
© 2010 Codenomicon. all rights reserved. © 2010 Codenomicon. all rights reserved.

Mikko Varpiola

Fuzzing Specialist

Codenomicon

Realizing the Fuzzing Potential:

Precision and Accuracy vs. Coverage
http://www.codenomicon.com/products/coverage.shtml

Ari Takanen

CTO

Codenomicon

CERT/CC Vulnerability Discovery

Workshop

Monday 1st of Feb, 2010, Arlington, VA

© 2010 Codenomicon. all rights reserved.

About Codenomicon

• Founded in 2001, after five

years of research in product

security at University of

Oulu (1996-2001)

• Customers include:

– Manufacturers

– Telco Service Providers

– Defense

– Finance and Leading

Enterprises

• CROSS (IPv6, xml,…, FTP)

Monday 1st of Feb, 2010, Arlington, VA

© 2010 Codenomicon. all rights reserved.

About Mikko Varpiola

• One of the original PROTOS team members at

University of Oulu

– WAP, LDAP, SNMP, …

– Fuzzing (and otherwise breaking SW) since 1996 or so

• Co-founder of Codenomicon, key customer services

specialist in USA market

– Need any weird protocols extensively fuzzed: contact

Mikko ;-)

Monday 1st of Feb, 2010, Arlington, VA

© 2010 Codenomicon. all rights reserved.

What is Codenomicon DEFENSICS?

• Product line of model-

based fuzzers for over

200 protocols and

interfaces

• Both Client/Server

• 20-30% of tools are

customer proprietary

• Only solution covering

whole application stack

– Wireless / Layer 2

– Network protocols

– File formats

– Application / XML

– API

Monday 1st of Feb, 2010, Arlington, VA

© 2010 Codenomicon. all rights reserved.

Some Helpful Definitions

• Vulnerability – a weakness in software, a bug

• Threat/Attack – exploit/worm/virus against a specific

vulnerability

• Protocol Modeling – Technique for explaining interface

message sequences and message structures

• Fuzzing – process and technique for security testing

• Anomaly – abnormal or unexpected input

• Failure – crash, busy-loop, memory corruption, or

other indication of a bug in software

Monday 1st of Feb, 2010, Arlington, VA

© 2010 Codenomicon. all rights reserved.

From: http://www.google.com/googlebooks/chrome/

Fuzzing is a NEW way of doing QA. Its

robustness, its security! Its here, today.

And it works! Lets make sure it is used!

Monday 1st of Feb, 2010, Arlington, VA

© 2010 Codenomicon. all rights reserved.

Facts about fuzzing

• All fuzzing approaches find vulnerabilities and

failures. Some more than others.

• More fuzzing is usually the better

• There is no shortage of tools today – both FOSS and

commercial

• Fuzzing is right thing

to do – and its cheap

and cost effective!

• [almost] Everyone

SHOULD fuzz!

A bug trying to hide from us

Monday 1st of Feb, 2010, Arlington, VA

© 2010 Codenomicon. all rights reserved.

Example: Multitude of Attack Vectors /

Attack Surface

Monday 1st of Feb, 2010, Arlington, VA

© 2010 Codenomicon. all rights reserved.

Test Coverage, or how:

Just Getting IT done – affects it?

The Greatest Challenge in Fuzzing?

Monday 1st of Feb, 2010, Arlington, VA

© 2010 Codenomicon. all rights reserved.

PRECISION

Precision is about focus

Attack surface

Protocol layers

Protocol use cases

…

Monday 1st of Feb, 2010, Arlington, VA

© 2010 Codenomicon. all rights reserved.

ACCURACY

Accuracy is skills and about fine

tuning your “tools”

SQL anomalies

ASN.1 anomalies

XML anomalies

Integer anomalies

Structural anomalies

…

Monitoring

…

Monday 1st of Feb, 2010, Arlington, VA

© 2010 Codenomicon. all rights reserved.

ROBUSTNESS TESTING - FUZZING

Monday 1st of Feb, 2010, Arlington, VA
Monday 1st of Feb, 2010, Arlington, VA

© 2010 Codenomicon. all rights reserved.

So whats the problem?

• What we a trying to find is usually microscopically

”small” – so {shot/mini}gunning is usually not the

optimum solution

• Various methods are needed to optimize the fuzz...

This is what we and others have been doing past 10

years++

• This translates to coverage.

Coverage seems to be

function of accuracy and

precision!

(in part anyway)

Monday 1st of Feb, 2010, Arlington, VA

© 2010 Codenomicon. all rights reserved.

What is Fuzzing Today?

• Fuzzing tests SW/HW by providing anomalous input to

communication protocols/interfaces

• Attempts to cause the software to fail or behave in

unexpected ways

• Models communication protocols, APIs, or file formats

– Pretty much all fuzzing today is model based (only variable is

what the model is based on and how complex it is)

• Creates large amounts of anomalous input

automatically (which leads to some problems debated later on)

• Interacts with the software under test and observes the

behavior (!!!!)

Monday 1st of Feb, 2010, Arlington, VA

© 2010 Codenomicon. all rights reserved.

Some technical (traditional?) methods to

assess the coverage

• By observing the test suite

• Specification coverage of the test suite

• Functional coverage of the test suite

• Engine capabilities (How the model is build, Evolving, Traffic capture, Specification,

How test cases are generated, Systematic, Mutation, Anomaly libraries, Bit-flips,…)

• By observing the test target

• Code coverage (depth, breadth?) (!!!)

• Binary coverage (e.g. PaiMei, IDAPRo…)

• Number actual unique bugs observed

• (Resource utilization)

• CPU, memory leaks, file handles, hidden exceptions,…

Monday 1st of Feb, 2010, Arlington, VA

© 2010 Codenomicon. all rights reserved.

Couple of observations on coverage

(accuracy, precision)

• Affected by several factors outside (often) direct

control of the [fuzzing] test suite

• Configuration of DUT

• Execution environment (ripple effect)

• Configuration and capabilities of the test suite (people

just run the default settings)

• [better, automatic, easier] observation facilities increase

the accuracy of the tests

• E.g. use Valgrind to catch memory leaks

• E.g. use OllyDbg, windbg to catch bad use of try {}

catch {} to hide exceptions…

• E.g monitoring /var/log/messages :-S

Monday 1st of Feb, 2010, Arlington, VA

© 2010 Codenomicon. all rights reserved.

Reality check on technical coverage

• depth-first might be sexier but breadth-first seems to

helps in getting better overall results

• Fuzzing multiple layers or fields at the same time may

sound fancy, but usually results in significantly poorer

results!

Monday 1st of Feb, 2010, Arlington, VA

© 2010 Codenomicon. all rights reserved.

Accuracy, precision, coverage – beyond

technical means – socio-economical

coverage

• It’s not only technical challenges that we are facing

when trying to get best out of fuzzing

• I assert that organizational, educational, processual,

usability, etc. aspects of fuzzing ecosystem are bigger

challege than technical issues

– These challlenges in part also prevent fuzzing being able to

realize its potential

Monday 1st of Feb, 2010, Arlington, VA

© 2010 Codenomicon. all rights reserved.

Accuracy, precision == Coverage ==

function of usage

• All fuzzing finds flaws

– IF users know HOW to use the tools

– AND how to read and use the results (big issue with

commercial fuzzers)

• Some reasons for IF/HOW/AND(s) above

– As fuzzing goes more main stream, people don’t do fuzzing

because of its inherent benefits, BUT because they are told

to. Which means they don’t get it the way we do.

– Fuzzing is not exact “science” – e.g. results need

interpretation, its not always clear what to look for or what

happened?

– Something needs to be done with results – which is not

always obvious!
Monday 1st of Feb, 2010, Arlington, VA

© 2010 Codenomicon. all rights reserved.

Commercial deployments of fuzzing suffer

from non technical challenges...

• For commercial deployments there are few key

challenges

– Fuzzing is NOT recognized as integral part of modern SDLC

• Even when it is, there is big confusion on how/where to

deploy it (security vs. QA vs. choose)

– There are NO fuzzing career paths or certifications

– There are NO compliance requirements that fuzzing would

fulfill (CC EAL4?)

– Fuzzing is NOT taught in colleges, universities,… (at least

not in India, China, Indonesia,… where the testing is done)

• As a result fuzzing is not realizing its full potential!
(and that has almost nothing to do with technical capabilities of fuzzers)

Monday 1st of Feb, 2010, Arlington, VA

© 2010 Codenomicon. all rights reserved.

Increasing the coverage of commercial

fuzzers (in non technical way)

• Fuzzing added as a compliancy requirement of its own

– Likely decreases the actual ”quality”, BUT overall outcome is

likely light years ahead of where we are today!

– Solves the problem that fuzzing is skipped because people

are worried about their job security

– Career paths, certifications (!!!!)
(you need a permit to hold a gun in most countries, should same be applied to fuzzers?)

• Education, training, support!!!

– What to do with the vulnerability after its found? Fix it, report

it (whom, where?), mitigate it, forget about it?

– To make people aware of fuzzing...

Monday 1st of Feb, 2010, Arlington, VA

© 2010 Codenomicon. all rights reserved.

Many organizations choose to deploy fuzzing

in other parts of the SDL as well.

Microsoft SDL Example: Fuzz Here?

http://msdn.microsoft.com/en-us/security/dd219581.aspx

Monday 1st of Feb, 2010, Arlington, VA

© 2010 Codenomicon. all rights reserved.

Microsoft SDL helps in so many ways

• Well defined SDL with fuzzing presented as an

integral part of it

• SDL how ever does not define HOW, hence we need:

– Provide tools / test suites / instructions / guides /

encouragement

– Provide the baseline test plans, information,..

– Support with monitoring facilities (Core dumps, Memory leaks, CPU,

Other (...))

– The key question is how fuzzing is done (and

what/when is enough)?

– This is both technical and non-technical question!

Monday 1st of Feb, 2010, Arlington, VA

© 2010 Codenomicon. all rights reserved.

Summary of part #1

• Fuzzing may be ready for the prime time, but in order

to get there we need *support*

• We need vendor independent

– Best practises and recommendations

– Fuzzing added as a compliancy requirement

– Education on fuzzing as part of QA / testing curriculums

• Fuzzing to be made even easier and more accessible

to the end users

Monday 1st of Feb, 2010, Arlington, VA

© 2010 Codenomicon. all rights reserved.

XML Introduction, XML

Vulnerabilities, XML Fuzzers

Case 1: XML Fuzzing – more coverage by

fuzzing more layers

http://www.codenomicon.com/defensics/xml
Monday 1st of Feb, 2010, Arlington, VA

© 2010 Codenomicon. all rights reserved.

Case: XML

• Early 2009, Codenomicon developed fuzzers for XML-

based telecommunication protocols

• All open source XML parser libraries failed

– All applications using these libraries are vulnerable for the

very same issue

• Note that this is very similar to the PROTOS/OUSPG

ASN.1/SNMP discovery… Covering potentially

thousands of bugs… ASN.1/SNMP bugs were never

really fixed either… Codenomicon SNMP suite still

today crashes all commercial SNMP implementations

Monday 1st of Feb, 2010, Arlington, VA

© 2010 Codenomicon. all rights reserved.

Wait a Sec! What is XML?

• XML is not a protocol

• XML is a syntax for

messages, similar to

ASN.1 in binary

messages

<?xml version='1.0'?>

<methodCall>

<methodName>AttachFile</methodName>

<params>

<param>

<value><string>FrontPage</string></value>

</param>

<param>

<value><string></string></value>

</param>

<param>

<value><string>list</string></value>

</param>

<param>

<value><string></string></value>

</param>

<param>

<value><boolean>0</boolean></value>

</param>

</params>

</methodCall>

Monday 1st of Feb, 2010, Arlington, VA

© 2010 Codenomicon. all rights reserved.

XML Is Used In

• XML used by IETF, 3GPP, W3C and commercial

vendors

• XML-based standard protocols

– SOAP, XMPP, CWMP (TR-069), UPnP, NETCONF,

SIP/IMS, SyncML

• XML file formats

– HTML/XHTML, XSLT, RSS/Atom, WAP/WML, SAML, SMIL,

Office applications

• Proprietary protocols and file formats

– IBM, Microsoft, SAP, Oracle, BEA etc.

• Custom application logic built on XML messaging

using Web Services platforms (Various vendors)

Monday 1st of Feb, 2010, Arlington, VA

© 2010 Codenomicon. all rights reserved.

XML: The Discovery

• A single exploit can be used to attack:

– Security products such as Firewalls

– Application platforms

– Programming languages: PHP, Ruby, Python, C, Java

• Repair process:

– Fix the parser libraries

– Deploy updates to operating systems and platforms

– Urge application developers to re-build if needed

Monday 1st of Feb, 2010, Arlington, VA

© 2010 Codenomicon. all rights reserved.

XML: A Look At The Test Coverage

• XML-based systems

– Complex and highly critical
applications

– Built in “layers”

– Parsers, SOAP and XML-
RPC applications

• Fuzzers for XML

– Advanced model-based
fuzzing capability required for
testing anything above
parser-level

– Customized fuzzers needed
for application layer

Monday 1st of Feb, 2010, Arlington, VA

© 2010 Codenomicon. all rights reserved.

Coverage

• Precision?

• All messages tested?

• All message structures

tested?

• All data definitions

tested?

• All “tags” tested?

• Precision seems like it is

about protocol coverage

• Accuracy?

• Anomaly categories?

SQL? Buffer overflow?

• All values: 0..65k, a..z,

0x00..0x255 ?

• Combinations of

anomalies?

• Accuracy seems like it is

about anomaly coverage

Monday 1st of Feb, 2010, Arlington, VA

© 2010 Codenomicon. all rights reserved.

Traffic Capture Fuzzing

(==fuzzing for the masses?)

Templates-Based General Purpose Fuzzing

-- more coverage via less precision and accuracy

http://www.codenomicon.com/defensics/traffic-capture-fuzzer

Monday 1st of Feb, 2010, Arlington, VA

© 2010 Codenomicon. all rights reserved.

Traffic Capture Fuzzing

• All fuzzing needs a model of correct behavior

• The easiest method for acquiring default functionality

is from templates

– Files

– PCAP traffic flows

• The model is easily built by e.g. Wireshark protocol

dissectors

– Open source has had this a while (autodafe, peach,…)

– Commercial fuzzers following, with a twist…

Monday 1st of Feb, 2010, Arlington, VA

© 2010 Codenomicon. all rights reserved.

Acquire traffic capture from analyzers,

vulnerability feeds or bug reports

Monday 1st of Feb, 2010, Arlington, VA

© 2010 Codenomicon. all rights reserved.

Protocol (and protocol layer) selection from

a set of protocol captures

© 2010 Codenomicon. all rights reserved.

Protocol model and test cases are

automatically created

© 2010 Codenomicon. all rights reserved.

Model-based vs Template-based

• Benefits of Model Based Fuzzing

– Full test coverage (all elements, all anomaly categories)

– Short test cycle

– More optimized tests

– Easy to edit and add tests to an easy to understand model

• Template Based Fuzzing

– Quality of tests is based on the used seed

– Covers only visible protocol elements

– Blind sets of anomalies (if no meta-data on fields)

– Very quick to develop, but slow to run

– Editing requires deep protocol know-how
Monday 1st of Feb, 2010, Arlington, VA

© 2010 Codenomicon. all rights reserved.

CAPTURE-BASED TESTING

Implementation

Standard

Extensions

Bugs

Claims in the industry:

Traffic capture fuzzing tests all used protocol elements

Monday 1st of Feb, 2010, Arlington, VA

© 2010 Codenomicon. all rights reserved.

MODEL-BASED TESTING

Implementation

Standard

Extensions

Bugs

Claims in the industry:

Specification-based fuzzing tests all used protocol elements

Monday 1st of Feb, 2010, Arlington, VA

© 2010 Codenomicon. all rights reserved.

COMPARISON SUMMARY

• Capture fuzzing is not substitude for (specification)

model based testing

– Valuable as entry level solution when model-based fuzzer is

not available

– Model based fuzzer can be adapted to proprietary extensions

– Capture based fuzzer can’t be taught rarely used elements

specified by standard (*

(* Security problems are often found from the attack surface parts which are

not usually covered in day-to-day traffic. Bugs are there because those parts

of the code are usually less tested and reflect rarely needed portions of a

protocol.

However, it does not matter if a vulnerability is in unusual interface surface,

the system is still 100% vulnerable.

Monday 1st of Feb, 2010, Arlington, VA

© 2010 Codenomicon. all rights reserved.

Challenge: Fuzzing: The Anomalies

Monday 1st of Feb, 2010, Arlington, VA

© 2010 Codenomicon. all rights reserved.

Fuzz the Entire System (E2E)

• Fuzz Testing needs to be conducted for the entire

system, not just one layer on one interface

Monday 1st of Feb, 2010, Arlington, VA

© 2010 Codenomicon. all rights reserved.

“Thrill to the excitement of the chase!

Stalk bugs with care, methodology,

and reason. Build traps for them.

....

Testers!

Break that software (as you must) and

drive it to the ultimate

- but don’t enjoy the programmer’s

pain.”

[from Boris Beizer]

PROACTIVE SECURITY AND ROBUSTNESS SOLUTIONS

THANK YOU – QUESTIONS?

Monday 1st of Feb, 2010, Arlington, VA

