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As-If Infinitely Ranged Integers 

The purpose of the AIR integer model is to either 

• produce a value which is equivalent to a value that would 

have been obtained using infinitely ranged integers

• result in a runtime constraint violation.

This model is generally applied to both signed and 

unsigned integers but may be enabled or disabled 
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unsigned integers but may be enabled or disabled 

per compilation unit.



AIR Integer Model

In the AIR integer model, when an observation point 

is reached, and before any critical undefined 

behavior occurs, if traps have not been disabled, and 

if no traps have been raised, then any integer value 

in the output is correctly represented (“as if infinitely 

ranged”).
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ranged”).

An observation point occurs at an output, including a 

volatile object access.  

Traps are implemented using either 

• existing hardware traps (such as divide-by-zero) 

• by invoking a runtime-constraint handler



Observation Points

AIR Integers do not require where an exception is 

raised every time there is an integer overflow or 

truncation error.  

It is acceptable to delay catching an incorrectly 

represented value until an observation point is 

reached just before it either 
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reached just before it either 

• affects the output

• causes a critical undefined behavior (as defined by the 

C1X Analyzability Annex).  

This model improves the ability of compilers to 

optimize, without sacrificing safety and security.



Configuration 

Requirements

• A patched version of GCC 4.4.0 or GCC 4.5.0 to insert 

the overflow and truncation checks

• A patched stdlib.h file to include the runtime-

constraint handler definitions from ISO/IEC TR 24731-1

• The libconstraint library, which defines the 
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• The libconstraint library, which defines the 

constraint handlers used by AIR Integers

All of this is available from

http://www.cert.org/secure-coding/integralsecurity.html



Using AIR Integers 1

AIR Integers do not require changes to source code 

and can be used with pre-existing systems.

After configuring a system properly, AIR Integers can 

be used simply by recompiling a program with the 

following flags:
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following flags:

gcc –std=c99 –D__STDC_WANT_LIB_EXT__ 

-fcheck-overflow=n –fcheck-truncation 

–lconstraint –o prog prog.c



Using AIR Integers 2

–D__STDC_WANT_LIB_EXT__ enables the 

constraint handler definitions in stdlib.h

-fcheck-overflow=n enables overflow checking

• n=0 – Disable overflow checks (default)

• n=1 – Enable signed overflow checks
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• n=1 – Enable signed overflow checks

• n=2 – Enable signed/unsigned overflow checks

–fcheck-truncation enables truncation checks

–lconstraint links the constraint handler library



Constraint Handling

Constraint handlers are defined in the C1X normative 

Annex K “Bounds-checking interfaces” and by 

ISO/IEC TR 24731-1 to allow functions to trap when 

their runtime constraints are violated.

Constraint handlers have the following type.
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Constraint handlers have the following type.

typedef void (*constraint_handler_t)(

const char * restrict msg,

void * restrict ptr,

errno_t error

);



Constraint Handling 1

AIR Integers uses the custom libconstraint

library to define and implement simple constraint 

handlers to be called when overflow or truncation 

occurs.
• abort_handler_s : Indicate error on stderr and abort

• ignore_handler_s : Continue execution as normal
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• ignore_handler_s : Continue execution as normal

• notify_handler_s : Indicate error on stderr and continue



Constraint Handling 2

The default handler is notify_handler_s, which 

prints errors like

*** Runtime constraint violated:

Signed integer overflow in addition at address 0x806dc4e
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The TR 24731-1 defined function 
set_constraint_handler_s, can be used to 

register a different handler at runtime.

Custom constraint handlers can also be defined and 

registered at runtime.
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Testing vs. Runtime Protection

AIR integers can be used in both dynamic analysis and as a 

runtime protection scheme.

There is a well understood tradeoff between runtime overhead 

and development costs.

• Providing correctness “guarantees” requires extensive testing and 
excruciating attention to detail
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• Development costs can be decreased by adding runtime protection 
mechanisms however this will

— increase the size of the executable

— Introduce runtime overhead

• Runtime protection mechanisms still require a viable recovery 
strategy

• It is reasonable to provide some level of assurance combined with 
runtime checks, but you don’t want to pay twice



Benchmark Tests

To evaluate the performance of AIR Integers, runs of 

the integer portion of the SPEC CPU2006 benchmark 

were performed.

This benchmark evaluates compilers by compiling 

and running multiple packages, such as bzip2, gcc, 
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and running multiple packages, such as bzip2, gcc, 

and libquantum.



Performance Results

These ratios summarize the size of the runtime 

penalty imposed by using AIR Integers.

The ratios are measured against a consistent 

standard. Higher ratios reflect better performance.
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Optimization 
Level

Control 
Ratio

AIR Integer 
Ratio

Percent 
Overhead

O0 4.93 4.65 6.02

O1 7.28 6.90 5.51

O2 7.45 7.08 5.22



Performance Analysis

The benchmark test with AIR Integers was performed 

with full overflow and truncation checking enabled.

However, actual calls to constraint handlers were 
replaced by nop instructions (ideally, these should be 

call instructions because nop is shorter resulting in 
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call instructions because nop is shorter resulting in 

better code density).

This avoids confounding the performance overhead 

of the checks with the overhead of constraint 

handlers.
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Smart (Generational) Fuzzing

Requirements:

• In-depth knowledge of fuzzing target

• Specialized tools (e.g. Dranzer)

• Smart People
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Results:

• Less crash analysis required

• Little duplication in results



Dumb (Mutation) Fuzzing

Requirements:

• No knowledge of fuzzing target

• Existing tools available

• Anybody can run the fuzzers
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Results:

• More crash analysis required

• Much duplication in results 



Winner: 
Dumb 
Fuzzing
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Fuzzing



The Fuzzers

Tavis Ormandy’s “fuzz”

• http://freshmeat.net/projects/taviso-fuzz

• Runs various patterns of random mangling on a file

• Looks at return code of process

• Linux-only
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• Cannot save state or be resumed

• Fragile

• File formats only

• Unobtrusive



Taviso-fuzz

Example syntax:
fuzz -T 1 -m 1:4 -d /mnt/hgfs/fuzz/tiff "ffmpeg -y 

-i __FILE__ -acodec pcm_s16le -f rawvideo /dev/null" 

smclock.ogv

-T <n> Timeout (seconds)
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-T <n> Timeout (seconds)

-m <x>:<y> Load distribution (x of y machines)

-d <dir> Store crashing testcases in dir

“program __FILE__” Fuzz target syntax, __FILE__ is the fuzzed file

smclock.ogv The “seed” file



The Fuzzers

Caca labs zzuf

• http://caca.zoy.org/wiki/zzuf

• Random, repeatable mangling of a file

• User-specified randomization percentage

• Linux and OS X supported
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• Saves state and can be resumed

• Robust

• File formats, network

• Intrusive



zzuf

Example syntax:
zzuf –cS –s0:10000 -r0.00001:0.1 -t 1 ffmpeg -y -i

smclock.ogv -acodec pcm_s16le -f rawvideo /dev/null

-c Only fuzz files that appear on command line

-S Prevent installation of signal handlers
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-S Prevent installation of signal handlers

-s<w>:<x> Fuzz with seed number range from <w> to <x>

-r<y>:<z> Randomization range from <y> to <z>

-t <timeout> Application timeout



Verification

Platform differences

• Adobe Reader on Linux vs. Windows

Crash details

• Taviso fuzz and zzuf don’t use a debugger

• cdb / !exploitable, gdb, valgrind
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• cdb / !exploitable, gdb, valgrind

Unique crash determination

• unique.sh – memory location of crash

• Last line of source code before crash

• Hash of multiple lines before crash



Caveats

Default Ubuntu VM is bad for fuzz testing

• Gnome has lots of memory leaks

• Gnome has lots of overhead

• By default, Ubuntu has memory randomization enabled
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Solution:

• Use a lightweight window manager like fvwm or fluxbox

and configure the window manager to not raise new 

windows

• Disable memory randomization in /etc/sysctl.conf

Kernel.randomize_va_space=0



Caveats

Non-optimized debug build required for reliable 

debugging
• ./configure –disable-optimization –enable-debug

• In Makefile:

— STRIP = /bin/true

Remove any -O2 or other optimization flags
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— Remove any -O2 or other optimization flags

Caveat Caveat

• Non-optimized code doesn’t always crash like optimized 

code



Fuzzing Variables

Fuzzing effectiveness depends on many variables:

• Fuzzer

• Mutation strategy

• Seed File

• Program used to generate
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• Options used for generation

• Size
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AIR Analysis Techniques

Just run the code

• During normal operation of an application, integer 

constraint violations may be reported

Look at crashing test cases

• AIR constraint violations may be present in test cases 

that cause an application to crash: Correlation != 
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that cause an application to crash: Correlation != 

Causation

Look at all fuzzed mutations

• AIR may report integer constraint violations that do not 

necessarily lead to crashes

• Lots of duplicate violations, e.g. 500 fuzzed variants / 

sec.



Experiment

AIR Integers have been used successfully to analyze 

two software libraries: JasPer and FFmpeg.

With the help of fuzzing tools, a number of overflows 

and truncations have been found.

Static analysis tools (such as splint) have been used 

32

Static analysis tools (such as splint) have been used 

by several classes of CMU graduate and 

undergraduate students to discover integer defects 

not detected by AIR integers.



False Positives

Instrumented fuzz testing all raised a number of false 

positives.

False positives are traps for overflows or truncations 

that are not errors because they are harmless for that 

particular implementation.
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particular implementation.



CERT C Secure Integer Guidelines

INT30-C. Ensure that unsigned integer operations do not wrap

INT31-C. Ensure that integer conversions do not result in lost 

or misinterpreted data*

INT32-C. Ensure that operations on signed integers do not 

result in overflow

INT34-C. Do not shift a negative number of bits or more bits 
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INT34-C. Do not shift a negative number of bits or more bits 

than exist in the operand

INT35-C. Evaluate integer expressions in a larger size before 

comparing or assigning to that size

* No truncation errors were included in the results being presented today 
because of a defect in the prototype.



JasPer JPEG 2000 Project

JasPer is a popular software toolkit for the handling 

of JPEG 2000 image data.

JasPer can be used to manipulate image data as well 

as import/export images in a variety of formats.

Several integer overflows and truncations have been 
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Several integer overflows and truncations have been 

detected in JasPer by using AIR Integers in 

combination with fuzzing tools.

Used by: KDE, ImageMagick, Ghostscript and more



JasPer Diagnostics
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FFmpeg

FFmpeg is a popular tool for recording, converting, 

and streaming audio and video.

Many projects use code from FFmpeg, such as 

mplayer, VLC, Handbrake, Google Chrome, and 

ffdshow.
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ffdshow.

Combining fuzzing tools with AIR Integers revealed 

many integer overflows and truncations in FFmpeg.



Ffmpeg Diagnostics
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Jasper and FFmpeg Combined Diagnostics
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Summary

Instrumented fuzz testing with AIR integers has some 

false positives resulting from nonconforming coding 

practices.

Code can be refactored to eliminate diagnostics

False negative rate (as measured using static 
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False negative rate (as measured using static 

analysis tools) surprisingly low.

Runtime overhead of AIR integers is low (and can be 

made lower) so retaining runtime protection is a 

viable option.
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