy grail” problem

– This is was the point of the protocol informatics
(PI) project

Example Template Files

Autodafe (Modbus/TCP) GPF (MongoDB)

A Peach Template

Single XML file contains message format, states, and injection commands

Auto Template Generation

• Approaches
– PDML*

• Autodafe - pdml2ad generates block based description based on
• Peach – allows creation of Peach pit

– Pcap
• GPF – creates text file (.gpf) that is replayed (with multiple malformation

options)

– Inline
• Taof

• Caveats
– Best to just use a single stream
– PDML requires a Wireshark dissector

* Not Open Source but pcapr.net does this and JSON file that you can run with mudos to inject
the packets against a target

Payload Generation

• Approaches

– Primitive randomization

• Tcpjunk, isic, GPF pure mode

– “CGI-Scanner”-style dictionary of known bad
requests (format strings, strings and numeric
input to test boundary conditions

• 4f,autodafe, SPIKE

– Various mutation APIs

• Peaches, Ruckus, Antiparser

Tools by Development Status (Last Release)

Recent Development

• Tcpjunk (1/2010)

• Peach (1/2010)

• Sulley (2/2009)

• Ruckus (4/2009)

Apparently Dormant

• Fuzzled (10/2007)

• Autodafe (8/2006)

• Scratch (9/2004)

• SPIKE (4/2004)

• SMUDGE (9/2004)

• GPF (Jared?)

Dealbreakers: Active Projects

• Peach
– Robust set of features but a huge

learning curve and insane
dependencies (a 20MB installer?)

– Not Linux/OSX friendly
– PDML conversion disappeared/is

hidden in 2.3.x
– Maybe I can reuse some of the

APIs

• Tcpjunk
– No example templates
– No way to automatically create

them
– ASCII protocol bias

Recommended Improvements for the “Keepers”

• GPF

– Write some wrappers for command-line
arguments

• Taof

– Better representation of binary protocols and
marking of “fuzz points”

• Sulley

– Automatic generation block descriptions

A CASE STUDY IN TOOL SELECTION

Fuzzing MongoDB in 20 minutes (hypothetically)

• What is MongoDB?
– Document oriented #nosql database (in the same

family as CouchDB)
– Written in C++ (with broad driver support in various

scripting languages)
– Uses SpiderMonkey (or Google V8) for its .js engine –

queries are in JavaScript (and JSON)
– Has a proprietary JSON like serialization protocol

called BSON

CAVEAT: http://github.com/mongodb/mongo-c-driver/ does show evidence of
embedded fuzzing in bson.c

http://github.com/mongodb/mongo-c-driver/
http://github.com/mongodb/mongo-c-driver/
http://github.com/mongodb/mongo-c-driver/
http://github.com/mongodb/mongo-c-driver/
http://github.com/mongodb/mongo-c-driver/

Selecting your fuzzer: info gathering

• Do you have a protocol specification?

• Is your protocol supported by Wireshark?

• What are the data types and representation
format? Protocol states?

• Is authentication & encryption required?

• If authentication is required, can you replay?

Info Gathering

• Protocol specification (partial)
– http://www.mongodb.org/display/DOCS/Mongo+Wire+Protocol

• Not supported by Wireshark
– PDML doesn’t help me here

– So I need to use GPF or Taof

• No authentication by default

• Mixed Binary + ASCII protocol

• Passes lots of JavaScript/JSON
– Fusil might be a possibility here

• Build on existing client implementations?

http://www.mongodb.org/display/DOCS/Mongo+Wire+Protocol

20 Minute Results

• Taof
– Used proxy mode to connect mongo client to server

– Logged initial connection

• GPF
– Server rejected all payloads generated by “simple

fuzzing” - bad recv() mostly due to length

– Converted login sequence and used replay mode
• Many caught assertions in BSON processing and assertion

failures

• Created “interesting” databases and eventually a malloc
failure

CONCLUSIONS

Non-Surprising Conclusions

• There is no single fuzzer (or framework) to “rule them
all”
– All of the tools have tradeoffs & feature/documentation

gaps

• Seemingly dead projects (and even those written in C)
can still be useful

• Pay me now or may be later
– You will have to write “code” no matter what

– Ambivalent about learning/using block-based fuzzing DSLs

– Generation & mutation is not the only thing you do with
the protocols

So going forward…

• For quick best-effort fuzzing, go with GPF

– or Taof for fuzzing newbies

• Develop protocol specific fuzzers in Python
but re-use APIs where possible

– Sulley, Antiparser, and possibly even Peaches

A Subjective Fuzzer “Magic Quadrant”
Ea

se
 o

f
U

se

Breadth of Features

Peach

GPF

ruckus

taof

tcpject

isic

fusil sulley

antiparser

