
Instrumented Fuzz
Testing using AIR
Integers

© 2010 Carnegie Mellon University

Integers

Will Dormann [wd@cert.org]
Robert Seacord [rcs@cert.org]

NO WARRANTY

THIS MATERIAL OF CARNEGIE MELLON UNIVERSITY AND ITS SOFTWARE ENGINEERING
INSTITUTE IS FURNISHED ON AN “AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO
WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING,
BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY,
EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON
UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM
FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

Use of any trademarks in this presentation is not intended in any way to infringe on the rights of the
trademark holder.

2

trademark holder.

This Presentation may be reproduced in its entirety, without modification, and freely distributed in written or
electronic form without requesting formal permission. Permission is required for any other use. Requests
for permission should be directed to the Software Engineering Institute at permission@sei.cmu.edu.

This work was created in the performance of Federal Government Contract Number FA8721-05-C-0003
with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded
research and development center. The Government of the United States has a royalty-free government-
purpose license to use, duplicate, or disclose the work, in whole or in part and in any manner, and to have
or permit others to do so, for government purposes pursuant to the copyright license under the clause at
252.227-7013.

Agenda

AIR Integers

Implementation

Performance

Fuzz Testing

Experiment

3

Experiment

Future Work

Summary

As-If Infinitely Ranged Integers

The purpose of the AIR integer model is to either

• produce a value which is equivalent to a value that would

have been obtained using infinitely ranged integers

• result in a runtime constraint violation.

This model is generally applied to both signed and

unsigned integers but may be enabled or disabled

4

unsigned integers but may be enabled or disabled

per compilation unit.

AIR Integer Model

In the AIR integer model, when an observation point

is reached, and before any critical undefined

behavior occurs, if traps have not been disabled, and

if no traps have been raised, then any integer value

in the output is correctly represented (“as if infinitely

ranged”).

5

ranged”).

An observation point occurs at an output, including a

volatile object access.

Traps are implemented using either

• existing hardware traps (such as divide-by-zero)

• by invoking a runtime-constraint handler

Observation Points

AIR Integers do not require where an exception is

raised every time there is an integer overflow or

truncation error.

It is acceptable to delay catching an incorrectly

represented value until an observation point is

reached just before it either

6

reached just before it either

• affects the output

• causes a critical undefined behavior (as defined by the

C1X Analyzability Annex).

This model improves the ability of compilers to

optimize, without sacrificing safety and security.

Configuration

Requirements

• A patched version of GCC 4.4.0 or GCC 4.5.0 to insert

the overflow and truncation checks

• A patched stdlib.h file to include the runtime-

constraint handler definitions from ISO/IEC TR 24731-1

• The libconstraint library, which defines the

7

• The libconstraint library, which defines the

constraint handlers used by AIR Integers

All of this is available from

http://www.cert.org/secure-coding/integralsecurity.html

Using AIR Integers 1

AIR Integers do not require changes to source code

and can be used with pre-existing systems.

After configuring a system properly, AIR Integers can

be used simply by recompiling a program with the

following flags:

8

following flags:

gcc –std=c99 –D__STDC_WANT_LIB_EXT__

-fcheck-overflow=n –fcheck-truncation

–lconstraint –o prog prog.c

Using AIR Integers 2

–D__STDC_WANT_LIB_EXT__ enables the

constraint handler definitions in stdlib.h

-fcheck-overflow=n enables overflow checking

• n=0 – Disable overflow checks (default)

• n=1 – Enable signed overflow checks

9

• n=1 – Enable signed overflow checks

• n=2 – Enable signed/unsigned overflow checks

–fcheck-truncation enables truncation checks

–lconstraint links the constraint handler library

Constraint Handling

Constraint handlers are defined in the C1X normative

Annex K “Bounds-checking interfaces” and by

ISO/IEC TR 24731-1 to allow functions to trap when

their runtime constraints are violated.

Constraint handlers have the following type.

10

Constraint handlers have the following type.

typedef void (*constraint_handler_t)(

const char * restrict msg,

void * restrict ptr,

errno_t error

);

Constraint Handling 1

AIR Integers uses the custom libconstraint

library to define and implement simple constraint

handlers to be called when overflow or truncation

occurs.
• abort_handler_s : Indicate error on stderr and abort

• ignore_handler_s : Continue execution as normal

11

• ignore_handler_s : Continue execution as normal

• notify_handler_s : Indicate error on stderr and continue

Constraint Handling 2

The default handler is notify_handler_s, which

prints errors like

*** Runtime constraint violated:

Signed integer overflow in addition at address 0x806dc4e

12

The TR 24731-1 defined function
set_constraint_handler_s, can be used to

register a different handler at runtime.

Custom constraint handlers can also be defined and

registered at runtime.

Agenda

AIR Integers

Implementation

Performance

Fuzz Testing

Experiment

13

Experiment

Future Work

Summary

Testing vs. Runtime Protection

AIR integers can be used in both dynamic analysis and as a

runtime protection scheme.

There is a well understood tradeoff between runtime overhead

and development costs.

• Providing correctness “guarantees” requires extensive testing and
excruciating attention to detail

14

• Development costs can be decreased by adding runtime protection
mechanisms however this will

— increase the size of the executable

— Introduce runtime overhead

• Runtime protection mechanisms still require a viable recovery
strategy

• It is reasonable to provide some level of assurance combined with
runtime checks, but you don’t want to pay twice

Benchmark Tests

To evaluate the performance of AIR Integers, runs of

the integer portion of the SPEC CPU2006 benchmark

were performed.

This benchmark evaluates compilers by compiling

and running multiple packages, such as bzip2, gcc,

15

and running multiple packages, such as bzip2, gcc,

and libquantum.

Performance Results

These ratios summarize the size of the runtime

penalty imposed by using AIR Integers.

The ratios are measured against a consistent

standard. Higher ratios reflect better performance.

16

Optimization
Level

Control
Ratio

AIR Integer
Ratio

Percent
Overhead

O0 4.93 4.65 6.02

O1 7.28 6.90 5.51

O2 7.45 7.08 5.22

Performance Analysis

The benchmark test with AIR Integers was performed

with full overflow and truncation checking enabled.

However, actual calls to constraint handlers were
replaced by nop instructions (ideally, these should be

call instructions because nop is shorter resulting in

17

call instructions because nop is shorter resulting in

better code density).

This avoids confounding the performance overhead

of the checks with the overhead of constraint

handlers.

Agenda

AIR Integers

Implementation

Performance

Fuzz Testing

Experiment

18

Experiment

Future Work

Summary

Smart (Generational) Fuzzing

Requirements:

• In-depth knowledge of fuzzing target

• Specialized tools (e.g. Dranzer)

• Smart People

19

Results:

• Less crash analysis required

• Little duplication in results

Dumb (Mutation) Fuzzing

Requirements:

• No knowledge of fuzzing target

• Existing tools available

• Anybody can run the fuzzers

20

Results:

• More crash analysis required

• Much duplication in results

Winner:
Dumb
Fuzzing

21

Fuzzing

The Fuzzers

Tavis Ormandy’s “fuzz”

• http://freshmeat.net/projects/taviso-fuzz

• Runs various patterns of random mangling on a file

• Looks at return code of process

• Linux-only

22

• Cannot save state or be resumed

• Fragile

• File formats only

• Unobtrusive

Taviso-fuzz

Example syntax:
fuzz -T 1 -m 1:4 -d /mnt/hgfs/fuzz/tiff "ffmpeg -y

-i __FILE__ -acodec pcm_s16le -f rawvideo /dev/null"

smclock.ogv

-T <n> Timeout (seconds)

23

-T <n> Timeout (seconds)

-m <x>:<y> Load distribution (x of y machines)

-d <dir> Store crashing testcases in dir

“program __FILE__” Fuzz target syntax, __FILE__ is the fuzzed file

smclock.ogv The “seed” file

The Fuzzers

Caca labs zzuf

• http://caca.zoy.org/wiki/zzuf

• Random, repeatable mangling of a file

• User-specified randomization percentage

• Linux and OS X supported

24

• Saves state and can be resumed

• Robust

• File formats, network

• Intrusive

zzuf

Example syntax:
zzuf –cS –s0:10000 -r0.00001:0.1 -t 1 ffmpeg -y -i

smclock.ogv -acodec pcm_s16le -f rawvideo /dev/null

-c Only fuzz files that appear on command line

-S Prevent installation of signal handlers

25

-S Prevent installation of signal handlers

-s<w>:<x> Fuzz with seed number range from <w> to <x>

-r<y>:<z> Randomization range from <y> to <z>

-t <timeout> Application timeout

Verification

Platform differences

• Adobe Reader on Linux vs. Windows

Crash details

• Taviso fuzz and zzuf don’t use a debugger

• cdb / !exploitable, gdb, valgrind

26

• cdb / !exploitable, gdb, valgrind

Unique crash determination

• unique.sh – memory location of crash

• Last line of source code before crash

• Hash of multiple lines before crash

Caveats

Default Ubuntu VM is bad for fuzz testing

• Gnome has lots of memory leaks

• Gnome has lots of overhead

• By default, Ubuntu has memory randomization enabled

27

Solution:

• Use a lightweight window manager like fvwm or fluxbox

and configure the window manager to not raise new

windows

• Disable memory randomization in /etc/sysctl.conf

Kernel.randomize_va_space=0

Caveats

Non-optimized debug build required for reliable

debugging
• ./configure –disable-optimization –enable-debug

• In Makefile:

— STRIP = /bin/true

Remove any -O2 or other optimization flags

28

— Remove any -O2 or other optimization flags

Caveat Caveat

• Non-optimized code doesn’t always crash like optimized

code

Fuzzing Variables

Fuzzing effectiveness depends on many variables:

• Fuzzer

• Mutation strategy

• Seed File

• Program used to generate

29

• Options used for generation

• Size

Agenda

AIR Integers

Implementation

Performance

Fuzz Testing

Experiment

30

Experiment

Future Work

Summary

AIR Analysis Techniques

Just run the code

• During normal operation of an application, integer

constraint violations may be reported

Look at crashing test cases

• AIR constraint violations may be present in test cases

that cause an application to crash: Correlation !=

31

that cause an application to crash: Correlation !=

Causation

Look at all fuzzed mutations

• AIR may report integer constraint violations that do not

necessarily lead to crashes

• Lots of duplicate violations, e.g. 500 fuzzed variants /

sec.

Experiment

AIR Integers have been used successfully to analyze

two software libraries: JasPer and FFmpeg.

With the help of fuzzing tools, a number of overflows

and truncations have been found.

Static analysis tools (such as splint) have been used

32

Static analysis tools (such as splint) have been used

by several classes of CMU graduate and

undergraduate students to discover integer defects

not detected by AIR integers.

False Positives

Instrumented fuzz testing all raised a number of false

positives.

False positives are traps for overflows or truncations

that are not errors because they are harmless for that

particular implementation.

33

particular implementation.

CERT C Secure Integer Guidelines

INT30-C. Ensure that unsigned integer operations do not wrap

INT31-C. Ensure that integer conversions do not result in lost

or misinterpreted data*

INT32-C. Ensure that operations on signed integers do not

result in overflow

INT34-C. Do not shift a negative number of bits or more bits

34

INT34-C. Do not shift a negative number of bits or more bits

than exist in the operand

INT35-C. Evaluate integer expressions in a larger size before

comparing or assigning to that size

* No truncation errors were included in the results being presented today
because of a defect in the prototype.

JasPer JPEG 2000 Project

JasPer is a popular software toolkit for the handling

of JPEG 2000 image data.

JasPer can be used to manipulate image data as well

as import/export images in a variety of formats.

Several integer overflows and truncations have been

35

Several integer overflows and truncations have been

detected in JasPer by using AIR Integers in

combination with fuzzing tools.

Used by: KDE, ImageMagick, Ghostscript and more

JasPer Diagnostics

5

6

7

8

9

Exploitable

Crashable

36

0

1

2

3

4

5

INT30-C INT32-C INT34-C INT35-C

Crashable

Incorrect

False Positive

FFmpeg

FFmpeg is a popular tool for recording, converting,

and streaming audio and video.

Many projects use code from FFmpeg, such as

mplayer, VLC, Handbrake, Google Chrome, and

ffdshow.

37

ffdshow.

Combining fuzzing tools with AIR Integers revealed

many integer overflows and truncations in FFmpeg.

Ffmpeg Diagnostics

4

5

6

7

Exploitable

Crashable

38

0

1

2

3

INT30-C INT32-C INT34-C INT35-C

Crashable

Incorrect

False Positive

Agenda

Usage

Implementation

Performance

Results

Future Work

39

Future Work

Summary

Jasper and FFmpeg Combined Diagnostics

8

10

12

Exploitable

40

0

2

4

6

INT30-C INT32-C INT34-C INT35-C

Crashable

Incorrect

False Positive

Summary

Instrumented fuzz testing with AIR integers has some

false positives resulting from nonconforming coding

practices.

Code can be refactored to eliminate diagnostics

False negative rate (as measured using static

41

False negative rate (as measured using static

analysis tools) surprisingly low.

Runtime overhead of AIR integers is low (and can be

made lower) so retaining runtime protection is a

viable option.

For More Information

Visit CERT® web sites:

http://www.cert.org/vuls/discovery/

http://www.cert.org/secure-coding/

Contact Presenter

Will Dormann
wd@cert.org
(412) 268-8922

Robert C. Seacord

42

Robert C. Seacord
rcs@cert.org
(412) 268-7608

Contact CERT:

Software Engineering Institute

Carnegie Mellon University

4500 Fifth Avenue

Pittsburgh PA 15213-3890

